2015 SH2 H2 Chemistry Prelim Paper 2 Suggested Answers with Examiners' Comments

1(a) Procedural format

Divide the unknown into 5 separate portions

- Warm a portion with Fehling's solution: if brick red ppt forms, unknown is ethanal.

- If no ppt, warm another portion with Tollen's reagent: if silver mirror forms, unknown is **benzaldehyde**.

- If no silver mirror, warm another portion of sample with aq I_2 + NaOH(aq): if yellow ppt forms; unknown is **1-iodopentan-2-one**.

- If no yellow ppt, warm another portion with NaOH(aq) and test gas with moist red litmus paper: if litmus paper turns blue, unknown is **propanamide**.

- If no alkaline gas, add $Br_2(aq)$ to last portion: if orange $Br_2(aq)$ decolourises & white ppt forms, unknown is **phenylamine**.

Another example of plan:

1(bi)

1(bii) 1. Suggest **suitable quantities** of ethanal and 2,4-DNPH to prepare the solid derivative (hydrazone).

2. Filter solid derivative and then dissolve in **minimum volume of hot solvent** (non-polar or organic) ... use **fluted filter paper / pre-heated funnel / Buchner funnel** to remove insoluble impurities

3. Cool solution to form crystals ... Then filter purified crystals using Buchner funnel.

4. **Wash** crystals with **minimum cold solvent** and **dry the solid** (in desiccator / press between filter papers / low temperature oven).

5. Find melting point of pure and dry crystals (m.p 165 °C).

- 1(c) As organic compounds are flammable, there should be NO Bunsen flame or naked flame. / Heat or warm reaction mixture in a water bath when conducting experiments.
- **2(ai)** P: $1s^2 2s^2 2p^6 3s^2 3p^3$ S: $1s^2 2s^2 2p^6 3s^2 3p^4$
- 2(aii) 1st IE of S is lower than that of P:

All 3*p* electrons in P are unpaired. <u>Two of the 3*p* electrons are paired</u> in S with <u>inter-</u> <u>electronic repulsion</u> between the paired electrons. Thus less energy is required to remove the 1st paired electron in S

4th IE of S is lower than that of P:

<u>4th e in S is removed</u> from <u>3p subshell</u>; while <u>4th e in P is removed from 3s subshell</u>; **3p subshell is further** from the nucleus (at a higher E level) with weaker nuclear attraction. Thus less energy is required to remove this electron in S.

2(bi)

$$p = \frac{(1)(8.31)(298)}{(0.50 \times 10^{-3} - 5.68 \times 10^{-5})} - \frac{(1)^2 (0.687)}{(0.50 \times 10^{-3})^2}$$

$$= 2.84 \times 10^6 \text{ Pa}$$

2(bii) Using the ideal gas equation,

$$p = nRT/V = \frac{(1)(8.31)(298)}{(0.5x10^{-3})} = \frac{4.95 \times 10^6}{2} Pa$$
 or

2015 NJC SH2 H2 Chemistry Prelim Paper 2 Solution with Examiners' Comments

$$p_{ideal} = p + \frac{n^2 a}{V^2} = 2.84 \times 10^6 + \frac{1 \times 0.687}{(0.50 \times 10^{-3})^2}$$

= 2.84 x 10⁶ + 2.748 x 10⁶ = 5.59 x 10⁶ Pa

2(biii) Actual pressure exerted by SO₂ is <u>lower</u> than that calculated from ideal gas equation. This is due to significant <u>intermolecular forces of attraction</u> between <u>polar SO₂</u> and thus less forceful collisions against the walls of container.

2(ci) L Metallic bonding

- M Ionic bonding
- N Covalent bonding
- 2(cii) I: average electronegativity for Ge and O = $\frac{2.01 + 3.61}{2}$ = 2.81 (accept 2.60 - 3.00) difference in electronegativity for Ge and O = 3.61 - 2.01 = 1.60 (accept 1.40 - 1.80) each + correctly determined and plotted the coordinates for GeO₂ The nature of the oxide of germanium is <u>acidic</u>.

II: Oxide of germanium has a <u>lower</u> melting point (giant covalent compound)

Ge is below Si in Group IV with a **<u>bigger atomic size</u>**; overlap of the atomic orbitals of Ge and O will be **<u>less effective</u>** than those of Si and O; the covalent bonds between Ge and O are weaker.

3(a) Squaric acid dissociates fully in water to form <u>ions which form ion-dipole interactions</u> with water molecules.

Energy released in the formation of these interactions can **<u>compensate</u>** the <u>energy</u> **<u>required</u>** to break the <u>intermolecular hydrogen bonds in squaric acid and in water</u>.

 $C_4H_2O_4 + 2NaOH \rightarrow Na_2C_4O_4 + 2H_2O$

3(bii) Amt of excess OH⁻ in 25.0 cm³ =
$$\frac{29.7}{1000} \times 0.100 = 2.97 \times 10^{-3}$$
 mol
Amt of excess OH⁻ in 100 cm³ = 2.97 x 10⁻³ mol x $\frac{100}{25.0}$ = 1.188 x 10⁻² mol
Amt of OH⁻ that reacted with squaric acid in sample = $\frac{100}{1000} \times 0.250 - 1.188 \times 10^{-2}$
= 1.312 x 10⁻² mol
Amt of squaric acid = 1.312 x 10⁻² /2 = 6.56 x 10⁻³ mol
Mass of pure squaric acid = 6.56 x 10⁻³ x 114 = 0.7478 g
% purity by mass = $\frac{0.7478}{4} \times 100 = 18.7\%$

3(c) The dianion can undergo resonance, whereby <u>the lone pair of electrons on O⁻ and π </u> <u>electrons of C=C and C=O can delocalise between the p orbitals of all the C and O</u> to give a symmetrical resonance hybrid with identical C-C bond lengths.

OR

The lone pair of electrons on O⁻ can delocalise into the π electrons clouds of C=C and C=O to give a symmetrical resonance hybrid with identical C-C bond lengths.

4(ai)
$$Hg(CNO)_2 (s) \rightarrow Hg(l) + N_2 (g) + 2CO(g)$$

4(aii) $\Delta H_r^{\theta} = \Sigma m \Delta H_f^{\theta} (\text{products}) - \Sigma n \Delta H_f^{\theta} (\text{reactants})$ = 2 x $\Delta H_f^{\theta} (\text{CO}) - \Delta H_f^{\theta} (\text{Hg}(\text{CNO})_2)$ = 2 x (-111) - (+386) = -608 kJ mol⁻¹

4(aiii) ΔS° is positive as there is an increase in the number of gaseous molecules in the process.

 $\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ}$, since $\Delta H^{\circ} < 0$ and $\Delta S^{\circ} > 0$, ΔG° is always < 0; decomposition of Hg(CNO)₂ is energetically feasible at all temperatures.

By Hess's law,

L.E. =
$$-(+ 64 + \frac{1}{2} (496) + 1007 + 1810 + (-142) + 844) - 91$$

= $-3922 \text{ kJ mol}^{-1}$
= $-3920 \text{ kJ mol}^{-1}$

- **4(bii)** Hg²⁺, same for both compounds, <u>-2 charge of O²⁻ is higher in magnitude than -1 of</u> <u>F</u>, but <u>r- of O²⁻ bigger than r- of F</u> (both are isoelectronic, but F has a higher NC) The effect of increase in charge product <u>outweighs</u> that of interionic distance, since $|LE| \propto \left| \frac{q_+q_-}{r_++r_-} \right|$, the <u>magnitude of lattice energy of HgO is likely greater than</u> <u>HgF_2</u>.
- 4(ci) I: acid base reaction or neutralisation

II: condensation

4(cii) C=O and N-H bond

- 5(ai) $Ni^{2+} + 2OH^- \rightarrow Ni(OH)_2$
- 5(aii) $\begin{bmatrix} Ni(NH_3)_6 \end{bmatrix}^{2+} \\ Ni(OH)_2(s) + aq \implies Ni^{2+}(aq) + 2OH^{-}(aq) \\ \begin{bmatrix} Ni(H_2O)_6 \end{bmatrix}^{2+} + 6NH_3 \implies \begin{bmatrix} Ni(NH_3)_6 \end{bmatrix}^{2+} + 6H_2O$
- 5(aiii) Ligand exchange reaction

5(bi) [R] $Cu^{2+} + 2e \rightarrow Cu$ [O] $2S_2O_3^{2-} \rightarrow S_4O_6^{2-} + 2e$ $E_{red}^{\Theta} (Cu^{2+}/Cu) = +0.34 \text{ V}$ $E_{red}^{\Theta} (S_4O_6^{2-}/S_2O_3^{2-}) = +0.09 \text{ V}$

Overall equation: $Cu^{2+} + 2S_2O_3^{2-} \rightarrow S_4O_6^{2-} + Cu$ $E_{cell}^{\Theta} = +0.25$ V > 0 The redox reaction is energetically feasible; blue $CuSO_4$ solution would decolourise and a pink solid of Cu is formed.

Alternative accepted answer (in fact, Cu^+ is unstable in aq medium) Overall equation: $2Cu^{2+} + 2S_2O_3^{2-} \rightarrow S_4O_6^{2-} + 2Cu^+$ $E_{cell}^{\circ} = +0.06 \text{ V} > 0$ The redox reaction is energetically feasible, blue $CuSO_4$ solution would become colourless $Cu^+(aq)$.

5(bii)
$$\begin{bmatrix} \mathsf{R} \end{bmatrix} \quad \begin{bmatrix} \mathsf{Cu}(\mathsf{NH}_3)_4 \end{bmatrix}^{2^+} + 2e \to \mathsf{Cu} + 4\mathsf{NH}_3 \quad \mathsf{E}^{\Theta}_{\text{red}} \left(\begin{bmatrix} \mathsf{Cu}(\mathsf{NH}_3)_4 \end{bmatrix}^{2^+} / \mathsf{Cu} \right) = -0.05 \text{ V} \\ \begin{bmatrix} \mathsf{O} \end{bmatrix} \quad 2\mathsf{S}_2\mathsf{O}_3^{2^-} \to \mathsf{S}_4\mathsf{O}_6^{2^-} + 2e \qquad \mathsf{E}^{\Theta}_{\text{red}} \left(\mathsf{S}_4\mathsf{O}_6^{2^-} / \mathsf{S}_2\mathsf{O}_3^{2^-} \right) = +0.09 \text{ V}$$

Overall equation: $[Cu(NH_3)_4]^{2+} + 2S_2O_3^{2-} \rightarrow S_4O_6^{2-} + Cu + 4NH_3$ $E_{cell}^{\Theta} = -0.14 \text{ V} < 0$ The redox reaction is not energetically feasible, deep blue $[Cu(NH_3)_4]^{2+}$ would remain.

- **5(ci)** NH_3 acts as a Bronsted base as it accepts H⁺ from DMGH to produce DMG⁻ ligands and NH_4^+ .
- **5(cii)** Coordination number = 4 (The total number of dative bonds contributed by the ligands to the cation.)

Benzoic acid has a lower pK_a value; is a stronger acid than phenylethanoic acid.

The conjugate base of benzoic acid is <u>more stable</u> than that of phenylethanoic acid: <u>negative charge on O⁻ is dispersed to a greater extent as electrons of O⁻ can delocalise over 2 highly electronegative O atoms in -COO⁻ and further into the <u>benzene ring</u>.</u>

Dissociation of benzoic acid into its conjugate base and H⁺ is **more favourable** than that of phenylethanoic acid. Hence **benzoic acid is a stronger acid**.

Alternative answer

The <u>conjugate base of phenylethanoic acid is less stable</u> than that of benzoic acid, the <u>negative charge on O⁻ is intensified</u> as the <u>-COO⁻ is directly bonded to an</u> <u>electron donating alkyl</u> group.

6(bi) Lactic acid (acid with pK_a value closest to the desired pH of 3.55)

6(bii) For buffer system,

$$pH = pK_a + lg \frac{[salt]}{[acid]}$$

$$3.55 = 3.86 + lg \frac{[salt]}{[acid]}$$

$$lg \frac{[salt]}{[acid]} = -0.31$$

$$\frac{[salt]}{[acid]} = 0.4898 \approx 0.490 (3 \text{ s.f.})$$

6(biii) Amount of acid $= 0.5 \times 0.2 = 0.1 \text{ mol}$

Let amount of NaOH added be a mol

	HA	+	OH⁻	\rightarrow	A^-	+	H ₂ O
Initial amount /mol	0.1		а		0		
Final amount /mol	0.1– a		0		а		

 $C_{10}H_{11}Br$ is produced through the following intermediate:

6(di)

Electrophilic addition

Based on the data on electronegativity, B is δ + and H is δ - (B is less electronegative than H). Thus BH₂⁺ is the electrophile.

 $6(dii) \begin{array}{l} \text{Oxidation number of C* in: } Y \text{ is } -3; \text{ Z is } -1 \\ \text{Role of } H_2O_2\text{: as oxidising agent} \end{array}$

7(a) cys-ser-val

7(bi)

- Illustrate at least 2 H-bonding between C=O and N-H of different peptide
- Label partial charges on N-H and C=O and lone pair electron on O
- R-groups pointing outwards from the helix
- Label 3.6 amino acids per turn

7(bii) When proline is in the alpha helix structure, this is the structure of the polypeptide:

The N atom of the peptide bond of proline lacks an H atom to form hydrogen bonding at regular intervals, hence it disrupts the regular coiling of the alpha helix structure.

Alternative answer:

The rigid ring structure of the R group of proline would hinder the twisting and coiling of the alpha helix structure.