Item	Worked Solutions	Marks Awarded	Remarks
1	5^3 $\sqrt[3]{158}$ $4\frac{1}{6}\%$ -7.8	B2	1m – at least 2 consecutive correct order
2	$I = \frac{PRT}{100}$		
	$=\frac{(99800)(2.58)(5)}{100}$		
	=\$12874.20	M1	Correct simple interest working
	Total value = 99800+12874.20		
	=\$112674.20	A1	Total value (overall minus 1m if \$112674.2 given)
3	$\frac{46 \times 0.07035}{22.34 - 3.1\sqrt{4.45}}$		
	$= \frac{50 \times 0.07}{20 - 3\sqrt{4}}$ $= \frac{3.5}{14}$	M1	for at least 3 number corrected to 1 sig. fig.
	14 = 0.25	A1	
4a	$330 \times \frac{\pi}{180}$ $= 5.76 \ rad$	B1	Accepts $1\frac{5}{6}\pi$ or $\frac{11}{6}\pi$
4b	$\frac{5\pi}{8} \times \frac{180}{\pi}$ $= 112.5^{\circ}$	B1	
5		M1	Apply length of line formula correctly
	$\sqrt{(8-3)^2 + (n-6)^2} = \sqrt{34}$ $(8-3)^2 + (n-6)^2 = 34$ $(n-6)^2 = 34 - 25$ $n = \pm 3 + 6$		
	$n = \pm 3 + 6$ $= 3 \text{ or } 9$	A2	Both values of <i>n</i> found

6	$\theta = 38.5^{\circ} \text{ or } 141.5^{\circ} (1 \text{ d.p.})$	A2	Both values found
7	$7^{p} = \frac{1}{49} \times \sqrt{7}$ $7^{p} = 7^{-2} \times 7^{\frac{1}{2}}$	M1	Award M1 if either $7^{-2} \text{ or } 7^{\frac{1}{2}}$ seen
	$7^{p} = \frac{1}{49} \times \sqrt{7}$ $7^{p} = 7^{-2} \times 7^{\frac{1}{2}}$ $7^{p} = 7^{-\frac{1}{2}}$ $p = -1\frac{1}{2}$	A1	Accepts $-\frac{3}{2}$
0	T / 1 A		-
8	Total Amount $6850\left(1+\frac{3.13}{100}\right)^{7}$ = \$8499.349649	M1	
	Interest = \$8499.349649 - \$6850 = \$1649.35	M1 A1	A1 awarded only if corrected to nearest cent
9a	$y = x^3$	B1	
9b	$y = 5^x$	B1	
9c	$y = 5^{x}$ $y = \frac{2}{x^{2}}$	B1	
10	$2(-5)^{2} + 9(-5) - a = 0$ a = 5	M1	Sub $x = -5$ M1 awarded only if <i>a</i> value = 5 found.
	$2x^{2}+9x-5=0$ $(x+5)(2x-1)=0$ $x=-5 \text{ (not applicable)}$ or	M1	Factorised form or use of general formula
	$x = \frac{1}{2}$	A1	Award A1 only if $x = \frac{1}{2}$ seen No A1 awarded if $x = -5$ is not rejected OR Both answers written on answer line
11a	$2x - 15 \le 19$ $2x \le 34$	B1	No B1 if only 17 or other form of inequalities seen
	<i>x</i> ≤17		form of mequanties seen

11b	No, because there are 7 prime numbers less than	M1	students must list all the 7
	or equal to 17 (2, 3, 5, 7, 11, 13 and 17).	A1	prime numbers.
12a		B1	1
	$-\frac{4}{5}$		
12b		M1	
	$\sin \angle ABC = \frac{16}{20}$		
	$\angle ABC = 53.1^{\circ}$	A1	
13a	$6(a^2b^0)^3 \div a^{-6}$		<i>,</i>
		M1	Award M1 if $6a^6$ is seen.
	$=6a^6 \div a^{-6}$	1011	No M1 if $6a^6b^0$ or any other factors multiplied to
			other factors multiplied to $6a^6$
	$=6a^{12}$	A1	00
13b			
	$\left(\frac{a^{13}}{a^{13}}\right)^3$		
	(125)		
	$\left(\frac{a^{15}}{125}\right)^{-\frac{1}{3}} = \left(\frac{125}{a^{15}}\right)^{\frac{1}{3}}$	M1	Award M1 if $\frac{a^{-5}}{a^{-1}}$ seen
	$\left(a^{15}\right)$		$125^{-\frac{1}{3}}$
	$=\left(\frac{5}{a^5}\right)$		
	$\left(\frac{-\left(\overline{a^5}\right)}{a^5}\right)$	A1	Not accepted $5a^{-5}\frac{a^{-5}}{0.2}$
14	(A) $\angle CAB = \angle SAR$ (common angle)	M2	M1 for any 2 statements
11	(i) $2 = 0$ in (common angle) (S) $AB = 12 - 3 = 9 = AR$ (given)	1012	1011 for any 2 statements
	(b) $ABC = \angle ARS = 90^{\circ}$ (given)		
	By ASA congruence test,	A 1	
		A1	Conclusion with correct test chosen. Award if $=$
	triangle ABC is congruent to triangle ARS		sign used
15	$(3x-3y)^2$		
	$=9x^{2} - 9xy - 9xy + 9y^{2}$	M1	
	$=9x^2-18xy+9y^2$	1411	
	$=9(x^2+y^2)-18(xy)$		
	=9(23)-18(17)		
	= -99	A1	
16a	y = -(x-5)(2x+b)		
	Subs $x = 0, y = 10$		
	10 = -(0-5)(2(0)+b)	B1	
1.0	b=2		
16b	(5,0)	B1	

16c	-(x-5)(2x+b) = 0		
	x = 5 or x = -1		
	Line of symmetry is $x = \frac{5 + (-1)}{2} = 2$	M1	Line of symmetry found
	$y = -(2-5)(2(2)+2) = 18^{2}$	A1	
17a	80s to 90s	B1	
17a	Speed = Gradient		
110			
	Speed		
	$=$ $\frac{\text{Distance}}{1}$		
	$=\frac{50-30}{80-35}$		
	$=\frac{50^{\circ}}{80^{\circ}}\frac{30^{\circ}}{25}$	M1	
	$=\frac{4}{9}$ m/s or	A1	
	= 0.444 m/s		
	= 0.444 m/s		
17c	Average Speed		
170	Total Distance		
	= Total Time		
		M1	
	$=\frac{50+50}{100}$		
	120		
	$=\frac{5}{5}$ m/s or 0.833 m/s	A1	
	6		
18a	y = x = 2	G1	Correct shape and y-
			intercept
		G1	Correct turning point
		GI	Correct turning point
	(2, 3)		
	0 x		
18b	$(x-2)^2 = -1 \rightarrow (x-2)^2 + 3 = 2$	M1	Show attempt to obtain
			<i>y</i> = 2
	Draw the line $y = 2$.		
		A1	Conclusion
		111	Do not accept
L		L	

	Since the line $y = 2$ does not intersect the graph		"intercept the graph"
	of $y = (x-1)^2 + 2$, the equation has no real		or "points of interception "
	solution.		
19a	$x^2 - 13x + 9$		
	$= \left(x - \frac{13}{2}\right)^2 - \left(-\frac{13}{2}\right)^2 + 9$ $= \left(x - \frac{13}{2}\right)^2 - \frac{169}{4} + 9$	2.61	
	$\left[-\left(x-\frac{1}{2}\right)^{2}-\left(-\frac{1}{2}\right)^{2}\right]$	M1	Accept if without negative in the square
	$=\left(x-\frac{13}{2}\right)-\frac{169}{4}+9$		$\left(\frac{13}{2}\right)^2$
	$=\left(x-\frac{13}{2}\right)^2-\frac{133}{4}$		
	$\begin{bmatrix} -1 & 2 \\ 0r & 2 \end{bmatrix} = 4$	A1	Accept either answer in
	$=\left(x-\frac{13}{2}\right)^2-33\frac{1}{4}$		improper or mixed number
19b	$x^2 - 13x + 9 = 0$		
	$(13)^2$ 133		
	$\left(x - \frac{13}{2}\right)^2 - \frac{133}{4} = 0$		
	$\left(x - \frac{13}{2}\right)^2 = \frac{133}{4}$		Bringing of the term $\frac{133}{4}$
	$\left(\frac{x-2}{2}\right) = \frac{4}{4}$	M1	to the right-hand side
			to the right-hand side
	$x = \frac{13}{2} \pm \sqrt{\frac{133}{4}}$	M1	Taking square root on
			both sides
• •	= 12.3 or 0.734 (3 s.f.)	A1	Both answers found
20a	$141 \times 10^{7} - 3.12 \times 10^{7}$	M1	
	$=137.88 \times 10^{7}$		
	$=1.3788 \times 10^{9}$ or	A1	Accept answers in 5 s.f.
	$=1.38\times10^{9}(3 \text{ s.f})$		or 3 s.f
20b	1.41×10^{9}	M1	
	3287263		
	= 428.93		
	= 429	A1	
21a	$11^2 + 12^2 = 265$	B1	Accept if "=265" not included
21b	$n^2 + (n+1)^2$ or $2n^2 + 2n + 1$	B1	

21c	<i>n</i> = 64	B1	
	or		
	$2n^2 + 2n + 1 = 8321$		
	$2n^2 + 2n - 8320 = 0$		
	$n^2 + n - 4160 = 0$		
	(n+65)(n-64) = 0		
	n = -65(rej)		
	n = 64		
21d	For any two consecutive numbers, one number would be even and the other one odd. Since the square of an even number is even and the square of an odd number is odd, one of the squares of the two consecutive numbers will be even, and the other will be odd. Hence, their sum will be odd.	B1	Accept if students explains: From T_n , the sum of an odd number and an even number is always odd.
22a	will be odd.	G1	Shape of quadrilateral
	A B	G1	 <i>ABCD</i> drawn with construction marks at <i>C</i> and <i>D</i>. All lengths and angle <i>ABC</i> correctly measured
22bi	(b)(;)	G1	Perpendicular bisector
			constructed accurately

			with construction arcs on both sides of <i>AB</i>
22bii		G1	Bisector of angle constructed accurately with construction arcs
22c		G1	P region indicated
23a	When $y = 8$, 5(8) - 4p - 20 = 0		
	p = 5 (shown)	B1	<i>p</i> shown
23b	Gradient of l_2 , 8–(–2)		
	$\frac{8-(-2)}{5-0}$	M1	
	= 2	A1	
23c	Length of AB $\sqrt{(0-5)^2 + (-2-8)^2}$		
	$\frac{1}{\sqrt{(0-5)^2 + (-2-8)^2}} = \sqrt{125}$	M1	Length of AB found
	Area of triangle= $\frac{1}{2} \times 6 \times 5$		
	$\frac{1}{2} \times d \times \sqrt{125} = \frac{1}{2} \times 6 \times 5$	M1	Equate area of triangle
	d = 2.68 units	A1	
24a	$\tan 32 = \frac{TP}{12}$		
	TP = 7.4984	B1	
	= 7.50 m		
24b	$SQ = PR = \sqrt{9^2 + 12^2} = 15$ Since angle of depression of <i>R</i> from <i>T</i> = angle of elevation of <i>T</i> from <i>R</i>	M1	Apply Pythagoras' Theorem
	Let θ be the angle of elevation of <i>T</i> from <i>R</i>	M1	Apply Trigo ratio
		A1	

		T	1
	$\tan \theta = \frac{TP}{15}$		
	$\tan\theta = \frac{7.4984}{15}$		
	$\theta = 26.560^{\circ}$		
	$\theta = 26.6^{\circ} (1 d.p)$		
25a	$OP \times 2.2 = 11$		
	$\theta = 5 \text{ cm}$	B1	
25b	Perimeter of the shaded region PQRS		
	= 12+12+11+17(2.2)	M1	
	= 12 + 12 + 11 + 17(2.2) = 72.4 cm	A1	
25c	Area of the shaded region <i>PQRS</i>		
250			
	= Area of sector OQR – Area of sector OPS		
	$=\frac{1}{2}(17)^2 \times 2.2 - \frac{1}{2}(5)^2 2.2$		
	$-\frac{1}{2}(17) \times 2.2 - \frac{1}{2}(5) = 2.2$	M1	Area of at least one sector
	217.027.5		found
	=317.9-27.5		
	$= 290.4 \text{ cm}^2$	A1	
26a	Acceleration		
	$\frac{14-0}{24-0}$		
	24-0		
	7 4 2 0 500 4 2	B1	
	$=\frac{7}{12}$ m/s ² or 0.583 m/s ²		
26b	Distance travelled by the van in 30 seconds		
200	= Area under graph		
		M1	
	$=\frac{1}{2}[30+(30-24)](14)$	1111	
	= 252 m	A1	
26c	Let <i>h</i> be the speed of the bike at the instant when		
	it overtakes the van		
	1		
	$\frac{1}{2} \times (30 - 12) \times h = 252$		
	h = 28 m/s	M 1	
	Disagree, since the required speed at the instant		Conclusion
	to overtake is 28 m/s, 26 m/s is lower.	A 1	Conclusion
	10 UVERTAKE 15 20 III/5, 20 III/S 18 IUWEL.	A1	

Alternative:		
Disagree. If the speed at this instant is 26 m/s,		
distance travelled by bike = $\frac{1}{2} \times (30 - 12) \times 26 =$		
234 m. However, this is lesser than the distance travelled by the van (252 m), so the bike would not have overtaken the van at this speed.		