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Mathematical Formulae 

 

1.    ALGEBRA 

 

Quadratic Equation 

   For the equation ax 2 + bx + c = 0 , 
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2.    TRIGONOMETRY 

Identities 

sin 2 A  +  cos 2 A  =  1 

sec 2 A  =  1  +  tan 2 A 

cosec 2 A  =  1  +  cot 2 A 

sin(𝐴 ± 𝐵) = sin 𝐴 cos 𝐵 ± cos 𝐴 sin 𝐵 

cos(𝐴 ± 𝐵) = cos 𝐴 cos 𝐵 ∓ sin 𝐴 sin 𝐵 

tan(𝐴 ± 𝐵) =
tan 𝐴 ± tan 𝐵

1 ∓ tan 𝐴 tan 𝐵
 

sin 2𝐴 = 2 sin 𝐴 cos 𝐴 

cos 2𝐴 = 𝑐𝑜𝑠2𝐴 − 𝑠𝑖𝑛2𝐴 = 2𝑐𝑜𝑠2𝐴 − 1 = 1 − 2𝑠𝑖𝑛2𝐴 

A

A
A

2tan1

tan2
2tan

−
=  

Formulae for   ABC 

C

c

B

b

A

a

sinsinsin
==  

a 2  =  b 2  +  c 2  −  2bc cos A 

  =  
2
1 bc sin A 
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1. (a) A beaker of solution is heated until it reaches a temperature of 𝑃 ℃. It is then 

placed in a room to cool. Its temperature 𝜃 ℃, when cooling for t minutes, is 

given by 𝜃 = 38 + 50𝑒−0.7𝑡.  

 

  (i) Find the value of P. [1] 

   

 

 

 

 

 

 

 

 

 

 

  (ii) Find the value of t when 𝜃 =
1

2
𝑃. [2] 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  (iii) Explain, with working, if the water will cool to a temperature of 30 ℃ . [2] 
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2. (a) 
Find the coefficient of 𝑥 in the expansion of  (

2

𝑥
−

𝑥2

4
)

8

. 
[3] 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 (b) It is given that (1 + 𝑘𝑥)𝑛 = 1 + 10𝑥 +
175

4
𝑥2 + 𝑝𝑥3 +………where 𝑛 > 0. 

Find the values of 𝑛, 𝑘 and 𝑝. 

 

 

[5] 
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3. (a) 2𝑥2 − 𝑥 − 3 is a factor of 2𝑥4 + 𝑥3 + 𝑝𝑥2 + 3𝑥 + 𝑞.  

  (i) Show that 𝑝 = −16 and 𝑞 = 18. [3] 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  (ii) Hence, solve the equation 2𝑥4 + 𝑥3 − 16𝑥2 + 3𝑥 + 18 = 0. [3] 
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 (b) The equation (𝑥 + 𝑎)(𝑥 + 𝑏) = 𝑐2 is given such that 𝑎, 𝑏 and 𝑐 are real 

values. 

 

  (i) Show that the roots of the equation are always real. [3] 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  (ii) State a set of possible values for 𝑎, 𝑏 and 𝑐 when the roots are real and 

equal. 

[2] 

   

 

 

 

 

 

4. (a) Solve the equation 𝑙𝑜𝑔16(4𝑥 − 5) = 𝑙𝑜𝑔42𝑥 − 𝑙𝑜𝑔4√5. [4] 
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 (b) Show that  2𝑥 + 
1

2
(2𝑥+4) − 2𝑥+2 , where x is positive, is exactly divisible 

by 5. 

 

 

[2] 

   

 

 

 

 

 

 

 

 

 

 

5. (i) Prove that 
tan 𝑥

1+sec 𝑥
+

1+sec 𝑥

tan 𝑥
= 2 𝑐𝑜𝑠𝑒𝑐 𝑥. [3] 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 (ii) Hence, solve 
tan 𝑥

1+sec 𝑥
+

1+sec 𝑥

tan 𝑥
= 3 sec 𝑥, where 0° ≤ 𝑥 ≤ 540°. [4] 
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6.  A circle is defined by the equation 𝑥2 + 𝑦2 − 8𝑥 + 12𝑦 = 48.   

 (i) Determine the coordinates of the centre of the circle and its radius. [3] 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 (ii) Justify whether point A (7, 3) lies on, inside or outside the circle. [2] 
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 (iii) The tangent to the circle at B is parallel to the line 4𝑦 = 3𝑥 − 6. Determine 

two possible coordinates of B. 

 

[6] 
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7.  The equation of a curve is 𝑦 = 𝑎𝑥4 + 𝑏𝑥2 − 16𝑥. The coordinates of a 

stationary point on the curve is given as (−2, 12). Find the coordinates of all 

the stationary points on the curve and determine their nature. 

 

 

 

[8] 
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8.  (i)  Differentiate (3𝑥 + 5)ln (2𝑥 − 1) with respect to x. [2] 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 (ii) Express 
6𝑥+10

2𝑥−1
 in the form 𝐴 +

𝐵

2𝑥−1
. [1] 

   

 

 

 

 

 

 

 

 

 

 

 (iii) Hence, find ∫ ln(2𝑥 − 1) 𝑑𝑥. [3] 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

12 
 

9.  The diagram shows a cylindrical tank used to store water. The diameter of 

the circular cross-sectional area is 8 m. Water is pumped into the tank at a 

constant rate of 0.45𝜋 m3/min. After t minutes, the depth of the water in the 

tank is h m. A tap, T, at the bottom of the tank will release the water at a rate 

of 0.6𝜋ℎ m3/min when it is opened. 

 

                                  

 

 

 (a) Show that the rate of change of the depth of water, t minutes after the tap is 

opened, is  
𝑑ℎ

𝑑𝑡
=

9−12ℎ

320
. 

[4] 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8 m 
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 (b) The water from the tank is mixed with chemicals and poured onto a flat 

surface, forming a circular patch with negligible depth. The patch expands at 

a constant rate of  6𝜋 𝑐𝑚2/𝑠. Find the rate of change of the radius of the 

circular patch 10 seconds after the liquid is poured out. 

[4] 
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10.  (a) The figure shows the curve 𝑦 = √4𝑥 + 9. The line PR is a tangent to the 

curve at R with gradient 
2

5
. 

 

 

 

 

 

 

  (i) Find the coordinates of P, Q and R. [5] 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  (ii) Find the area of the shaded region bounded by the line PR, curve QR and 

the x-axis. 

 

[5] 

   

 

 

 

 

 

 

 

 

 

x 

y 

0 P Q 

R 

𝑦 = √4𝑥 + 9 
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 (b) The diagram shows part of the curve 𝑦 = 𝑓(𝑥). Show that  

40 < ∫ 𝑓(𝑥)
8

0
𝑑𝑥 < 56. 

 

 

 

 

 

[2] 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

3 

7 

y 

x 
8 0 

𝑦 = 𝑓(𝑥) 
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11.  A particle, P, travelling in a straight line passes a fixed point O with a 

velocity of 24 m/s. Its acceleration, 𝑎 𝑚/𝑠2, is given by the equation 

 𝑎 = 6𝑡 − 18, where t is the time in seconds after passing O. 

 

 (i) Find the velocity of P when t = 3. [3] 

   

 

 

 

 

 

 

 

 

 

 

 

 

 (ii) Find the expression for s, the displacement of P from O. [2] 

   

 

 

 

 

 

 

 

 

 

 

 

 

 (iii) Calculate the total distance travelled from 𝑡 = 0 to 𝑡 = 6. [3] 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

------ End of Paper ---- 
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4E AM Prelim P2 Solutions 

1. (i) 𝑡 = 0, 𝑃 = 38 + 50−0.7(0) = 88℃ A1 

 (ii) 1

2
𝑃 = 44 

38 + 50𝑒−0.7𝑡 = 44 

50𝑒−0.7𝑡 = 6 

𝑒−0.7𝑡 = 0.12 

𝑡 =
𝑙𝑛0.12

−0.7
 

𝑡 = 3.03 𝑚𝑖𝑛 

 

 

 

 

M1 

 

 

A1 

 (iii) When 𝑡 becomes very large, 50𝑒−0.7𝑡 → 0 

𝜃 → 38 + 0 = 38℃ and will never reach 30℃ 

M1 

A1 

2. (a) 
𝑇𝑟+1 = (

8
𝑟

) (
2

𝑥
)

8−𝑟

(−
𝑥2

4
)

𝑟

 

= (
8
𝑟

) (2)8−𝑟 (−
1

4
)

𝑟

 𝑥−8+𝑟(𝑥2)𝑟 

𝑥−8+3𝑟 = 𝑥1 

3𝑟 = 9 

𝑟 = 3 

 

Coefficient of 𝑥 = (
8
3

) (2)8−3 (−
1

4
)

3

= −28   

 

 

 

 

 

 

M1 

 

M1 

 

 

A1 

 (b) (1 + 𝑘𝑥)𝑛 = 1𝑛 + (
𝑛
1

) (𝑘𝑥) + (
𝑛
2

) (𝑘𝑥)2 

= 1 + 𝑛𝑘𝑥 +
𝑛(𝑛 − 1)

2
𝑘2𝑥2 

 

𝑛𝑘 = 10 

𝑘 =
10

𝑛
 

𝑛(𝑛 − 1)

2
𝑘2 =

175

4
 

𝑛(𝑛 − 1)

2
(

10

𝑛
)

2

=
175

4
 

𝑛(𝑛 − 1)100

2𝑛2
=

175

4
 

200𝑛(𝑛 − 1) = 175𝑛2 

25𝑛2 − 200𝑛 = 0 

25𝑛(𝑛 − 8) = 0 

𝑛 = 0 𝑜𝑟 𝑛 = 8 

                                               (rejected) 

 

𝑘 =
10

8
= 1

1

4
 𝑜𝑟 1.25 

𝑝𝑥3 = (
𝑛
3

) (𝑘𝑥)3 = (
8
3

) (
5

4
)

3

𝑥3 

𝑝 =
875

5
𝑜𝑟 109

3

8
 

 

 

 

 

 

M1 

 

 

M1 

 

 

 

 

 

 

 

 

A1 

 

 

 

A1 

 

 

A1 
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3. (a)(i) 2𝑥2 − 𝑥 − 3 = (2𝑥 − 3)(𝑥 + 1) 

𝑓(𝑥) = 2𝑥4 + 𝑥3 + 𝑝𝑥2 + 3𝑥 + 𝑞 

𝑓(−1) = 0 

𝑝 + 𝑞 = 2 

𝑓 (
3

2
) = 0 

9

4
𝑝 + 𝑞 = −18 

Using elimination,                         
5

4
𝑝 = −20 

𝑝 = −16 

𝑞 = −18 (𝑠ℎ𝑜𝑤𝑛) 

 

 

 

 

 

M1 

 

 

 

M1 

 

 

A1 

 (ii) 𝑓(𝑥) = 2𝑥4 + 𝑥3 − 16𝑥2 + 3𝑥 + 18 

𝑓(𝑥) = (2𝑥2 − 𝑥 − 3)(𝑎𝑥2 + 𝑏𝑥 + 𝑐) 

Long division or compare coefficients 

𝑓(𝑥) = (2𝑥2 − 𝑥 − 3)(𝑥2 + 𝑥 − 6) 

𝑓(𝑥) = 0 

𝑥 = −3, −1,   1
1

2
𝑜𝑟 2 

 

 

 

 

M1 

 

 

A2 

 (b)(i) 

 

 

 

 

 

 

 

𝑥2 + 𝑎𝑥 + 𝑏𝑥 + 𝑎𝑏 − 𝑐2 = 0 

𝑏2 − 4𝑎𝑐 = (𝑎 + 𝑏)2 − 4(𝑎𝑏 − 𝑐2) 

= 𝑎2 + 2𝑎𝑏 + 𝑏2 − 4𝑎𝑏 + 4𝑐2 

= 𝑎2 − 2𝑎𝑏 + 𝑏2 + 4𝑐2 

= (𝑎 − 𝑏)2 + 4𝑐2 

(𝑎 − 𝑏)2 ≥ 0 𝑎𝑛𝑑 4𝑐2 ≥ 0 for all values of 𝑎, 𝑏 𝑎𝑛𝑑 𝑐 

𝑏2 − 4𝑎𝑐 ≥ 0 and thus roots are always real 

 

 

M1 

 

 

 

M1 

 

A1 

 (ii) 𝐴𝑐𝑐𝑒𝑝𝑡 𝑎𝑛𝑦 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑎 = 𝑏 𝑏𝑢𝑡 𝑐 = 0 

 

A2 

4. (a) 𝑙𝑜𝑔4(4𝑥 − 5)

𝑙𝑜𝑔416
= 𝑙𝑜𝑔4

2𝑥

√5
 

𝑙𝑜𝑔4(4𝑥 − 5)

2
= 𝑙𝑜𝑔4

2𝑥

√5
 

𝑙𝑜𝑔4(4𝑥 − 5) = 2𝑙𝑜𝑔4

2𝑥

√5
 

𝑙𝑜𝑔4(4𝑥 − 5) = 𝑙𝑜𝑔4 (
2𝑥

√5
)

2

 

4𝑥 − 5 =
4𝑥2

5
 

4𝑥2 − 20𝑥 + 25 = 0 

 

 

 

M1 

 

 

 

 

 

M1 

 

 

 

 

M1 
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(2𝑥 − 5)2 = 0 

𝑥 = 2.5 

 

A1 

 (b) 2𝑥 + 2−12𝑥+4 − 2𝑥22 

= 2𝑥 + 2𝑥23 − 2𝑥22 

= 2𝑥(1 + 23 − 22) 

= 2𝑥(5) 

Thus the term is always divisible by 5 

 

 

 

 

M1 

 

A1 

 

5 (i) 
𝐿𝐻𝑆 =

𝑡𝑎𝑛𝑥

1 + 𝑠𝑒𝑐𝑥
+

1 + 𝑠𝑒𝑐𝑥

𝑡𝑎𝑛𝑥
 

=
𝑡𝑎𝑛2𝑥 + (1 + 𝑠𝑒𝑐𝑥)2

𝑡𝑎𝑛𝑥(1 + 𝑠𝑒𝑐𝑥)
 

=
𝑡𝑎𝑛2𝑥 + 1 + 2𝑠𝑒𝑐𝑥 + 𝑠𝑒𝑐2𝑥

𝑡𝑎𝑛𝑥(1 + 𝑠𝑒𝑐𝑥)
 

=
2𝑠𝑒𝑐2𝑥 + 2𝑠𝑒𝑐𝑥

𝑡𝑎𝑛𝑥(1 + 𝑠𝑒𝑐𝑥)
=

2𝑠𝑒𝑐𝑥(𝑠𝑒𝑐𝑥 + 1)

𝑡𝑎𝑛𝑥(1 + 𝑠𝑒𝑐𝑥)
 

=
2𝑠𝑒𝑐𝑥

𝑡𝑎𝑛𝑥
=

2

𝑐𝑜𝑠𝑥
÷

𝑠𝑖𝑛𝑥

𝑐𝑜𝑠𝑥
 

=
2

𝑠𝑖𝑛𝑥
= 2𝑐𝑜𝑠𝑒𝑐𝑥 = 𝑅𝐻𝑆(𝑠ℎ𝑜𝑤𝑛) 

 

 

 

 

 

 

M1 

 

 

 

 

M1 

 

 

A1 

 (ii) 2𝑐𝑜𝑠𝑒𝑐𝑥 = 3𝑠𝑒𝑐𝑥 

2

𝑠𝑖𝑛𝑥
=

3

𝑐𝑜𝑠𝑥
 

𝑠𝑖𝑛𝑥

𝑐𝑜𝑠𝑥
=

2

3
 

𝑡𝑎𝑛𝑥 =
2

3
 

𝑏𝑎𝑠𝑖𝑐 𝑎𝑛𝑔𝑙𝑒 = 33.7 

𝑥 = 33.7°, 213.7°, 393.7° 

 

 

 

 

 

 

 

M1 

 

 

A3 

6 (i) 𝑥2 + 𝑦2 − 8𝑥 + 12𝑦 = 48 

(𝑥 − 4)2 − 16 + (𝑦 + 6)2 − 36

= 48 

(𝑥 − 4)2 + (𝑦 + 6)2 = 100 

Centre of circle = (4, −6)    

Radius = 10 units 

Alternative 

2𝑔 = −8, 2𝑓 = 12 

𝑔 = −4, 𝑓 = 6 

 

 

 

 

M1 

 

A1 

A1 
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 (ii) 
Length = √(7 = 4)2 + (3 − (−6))

2
= √90 units 

√90 < 10 𝑢𝑛𝑖𝑡𝑠, thus point A lies inside the circle 

 

M1 

 

A1 

 (iii) 
𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 𝑜𝑓 𝑡𝑎𝑛𝑔𝑒𝑛𝑡 =

3

4
 

𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 𝑜𝑓 𝑝𝑒𝑟𝑝𝑒𝑛𝑑𝑖𝑐𝑢𝑙𝑎𝑟 =  −
4

3
 

 

Equation of diameter 𝑦 + 6 = −
4

3
(𝑥 − 4) 

𝑦 = −
4

3
𝑥 −

2

3
 

Solve simultaneous equations 

(𝑥 − 4)2 + (−
4

3
𝑥 −

2

3
+ 6)

2

= 100 

𝑥2 − 8𝑥 + 16 +
16

9
𝑥2 −

128

9
𝑥 +

256

9
= 100 

25𝑥2 − 200𝑥 − 500 = 0 

𝑥2 − 8𝑥 − 20 = 0 
(𝑥 − 10)(𝑥 + 2) = 0 

𝑥 = 10 𝑜𝑟 − 2 

𝑦 = −14 𝑜𝑟 2 

Coordinates = (10, −14)𝑜𝑟 (−2, 2) 

 

 

 

M1 

 

 

 

M1 

 

 

 

M1 

 

 

 

M1 

 

 

 

 

A2 

7  𝑑𝑦

𝑑𝑥
= 4𝑎𝑥3 + 2𝑏𝑥 − 16 

𝑥 = −2,   
𝑑𝑦

𝑑𝑥
= 0 

8𝑎 + 𝑏 = −4 

(−2, 12)                  12 = 16𝑎 + 4𝑏 + 32 

4𝑎 + 𝑏 = −5 

𝑎 =
1

4
, 𝑏 = −6 

𝑦 =
1

4
𝑥4 − 6𝑥2 − 16𝑥 

𝑑𝑦

𝑑𝑥
= 𝑥3 − 12𝑥 − 16 

(𝑥 + 2)(𝑎𝑥2 + 𝑏𝑥 + 𝑐) = 0 

Long Division or compare coefficient, 

(𝑥 + 2)(𝑥2 − 2𝑥 − 8) = 0 

(𝑥 + 2)2(𝑥 − 4) = 0 

𝑥 = −2 𝑜𝑟 4 

𝑦 = 12 𝑜𝑟 − 96  

Stationary points (−2,12) 

 

 

 

 

 

 

 

 

 

M2 

 

 

 

M1 

 

 

M1 

 

M1 

A1 
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𝑑2𝑦

𝑑𝑥2
= 3𝑥2 − 12 = 0, point of inflexion 

x – 2.1  – 2  – 1.9  

𝑑𝑦

𝑑𝑥
 

  –  0  –   

Stationary point (4, −96) 

𝑑2𝑦

𝑑𝑥2 = 3𝑥2 − 12 = 36 > 0 , minimum point 

 

A1 

 

 

 

 

 

A1 

8 (i) 𝑑

𝑑𝑥
(3𝑥 + 5) ln(2𝑥 − 1) 

=
2(3𝑥 + 5)

2𝑥 − 1
+ 3 ln(2𝑥 − 1) 

=  
6𝑥 + 10

2𝑥 − 1
+ 3 ln(2𝑥 − 1) 

 

 

 

 

 

A2 

 (ii) 
 
6𝑥 + 10

2𝑥 − 1
= 3 +

13

2𝑥 − 1
 

Using long division 

 

 

A1 

 (iii) 
∫

6𝑥 + 10

2𝑥 − 1
+ 3 ln(2𝑥 − 1) 𝑑𝑥 = [(3𝑥 + 5) ln(2𝑥 − 1)] + 𝑐 

∫ 3 ln(2𝑥 − 1)𝑑𝑥 = [(3𝑥 + 5) ln(2𝑥 − 1)] − (∫ 3 +
13

2𝑥 − 1
𝑑𝑥)) + 𝑐 

∫ 3 ln(2𝑥 − 1) 𝑑𝑥 = [(3𝑥 + 5) ln(2𝑥 − 1)] − 3𝑥 −
13

2
ln (2𝑥 − 1) + 𝑐 

∫ ln(2𝑥 − 1)𝑑𝑥 =
1

3
{[(3𝑥 + 5) ln(2𝑥 − 1)] − 3𝑥 −

13

2
ln(2𝑥 − 1) + 𝑐 

∫ ln(2𝑥 − 1) 𝑑𝑥 =
1

3
[(3𝑥 + 5) ln(2𝑥 − 1)] − 𝑥 −

13

6
ln(2𝑥 − 1) + 𝑐 

 

 

 

 

M1 

 

 

M1 

 

 

 

 

A1 

 

9 (a) 𝑑𝑣

𝑑𝑡
= 0.45𝜋 − 0.6𝜋ℎ 

𝑉 = 𝜋𝑟2ℎ = 𝜋(42)ℎ = 16𝜋ℎ 

𝑑𝑉

𝑑ℎ
= 16𝜋 

𝑑𝑉

𝑑𝑡
=

𝑑𝑉

𝑑ℎ
×

𝑑ℎ

𝑑𝑡
 

𝑑ℎ

𝑑𝑡
=

0.45𝜋 − 0.6𝜋ℎ

16𝜋
=

0.45 − 0.6ℎ

16
 

=
45 − 60ℎ

1600
=

9 − 12ℎ

320
 (𝑠ℎ𝑜𝑤𝑛) 

 

 

M1 

 

 

 

M1 

 

 

 

M1 
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 (b) 𝐴 = 10 × 6𝜋 = 60𝜋𝑐𝑚2 

𝜋𝑟2 = 60𝜋 

𝑟 = √60𝑐𝑚 

𝑑𝐴

𝑑𝑟
= 2𝜋𝑟 = 2𝜋(√60) 

𝑑𝐴

𝑑𝑡
=

𝑑𝐴

𝑑𝑟
×

𝑑𝑟

𝑑𝑡
 

𝑑𝑟

𝑑𝑡
=

6𝜋

2𝜋√60
= 0.387 𝑐𝑚/𝑠 

 

M1 

 

 

M1 

 

M1 

 

 

 

 

A1 

10 (a) 

(i) 
𝑦 = 0, √4𝑥 + 9 = 0 

𝑥 = −2.25       𝑄(−2.25, 0) 

𝑑𝑦

𝑑𝑥
=

1

2
(4𝑥 + 9)(−

1
2

)(4) =
2

√4𝑥 + 9
 

2

√4𝑥 + 9
=

2

5
 

4𝑥 + 9 = 25 

𝑥 = 4, 𝑦 = 5       𝑅(4, 5) 

𝑦 − 5 =
2

5
(𝑥 − 4) 

𝑦 =
2

5
𝑥 +

17

5
 

𝑦 = 0, 𝑥 = −8.5      𝑃(−8.5, 0) 

 

A1 

 

 

M1 

 

 

 

 

 

A1 

 

 

 

M1 
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 (ii)                              𝐴𝑟𝑒𝑎 =  
1

2
(12.5)(5)— ∫ √4𝑥 + 9

4

−2.25
𝑑𝑥 

= 31.25 − [
(4𝑥 + 9)

3
2

(4) (
3
2)

]

−2.25

4

 

= 31.25 − [
1

6
(4𝑥 + 9)

3
2]

−2.25

4

 

= 31.25 − [
125

6
− 0] = 10

5

12
 𝑢𝑛𝑖𝑡𝑠2 

M2 

 

 

M1 

 

 

 

 

 

A2 

 

 (b) 𝐴𝑟𝑒𝑎 𝑜𝑓 𝑡𝑟𝑎𝑝𝑒𝑧𝑖𝑢𝑚 < ∫ 𝑓(𝑥)
8

0
𝑑𝑥 < 𝐴𝑟𝑒𝑎 𝑜𝑓 𝑟𝑒𝑐𝑡𝑎𝑛𝑔𝑙𝑒. 

1

2
× 8 × (3 + 7) < ∫ 𝑓(𝑥)

8

0
𝑑𝑥 < 7 × 8. 

40 < ∫ 𝑓(𝑥)
8

0
𝑑𝑥 < 56 (shown) 
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11 (i) 𝑎 = 6𝑡 − 18 

𝑣 = ∫ 6𝑡 − 18 𝑑𝑥 =
6

2
𝑡2 − 18𝑡 + 𝑐 

𝑡 = 0, 𝑣 = 24 

𝑣 = 3𝑡2 − 18𝑡 + 24 

𝑡 = 3, 𝑣 = −3𝑚/𝑠 

 

 

M1 

 

 

 

M1 

A1 

 (ii) 
𝑠 = ∫ 3𝑡2 − 18𝑡 + 24 𝑑𝑥 

𝑠 =
3

3
𝑡3 −

18

2
𝑡2 + 24𝑡 + 𝑐 

𝑡 = 0, 𝑠 = 0 

𝑠 = 𝑡3 − 9𝑡2 + 24𝑡 

 

 

 

M1 

 

 

A1 

 (iii) 𝑣 = 0,   3𝑡2 − 18𝑡 + 24 = 0 

𝑡2 − 6𝑡 + 8 = 0 

                                 (𝑡 − 2)(𝑡 − 4) = 0                𝑡 = 2 𝑜𝑟 4 

𝑡 = 0, 𝑠 = 0        𝑡 = 2, 𝑠 = 20         𝑡 = 4, 𝑠 = 16         𝑡 = 6, 𝑠 = 36 

Distance travelled = 20 + 4 + 20 = 44 m 

 

 

 

M1 

M1 

A1 

 


