The Mole Concept and Stoichiometry Discussion Questions Solutions

Calculation of Relative Molecular Mass

1 Bromine consists of two isotopes, ⁷⁹Br and ⁸¹Br, in the relative abundance ratio of 1:1. Bromine exists as diatomic molecule, Br₂, at room temperature and pressure.

Calculate the possible relative molecular masses, M_r , of Br_2 molecules formed by these two isotopes and their relative abundance ratio.

				[1:2:1]
Molecular Formula	⁷⁹ Br ⁷⁹ Br	⁷⁹ Br ⁸¹ Br or ⁸¹ Br ⁷⁹ Br	⁸¹ Br ⁸¹ Br	
Mr	158	160	162	
Relative Ratio	$\left(\frac{1}{2}\right)\left(\frac{1}{2}\right) = \frac{1}{4}$	$2\left(\frac{1}{2}\right)\left(\frac{1}{2}\right) = \frac{1}{2}$	$\left(\frac{1}{2}\right)\left(\frac{1}{2}\right) = \frac{1}{4}$	
Abundance Ratio	1	2	1	

Calculation involving Parts Per Million

2 Gardeners sometimes fumigate their greenhouses to rid them of pests and moulds by burning a sulfur 'candle'. A gaseous concentration of sulfur dioxide of 50 ppm (parts per million) by volume is effective.

Calculate how many grams of sulfur a gardener needs to burn in order to produce a concentration of 50 ppm of SO₂ in a greenhouse that measures $2 \text{ m} \times 3 \text{ m} \times 4 \text{ m}$. Assume room conditions.

[1.61 g]

Equation for reaction: $S(s) + O_2(g) \rightarrow SO_2(g)$ Volume of greenhouse = $(2)(3)(4) = 24 \text{ m}^3 = 24000 \text{ dm}^3$ [Recall: $1 \text{ m}^3 = 10^3 \text{ dm}^3$]Given that concentration of $SO_2 = 50 \text{ ppm}$ $x = 10^3 \text{ dm}^3$ $\Rightarrow \ln 10^6 \text{ dm}^3$ of air, there is 50 dm^3 of SO_2, $x = 1.20 \text{ dm}^3$ of SO_2 $\Rightarrow \ln 24000 \text{ dm}^3$ of air, there is $\frac{50}{10^6} \times 24000 = 1.20 \text{ dm}^3$ of SO_2 $x = 1.20 \text{ dm}^3$ Amt of $SO_2 = 1.20 \div 24.0 = 0.0500 \text{ mol}$ [Recall room conditions = r.t.p = 24.0 \text{ dm}^3 \text{ mol}^{-1}]

Mass of S = 0.0500 x 32.1 = 1.605 = 1.61 g (to 3 sf)

Calculation using Mole Concept

- **3** Phosgene, COC*l*₂, was once used as a war gas. It is poisonous because when inhaled, it reacts with water in the lungs to produce carbon dioxide gas and hydrochloric acid which causes severe lung damage, leading to death ultimately.
 - (a) Calculate the percentage by mass of chlorine in COCl₂. [71.7%]

% by mass of Cl in
$$\text{COC}l_2 = \frac{2(35.5)}{12.0 + 16.0 + 2(35.5)} \times 100\% = \frac{71.7\%}{12.0 + 16.0 + 2(35.5)}$$

(b) Write a balanced equation for the reaction between $COCl_2$ and H_2O .

 $COCl_2 + H_2O \rightarrow CO_2 + 2HCl$

SH1 H2 Chemistry 2023

(c) Calculate the amount of HCl that will be produced by the complete reaction of 0.430 mol of COC l_2 . [0.860]

Since $COCl_2$: HCl = 1: 2, amount of HCl produced = $2 \times 0.430 = 0.860$ mol

(d) Identify the limiting reagent when 0.200 mol of $COCl_2$ is mixed with 6.20 g of H₂O. Hence, calculate the amount of HCl produced at the end of the reaction.

[0.400]

amount of H_2O used = $\frac{6.20}{2(1.0) + 16.0} =$ **0.344 mol**

amount of $COCl_2$ used = 0.200 mol

0.200 mol of $COCl_2$ will require 0.200 mol of H_2O , Since 0.344 mol of H_2O is present (excess), $COCl_2$ is the limiting reagent.

Since $COCl_2$: HCl is 1 : 2, amount of HCl produced = $2 \times 0.200 = 0.400$ mol

Calculation involving % purity & % yield

The mineral phosphorite, Ca₃(PO₄)₂, exists as phosphate rock in its impure form.
 Elemental phosphorus can be prepared from phosphate rock by reduction using carbon in the presence of sand, SiO₂. The reduction of phosphorite also produces solid A and carbon monoxide.
 (a) A has the following composition by mass:

O: 41.3%

Ca: 34.2% Si: 24.5%

Calculate the empirical formula for solid **A**.

[CaSiO₃]

elements	Са	Si	0
% by mass	34.2	24.5	41.3
amount / mol	$\frac{34.2}{40.1} = 0.853$	$\frac{24.5}{28.1} = 0.872$	$\frac{41.3}{16.0} = 2.58$
Simplest whole number mole ratio	$\frac{0.853}{0.853} = 1$	$\frac{0.872}{0.853} \approx 1$	$\frac{2.58}{0.853} \approx 3$

... The empirical formula of solid A is CaSiO₃.

(b) Write a balanced equation for the reaction.

 $Ca_3(PO_4)_2 + 5C + 3SiO_2 \rightarrow 2P + 3CaSiO_3 + 5CO$

(c) A 30.0 g sample of phosphate rock was subjected to the above reaction and produced 5.3 g of phosphorus. Calculate the percentage purity of phosphorite in the rock sample.

[88.4%]

amount of phosphorus = $\frac{5.3}{31.0}$ = 0.171 mol

Since $Ca_3(PO_4)_2$: P is 1:2

amount of $Ca_3(PO_4)_2 = \frac{1}{2} \times 0.171 = 0.0855$ mol

mass of $Ca_3(PO_4)_2 = 0.0855 \times [3(40.1) + 2(31.0) + 8(16.0)] = 26.53 \text{ g}$

% purity of Ca₃(PO₄)₂ in the rock sample= $\frac{26.53}{30.0}$ ×100% = 88.4%

5 In the Solvay process, ammonia is recovered by the reaction:

 $2NH_4Cl$ (aq) + CaO (s) \rightarrow CaCl₂ (aq) + H₂O (l) + $2NH_3$ (g)

(a) What is the maximum volume of ammonia that can be recovered, at s.t.p., from 20.0 g of NH₄C*l* and 4.50 g of CaO?

State the limiting reagent, if any, and assume that any impurity present is unreactive.

[3.64 dm³]

Amount of NH₄Cl = $\frac{20.0}{53.5}$ = 0.3738 mol Amount of CaO = $\frac{4.50}{56.1}$ = 0.08021 mol

0.08021 mol of CaO will require 2(0.08021) = 0.1604 mol of NH₄Cl Since 0.3738 mol of NH₄Cl is present (excess), hence CaO is the limiting reagent.

Since CaO:NH₃ is 1 : 2, Amount of NH₃ = 2 × 0.08021 = 0.1604 mol Vol of NH₃ = 0.1604 × 22.7 = 3.64 dm^3

(b) What is the percentage yield if only 3.03 dm³ of NH₃ is obtained experimentally at s.t.p.?

[83.2%]

% yield = $\frac{3.03}{3.64} \times 100 = 83.2$ %

Calculation involving % composition by mass

> Mass of C in nicotine = $11.9 \times \frac{12.0}{44.0} = 3.245$ mg Mass of H in nicotine = $3.41 \times \frac{2.0}{18.0} = 0.3789$ mg Mass of N in nicotine = 4.38 - 3.245 - 0.3789 = 0.7561 mg

Element	С	Н	Ν
Mass / mg	3.245	0.3789	0.7561
Amount / mol	0.0002704	0.0003789	5.401 x 10⁻⁵
Simplest whole number mole ratio	5	7	1

: Empirical formula of nicotine is C₅H₇N.

Let the molecular formula be $(C_5H_7N)n$ M_r of $(C_5H_7N)n = 162.0$ $\{(5(12.0) + 7(1.0) + 14.0)\}n = 162.0$ n = 2Molecular formula of nicotine is $C_{10}H_{14}N_2$.

Calculation involving Volumes of gas

7 Buckminsterfullerene, C₆₀, is a molecule with 60 carbon atoms arranged in pentagons and hexagons that are similar to those in a football. C₆₀ reacts with hydrogen to form hydrofullerenes with the molecular formula C₆₀H_n.

When 60 g of C_{60} is reacted with hydrogen gas at 273 K and 1 bar, the volume of hydrogen gas is decreased by 34 dm³. Find the value of n in the formula of hydrofullerene, $C_{60}H_n$. [36]

Amount of $C_{60} = \frac{60}{60 \times 12.0} = 0.08333$ mol 34

Amount of
$$H_2 = \frac{1}{22.7} = 1.498 \text{ mol}$$

Mole ratio of C_{60} : H₂ = 0.08333 : 1.498 1 : 18

Mole ratio of C_{60} to H = 1: 36

Thus, molecular formula of the hydrofullerene formed is C₆₀H₃₆. n= 36

Calculation using Volumes of gas in Combustion reactions

8 20 cm³ of a gaseous hydrocarbon **A**, C_xH_y , was exploded with an excess of oxygen. Upon cooling to room temperature, there was a contraction in volume of 50 cm³. When the products were treated with excess potassium hydroxide, there was a further contraction of 60 cm³.

Deduce the molecular formula of **A**. All volumes were measured at r.t.p.

 $[C_3H_6]$

Before reaction	After reaction & cooled to r.t.p		After reaction with KOH(aq)	
$V_{C_xH_y} + V_{O_2 \text{ added}}$ 20 cm ³ + excess O ₂	decrease in vol. of 50 cm ³	$V_{CO_2} + V_{O_2}$ unreacted	further decrease of 60 cm ³	V_{O_2} unreacted

Vol of $CO_2 = 60 \text{ cm}^3 (2^{nd} \text{ Contraction})$ Initial vol – Final vol = 50 cm³ (1st Contraction) (Vol C_xH_y + Total Vol O_2) – (Vol CO_2 + Vol unreacted O_2) = 50 cm³ (20 + Total Vol O_2) – (60 + Vol unreacted O_2) = 50 cm³ Total Vol O_2 -Vol unreacted O_2 = 90 cm³ Vol O_2 reacted = 90 cm³

	$C_xH_y(g)$	+	$(x + \frac{y}{4}) O_2(g)$	\rightarrow	<i>x</i> CO ₂ (g)	+	$\frac{\gamma}{2}$ H ₂ O(<i>I</i>)
Reacting vol / cm ³ :	20		90		60		-
Mole ratio	$\frac{20}{20} = 1$		$\frac{90}{20} = 4.5$		$\frac{60}{20} = 3$		
x = 3; y = 6							

... The molecular formula of **A** is C₃H₆

Note: H₂O is not considered in calculations as the volumes are obtained at r.t.p and hence it is a liquid that does not contribute to the gas volume.

9 A 20 cm³ mixture containing methane (CH₄) and ethane (C₂H₆) was burnt completely in excess oxygen. On passing the residual gas through aqueous sodium hydroxide, there was a reduction in volume by 25 cm³. All volumes were measured at room temperature and pressure.

Calculate the percentage by mass of methane in the original gaseous mixture. [61.5%]

 $\begin{array}{l} \mathsf{CH}_4 \ (g) + \ 2\mathsf{O}_2 \ (g) \rightarrow \ \mathsf{CO}_2 \ (g) + \ 2\mathsf{H}_2\mathsf{O} \ (l) \\ \mathsf{C}_2\mathsf{H}_6 \ (g) + \ 7/2 \ \mathsf{O}_2 \ (g) \rightarrow \ 2\mathsf{CO}_2 \ (g) + \ 3\mathsf{H}_2\mathsf{O} \ (l) \end{array}$

Let volume of methane be $x \text{ cm}^3$, then vol of ethane = $(20 - x) \text{ cm}^3$ Total volume of CO₂ produced = x + 2(20 - x) = 40 - x = 25

$$\Rightarrow$$
 x = 15 cm³

Mass of CH₄ in the mixture = $\frac{15}{24000} \times 16.0 = 0.0100 \text{ g}$

Mass of C₂H₆ in the mixture = $\frac{5}{24000} \times 30.0 = 6.25 \times 10^{-3} \text{ g}$

Percentage by mass of methane in the original gaseous mixture

 $\frac{0.01}{0.01+6.25\times10^{-3}}\times100\% = 61.5\%$

Calculation using Mole Concept in Solutions

10

(a) What is the mass of NaOH(s) required to prepare 250 cm³ of 0.120 mol dm⁻³ NaOH(aq)? [1.20 g] Amount of NaOH required = $\frac{0.120}{1000}$ x 250 = 0.0300 mol \Box

Mass of NaOH needed = 0.0300 x (23.0 + 16.0 + 1.0) = 1.20 g

(b) What volume of water must be added to 900 cm³ of 0.120 mol dm⁻³ NaC*l* solution to dilute it to 0.100 mol dm⁻³? [180 cm³]

Amount of solute in original solution = Amount of solute in diluted solution c_1V_1 (before dilution) = c_2V_2 (after dilution) $(0.120) (900) = (0.100)(V_2)$ $V_2 = 1080 \text{ cm}^3$ Final vol of NaCl(aq) after dilution = 1080 cm³

Hence, volume of water to be added = 1080 cm^3 \square \square

Additional Question

11 A 0.155 g sample of an aluminum-magnesium alloy is dissolved in excess hydrochloric acid, producing 183 cm³ of hydrogen at s.t.p. Calculate the percentage of magnesium in the alloy.

 $Mg + 2HCl \rightarrow MgCl_2 + H_2 ----(1)$ 2Al + 6HCl \rightarrow 2AlCl_3 + 3H_2----(2)

At s.t.p., amt of H₂ gas = $0.183 \div 22.7 = 8.062 \times 10^{-3}$ mol A_t of Mg = 24.3, A*l* = 27.0 Let mass of Mg be *y* g and A*l* be (0.155 - y) g.

Amt of Mg =
$$\frac{y}{24.3}$$
 mol \Rightarrow Amt of H₂ from Mg = $\frac{y}{24.3}$ mol
Amt of Al = $\frac{0.155 - y}{27.0}$ mol \Rightarrow Amt of H₂ from Al = $\left(\frac{3}{2}\right)\frac{0.155 - y}{27.0} = \frac{0.155 - y}{18.0}$ mol
 $\frac{y}{24.3} + \frac{0.155 - y}{18.0} = 8.062 \times 10^{-3}$

y = 0.03825

Mass of Mg = 0.03825 g Percentage of Mg in the alloy = $\frac{0.03825}{0.155} \times 100\%$ = 24.7% (3s.f)