

H2 MATHEMATICSTOPICTECHNIQUES OF DIFFERENTIATION

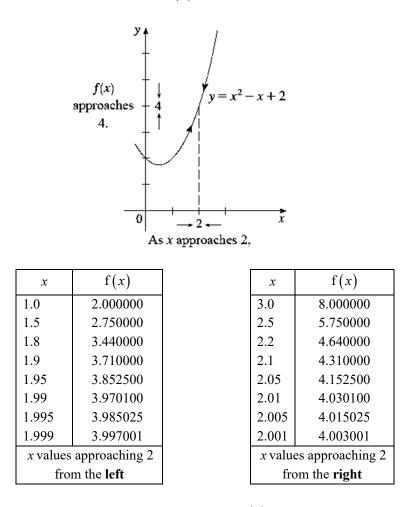
2022/JC1

Content Outline:

- Differentiation of simple functions defined implicitly.
- Finding the approximate value of a derivative at a given point using a graphing calculator.
- Limits

1.1 Limit of a Function

Consider the behaviour of a function $f(x) = x^2 - x + 2$ for values of x close to 2.



The above table gives the corresponding values of f(x) for values of x close to 2 but not equal to 2.

From the graph and table of values, we observe that as x approaches 2, f(x) gets closer and closer to 4.

We express this in words as "the limit of the function $f(x) = x^2 - x + 2$ as x approaches 2 is 4". Mathematically, we write it as

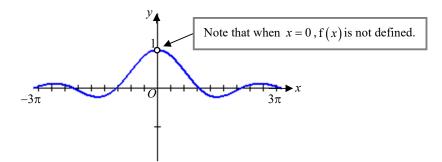
$$\lim_{x \to 2} f(x) = 4.$$

In general, given a function f, if f(x) approaches a fixed number L as x approaches a, then L is the **limit** of f(x) as x approaches a. We write it as

$$\lim_{x \to a} \mathbf{f}(x) = L$$

<u>Remark</u>: To find the limit of a function f, f(x) need not be defined at x = a.

For example, consider the graph of $f(x) = \frac{\sin x}{x}$ for $-3\pi \le x \le 3\pi$ as shown below.



We observe that even though f(0) does not exist, it is clear that the limit of the function $f(x) = \frac{\sin x}{x}$ as x approaches 0 is 1.

If f is defined at x = a and $\lim_{x \to a} f(x) = f(a)$, we say f is **continuous** at x = a. If f is continuous at every point on an interval (a, b), f is a continuous function on the interval (a, b). Intuitively, continuous functions are the functions whose graphs can be drawn without lifting the pen off the paper. In the above example, f is not continuous at x = 0 (hence it is excluded graphically with an empty circle).

In H2 Maths syllabus, the functions are all assumed to be continuous on the interval under consideration.

1.2 Properties of Limits (Self-Reading)

If $\lim_{x \to a} f(x)$ and $\lim_{x \to a} g(x)$ both exist, then

	Properties	Examples
(a)	$\lim_{x \to a} \left[k f(x) \right] = k \lim_{x \to a} f(x), \text{ where } k \text{ is a constant}$	$\lim_{x \to 4} (5x^3) = 5 \lim_{x \to 4} x^3$ = 5(4) ³ = 320
(b)	$\lim_{x \to a} \left[f(x) \pm g(x) \right] = \lim_{x \to a} f(x) \pm \lim_{x \to a} g(x)$	$\lim_{x \to 3} (x^2 - x) = \lim_{x \to 3} x^2 - \lim_{x \to 3} x$ = 3 ² - 3 = 6
(c)	$\lim_{x \to a} \left[f(x)g(x) \right] = \left[\lim_{x \to a} f(x) \right] \left[\lim_{x \to a} g(x) \right]$	$\lim_{x \to 2} \left[(\ln x)(x) \right] = \left[\lim_{x \to 2} (\ln x) \right] \left[\lim_{x \to 2} (x) \right]$ $= (\ln 2)(2)$ $= 2 \ln 2$ $= \ln 4$
(d)	$\lim_{x \to a} \left[\frac{f(x)}{g(x)} \right] = \frac{\left[\lim_{x \to a} f(x) \right]}{\left[\lim_{x \to a} g(x) \right]}, \text{ where } \lim_{x \to a} g(x) \neq 0$	$\lim_{x \to -1} \left(\frac{x^2 + 1}{2x + 3} \right) = \frac{\lim_{x \to -1} \left(x^2 + 1 \right)}{\lim_{x \to -1} \left(2x + 3 \right)}$ $= \frac{\left(-1 \right)^2 + 1}{2\left(-1 \right) + 3}$ $= 2$

Example 1 (Self-Reading):

Evaluate the following limits

(a)
$$\lim_{x \to 1} \left(\frac{x^2 + 4x - 1}{x + 2} \right)$$
, (b) $\lim_{x \to \infty} \left(\frac{1}{x} \right)$, (c) $\lim_{x \to \infty} \left(\frac{3x - 1}{x + 2} \right)$.

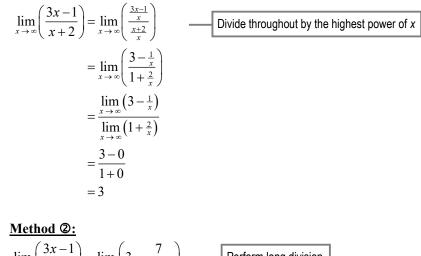
Solution:

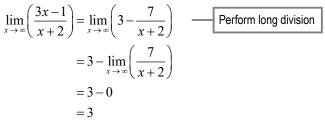
(a)
$$\lim_{x \to 1} \left(\frac{x^2 + 4x - 1}{x + 2} \right) = \frac{\lim_{x \to 1} \left(x^2 + 4x - 1 \right)}{\lim_{x \to 1} \left(x + 2 \right)}$$
$$= \frac{\left(1 \right)^2 + 4\left(1 \right) - 1}{\left(1 \right) + 2}$$
$$= \frac{4}{3}$$

(b)
$$\lim_{x\to\infty}\left(\frac{1}{x}\right) = 0$$

2

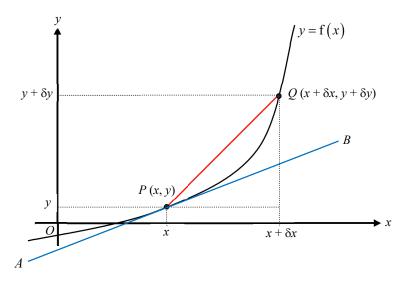
(c) <u>Method ①:</u>





The Derivative as a Limit (First Principles)

Consider a continuous function y = f(x). Let P(x, y) and $Q(x + \delta x, y + \delta y)$ be two points on the curve y = f(x) where δx is a small change in x and δy is a small change in y.



Therefore, gradient of $PQ = \frac{f(x+\delta x)-f(x)}{(x+\delta x)-x} = \frac{y+\delta y-y}{\delta x} = \frac{\delta y}{\delta x}$. As Q moves closer to P, $\delta x \to 0$ and gradient of $PQ \to$ gradient of AB.

Thus, the gradient of tangent to the curve at $P = \lim_{\delta x \to 0} \frac{f(x + \delta x) - f(x)}{\delta x} = \lim_{\delta x \to 0} \frac{\delta y}{\delta x}$.

We denote $\lim_{\delta x \to 0} \frac{\delta y}{\delta x}$ as $\frac{dy}{dx}$. This is known as the **first derivative of f** (with respect to x) at x and is also denoted by f'(x) or $\frac{d}{dx}f(x)$. The process of finding the derivative, f'(x), from f(x) is called differentiation. The first derivative of f(x) from First Principles is

$$\frac{\mathrm{d}y}{\mathrm{d}x} = f'(x) = \lim_{\delta x \to 0} \frac{f(x + \delta x) - f(x)}{\delta x}, \text{ provided the limit exists.}$$

Example 2:

Let $f: x \mapsto x^2$, $x \in \mathbb{R}$. Using the first principles of differentiation, show that f'(x) = 2x.

Solution:

 $f(x) = x^2$ and $f(x + \delta x) = (x + \delta x)^2$

From first principles,
$$\frac{f(x+\delta x) - f(x)}{\delta x} = \frac{(x+\delta x)^2 - x^2}{\delta x}$$
$$= \frac{x^2 + 2x(\delta x) + (\delta x)^2 - x^2}{\delta x}$$
Expand and simplify
$$= 2x + \delta x$$

$$\therefore f'(x) = \lim_{\delta x \to 0} (2x + \delta x)$$
$$= 2x \text{ (shown)}$$

Construction Section 5: Appendix on Page 17 - 20 (Examples A to C) for finding the derivatives of $\frac{1}{x}$, sin x and e^x from the first principles.

3

Rules of Differentiation

3.1 Basic Rules (Self-Reading)

Given that a and n are real constants,

$$\frac{\frac{d}{dx}(a) = 0}{\frac{d}{dx}(x^n) = nx^{n-1}}$$
$$\frac{\frac{d}{dx}[af(x)] = a\frac{d}{dx}[f(x)]}{\frac{d}{dx}[f(x)\pm g(x)] = \frac{d}{dx}[f(x)]\pm \frac{d}{dx}[g(x)]}$$

Example 3: Differentiate $\frac{1}{x^3} - x^5 + \sqrt{x^3}$ with respect to x.

Solution: $\frac{d}{dx}\left(\frac{1}{x^3} - x^5 + \sqrt{x^3}\right) = \frac{d}{dx}\left(x^{-3} - x^5 + x^{\frac{3}{2}}\right)$ $= -3x^{-4} - 5x^4 + \frac{3}{2}x^{\frac{1}{2}}$

3.2 Chain Rule (Self-Reading)

If y is a function of u, where u is a function of x, then

 $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}u} \times \frac{\mathrm{d}u}{\mathrm{d}x}$

Example 4: Differentiate $\frac{1}{(6x^2+4x+1)^2}$ with respect to x.

Solution:

$$\frac{d}{dx} \left[\frac{1}{\left(6x^{2} + 4x + 1 \right)^{2}} \right] = \frac{d}{dx} \left[\left(6x^{2} + 4x + 1 \right)^{-2} \right]$$
"Outermost to innermost"
i.e. differentiate the function with negative power -2
followed by the expression $6x^{2} + 4x + 1$.

$$= -2 \left(6x^{2} + 4x + 1 \right)^{-3} \cdot \frac{d}{dx} \left(6x^{2} + 4x + 1 \right)$$

$$= -2 \left(6x^{2} + 4x + 1 \right)^{-3} \cdot (12x + 4)$$

$$= -\frac{8 (3x + 1)}{\left(6x^{2} + 4x + 1 \right)^{3}}$$

3.3 Product Rule (Self-Reading)

Let y = uv where u and v are both functions of x.

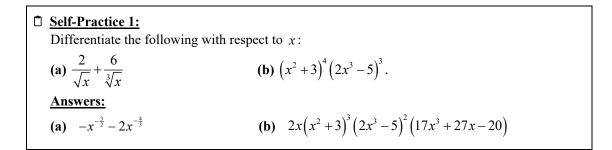
Then
$$\left(\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}}{\mathrm{d}x}(uv) = u\frac{\mathrm{d}v}{\mathrm{d}x} + v\frac{\mathrm{d}u}{\mathrm{d}x}\right).$$

Example 5: Differentiate $(3x^2+1)(2x+7)^{\frac{1}{2}}$ with respect to x.

$$\frac{\text{Solution:}}{\text{dx}} \qquad \frac{d}{dx} \left[(3x^2 + 1)(2x + 7)^{\frac{1}{2}} \right] = (3x^2 + 1) \frac{d}{dx} \left[(2x + 7)^{\frac{1}{2}} \right] + (2x + 7)^{\frac{1}{2}} \frac{d}{dx} (3x^2 + 1) \\ = (3x^2 + 1) \cdot \frac{1}{2} (2x + 7)^{-\frac{1}{2}} (2) + (2x + 7)^{\frac{1}{2}} \cdot (6x) \\ = (3x^2 + 1)(2x + 7)^{-\frac{1}{2}} + 6(x)(2x + 7)^{\frac{1}{2}} \\ = (2x + 7)^{-\frac{1}{2}} \left[(3x^2 + 1) + 6x(2x + 7) \right] \qquad \text{Factorise (take out smaller power)} \\ = (2x + 7)^{-\frac{1}{2}} (3x^2 + 1 + 12x^2 + 42x) \\ = (2x + 7)^{-\frac{1}{2}} (15x^2 + 42x + 1) \end{aligned}$$

3.4 Quotient Rule (Self-Reading)

Let
$$y = \frac{u}{v}$$
 where u and v are both functions of x .
Then $\boxed{\frac{dy}{dx} = \frac{d}{dx} \left(\frac{u}{v}\right) = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2}}{v^2}}$.
Example 6: Differentiate $\frac{2x^3 + 3}{x^4 + 2}$ with respect to x .
Solution: $\frac{d}{dx} \left(\frac{2x^3 + 3}{x^4 + 2}\right) = \frac{(x^4 + 2) \frac{d}{dx} (2x^3 + 3) - (2x^3 + 3) \frac{d}{dx} (x^4 + 2)}{(x^4 + 2)^2}$
 $= \frac{(x^4 + 2)(6x^2) - (2x^3 + 3)(4x^3)}{(x^4 + 2)^2}$
 $= \frac{2x^2 \left[(3x^4 + 6) - (4x^4 + 6x) \right]}{(x^4 + 2)^2}$
Factorise $2x^2$ to simplify quickly
 $= \frac{2x^2 (-x^4 - 6x + 6)}{(x^4 + 2)^2}$



3.5 Derivatives of Trigonometric Functions

For the following results, the **angles** x and f(x) are measured in radians.

	Basic	General
(a)	$\frac{\mathrm{d}}{\mathrm{d}x}(\sin x) = \cos x$	$\frac{\mathrm{d}}{\mathrm{d}x}\left[\sin f(x)\right] = \left[\cos f(x)\right] \cdot \frac{\mathrm{d}f(x)}{\mathrm{d}x}$
(b)	$\frac{\mathrm{d}}{\mathrm{d}x}(\cos x) = -\sin x$	$\frac{\mathrm{d}}{\mathrm{d}x} \left[\cos f(x) \right] = - \left[\sin f(x) \right] \cdot \frac{\mathrm{d}f(x)}{\mathrm{d}x}$
(c)	$\frac{\mathrm{d}}{\mathrm{d}x}(\tan x) = \sec^2 x$	$\frac{\mathrm{d}}{\mathrm{d}x} \left[\tan f(x) \right] = \left[\sec^2 f(x) \right] \cdot \frac{\mathrm{d}f(x)}{\mathrm{d}x}$
(d)	$\frac{\mathrm{d}}{\mathrm{d}x}(\sec x) = \sec x \tan x$	$\frac{\mathrm{d}}{\mathrm{d}x} \left[\sec f(x) \right] = \left[\sec f(x) \tan f(x) \right] \cdot \frac{\mathrm{d}f(x)}{\mathrm{d}x}$
(e)	$\frac{\mathrm{d}}{\mathrm{d}x}(\operatorname{cosec} x) = -\operatorname{cosec} x \operatorname{cot} x$	$\frac{\mathrm{d}}{\mathrm{d}x} \left[\operatorname{cosec} f(x)\right] = -\left[\operatorname{cosec} f(x) \operatorname{cot} f(x)\right] \cdot \frac{\mathrm{d}f(x)}{\mathrm{d}x}$
(f)	$\frac{\mathrm{d}}{\mathrm{d}x}(\cot x) = -\operatorname{cosec}^2 x$	$\frac{\mathrm{d}}{\mathrm{d}x} \left[\cot f(x) \right] = - \left[\operatorname{cosec}^{2} f(x) \right] \cdot \frac{\mathrm{d}f(x)}{\mathrm{d}x}$

[In MF26]

Example 7: Differentiate the following with respect to x

(a)
$$x^2 \sin x$$
, (b) $\frac{1 + \tan x}{\sec x}$, (c) $\sqrt{\cos 2x}$, (d) $\cot x^2 + \sec^2 x$.

Solution:

(a)
$$\frac{\mathrm{d}}{\mathrm{d}x} \left(x^2 \sin x \right) = x^2 \left(\cos x \right) + \left(\sin x \right) (2x)$$
$$= x \left(x \cos x + 2 \sin x \right)$$

(b)
$$\frac{d}{dx} \left(\frac{1 + \tan x}{\sec x} \right) = \frac{d}{dx} \left(\frac{1}{\sec x} + \frac{\tan x}{\sec x} \right)$$
$$= \frac{d}{dx} \left(\cos x + \frac{\sin x}{\cos x} \cdot \cos x \right)$$
$$= \frac{d}{dx} \left(\cos x + \sin x \right)$$
$$= -\sin x + \cos x$$

(c)
$$\frac{\mathrm{d}}{\mathrm{d}x} \left(\sqrt{\cos 2x} \right) = \frac{\mathrm{d}}{\mathrm{d}x} \left[\left(\cos 2x \right)^{\frac{1}{2}} \right]$$
$$= \frac{1}{2} \left(\cos 2x \right)^{-\frac{1}{2}} \left(-\sin 2x \right) (2)$$
$$= -\frac{\sin 2x}{\sqrt{\cos 2x}}$$

(d)
$$\frac{d}{dx} (\cot x^2 + \sec^2 x) = [-\csc^2(x^2)] \cdot (2x) + 2(\sec x)(\sec x \tan x)$$
$$= -2x \csc^2(x^2) + 2 \sec^2 x \tan x$$

Example 8: Prove
$$\frac{d}{dx}(\cot x) = -\csc^2 x$$
.
Solution: L.H.S. $= \frac{d}{dx}(\cot x)$
 $= \frac{d}{dx}\left(\frac{1}{\tan x}\right)$

$$= \frac{d}{dx} \left[(\tan x)^{-1} \right]$$
$$= -(\tan x)^{-2} (\sec^2 x)$$
$$= -\frac{\sec^2 x}{\tan^2 x}$$
$$= -\frac{1}{\cos^2 x} \cdot \frac{\cos^2 x}{\sin^2 x}$$
$$= -\frac{1}{\sin^2 x}$$
$$= -\cos^2 x = \text{R.H.S. (proved)}$$

Given that $y = \frac{3}{2}x + 2\sin x + \frac{1}{2}\sin x \cos x$, show that $\frac{dy}{dx} = (1 + \cos x)^2$.

3.6 Derivatives of Exponential and Logarithmic Functions

	Basic	General
(a)	$\frac{\mathrm{d}}{\mathrm{d}x}\left(\mathrm{e}^{x}\right) = \mathrm{e}^{x}$	$\frac{\mathrm{d}}{\mathrm{d}x} \left[\mathrm{e}^{\mathrm{f}(x)} \right] = \mathrm{e}^{\mathrm{f}(x)} \cdot \frac{\mathrm{d}\mathrm{f}(x)}{\mathrm{d}x}$
(b)	$\frac{\mathrm{d}}{\mathrm{d}x}(a^x) = a^x \ln a$	$\frac{\mathrm{d}}{\mathrm{d}x} \left[a^{\mathrm{f}(x)} \right] = a^{\mathrm{f}(x)} \ln a \cdot \frac{\mathrm{d}\mathrm{f}(x)}{\mathrm{d}x}$
(c)	$\frac{\mathrm{d}}{\mathrm{d}x}(\ln x) = \frac{1}{x}$	$\frac{\mathrm{d}}{\mathrm{d}x} \left[\ln f(x) \right] = \frac{1}{f(x)} \cdot \frac{\mathrm{d}f(x)}{\mathrm{d}x}$
(d)	$\frac{\mathrm{d}}{\mathrm{d}x} \left(\log_a x\right) = \frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{\ln x}{\ln a}\right) = \frac{1}{x \ln a}$	$\frac{\mathrm{d}}{\mathrm{d}x} \left[\log_a f(x) \right] = \frac{\mathrm{d}}{\mathrm{d}x} \left[\frac{\ln f(x)}{\ln a} \right] = \frac{1}{f(x) \ln a} \cdot \frac{\mathrm{d}f(x)}{\mathrm{d}x}$

Example 9:	Differentiate the	e following	with respect to x

•

(a)
$$4e^{(x^2+1)}$$
, (b) $3^{\tan x}$, (c) $\ln(x+x^3)$, (d) $\log_3(x^2+4)$.

Solution:

(a)
$$\frac{d}{dx} \left[4e^{(x^2+1)} \right] = 4e^{(x^2+1)} \cdot 2x$$

= $8xe^{(x^2+1)}$

(b)
$$\frac{d}{dx}(3^{\tan x}) = 3^{\tan x}(\ln 3) \cdot \sec^2 x$$

(c)
$$\frac{\mathrm{d}}{\mathrm{d}x} \Big[\ln \Big(x + x^3 \Big) \Big] = \frac{1}{x + x^3} \cdot \frac{\mathrm{d}}{\mathrm{d}x} \Big(x + x^3 \Big)$$
$$= \frac{1 + 3x^2}{x + x^3}$$

(d)
$$\frac{d}{dx} \left[\log_3 \left(x^2 + 4 \right) \right] = \frac{d}{dx} \left[\frac{\ln \left(x^2 + 4 \right)}{\ln 3} \right]$$
$$= \frac{1}{\ln 3} \frac{d}{dx} \left[\ln \left(x^2 + 4 \right) \right]$$
$$= \frac{1}{\ln 3} \cdot \frac{2x}{x^2 + 4}$$
$$= \frac{2x}{(\ln 3)(x^2 + 4)}$$

Example 10: Differentiate
$$\ln \sqrt{\frac{e^x}{2+3^{x^2}}}$$
 with respect to x.

Solution:

$$\frac{d}{dx} \left(\ln \sqrt{\frac{e^x}{2+3^{x^2}}} \right) = \frac{1}{2} \frac{d}{dx} \left[\ln \left(\frac{e^x}{2+3^{x^2}} \right) \right]$$

$$= \frac{1}{2} \frac{d}{dx} \left[\ln \left(e^x \right) - \ln \left(2+3^{x^2} \right) \right]$$

$$= \frac{1}{2} \frac{d}{dx} \left[x - \ln \left(2+3^{x^2} \right) \right]$$

$$= \frac{1}{2} \left[1 - \frac{3^{x^2} (\ln 3)(2x)}{2+3^{x^2}} \right]$$

$$= \frac{1}{2} - \frac{3^{x^2} (\ln 3)x}{2+3^{x^2}}$$

(a) $x \sin x$,	(b) $e^{1+\cos x}$,	(c) $\ln \sqrt{1+\cos x}$.		
$\frac{\text{Answers:}}{(a) x \cos x + \sin x}$	(b) $-\sin x \cdot e^{1+\cos x}$	(c) $-\frac{\sin x}{2(1+\cos x)}$		

3.7 Implicit Differentiation

Let us first understand the term **explicit**. An explicit function is an equation where y is defined entirely in terms of x. Some examples of explicit functions are $y = \frac{2}{x} + 3x^2$ and $y = \frac{4x}{x-1}$.

On the other hand, an **implicit** function is an equation involving x and y, where y is not in terms of x. Some examples of implicit functions are $y = \frac{2}{x} + 3y^2$, $xy = y^2 - 10$ and $\sqrt{x+1} = y^x + e^y$.

When you are differentiating terms involving y with respect to x, we need to apply the **Chain Rule** since we are assuming that y is defined implicitly as a function of x.

To differentiate a function g(y) with respect to x, we have the following

$$\frac{\mathrm{d}}{\mathrm{d}x}\mathrm{g}(y) = \left[\frac{\mathrm{d}}{\mathrm{d}y}\mathrm{g}(y)\right]\frac{\mathrm{d}y}{\mathrm{d}x}$$

Example 11: Find $\frac{dy}{dx}$ in terms of x and y when (a) $x^2 + y^3 = xy^2$

(b) $\cos x = 1 + y \cos y$

Solution:

(a)

$$x^{2} + y^{3} = xy^{2}$$

$$\frac{d}{dx}(x^{2} + y^{3}) = \frac{d}{dx}(xy^{2})$$

$$2x + 3y^{2}\frac{dy}{dx} = x \cdot 2y\frac{dy}{dx} + y^{2}$$

$$(3y^{2} - 2xy)\frac{dy}{dx} = y^{2} - 2x$$

$$\frac{dy}{dx} = \frac{y^{2} - 2x}{3y^{2} - 2xy}$$

(b)

 $\cos x = 1 + y \cos y$

$$\frac{d}{dx}(\cos x) = \frac{d}{dx}(1 + y\cos y)$$
$$-\sin x = y \cdot (-\sin y)\frac{dy}{dx} + \cos y \cdot \frac{dy}{dx}$$
$$(y\sin y - \cos y)\frac{dy}{dx} = \sin x$$
$$\frac{dy}{dx} = \frac{\sin x}{y\sin y - \cos y}$$

 $\begin{array}{c} \textcircled{i} \quad \underline{Self-Practice \ 4:} \\ Find \quad \frac{dy}{dx} \text{ given that } x + xy - 2y = 5. \\ \\ \underline{Answers:} \\ \frac{1+y}{2-x} \end{array}$

3.8 Logarithmic Differentiation

This method is used for differentiating

- expressions of the form u^v , where u and v are functions of x, e.g. x^x
- complicated products and quotients

Procedure

Step 1: Take natural logarithm on both sides.

Step 2: Simplify the logarithms, where possible.

Step 3: Perform implicit differentiation with respect to x.

Example 12: Find
$$\frac{dy}{dx}$$
 when

(a)
$$y = x^{\sin x}$$
 for $x, y > 0$,

(b) $x^{y} = y^{x}$ for x, y > 0.

Solution:

(a)

$$y = x^{\sin x}$$

$$\ln y = \ln(x^{\sin x})$$

$$\ln y = (\sin x)(\ln x)$$

$$\frac{1}{y} \frac{dy}{dx} = \sin x \cdot \frac{1}{x} + \ln x \cdot \cos x$$

$$\frac{dy}{dx} = y \left[\frac{\sin x}{x} + (\ln x)(\cos x) \right]$$

$$\frac{dy}{dx} = x^{\sin x} \left[\frac{\sin x}{x} + (\ln x)(\cos x) \right]$$

 $x^y = y^x$

(b)

$$\ln x^{y} = \ln y^{x}$$
$$y \ln x = x \ln y$$
$$y \cdot \frac{1}{x} + \ln x \cdot \frac{dy}{dx} = x \cdot \frac{1}{y} \frac{dy}{dx} + \ln y$$
$$\left(\ln x - \frac{x}{y}\right) \frac{dy}{dx} = \ln y - \frac{y}{x}$$
$$\left(\frac{y \ln x - x}{y}\right) \frac{dy}{dx} = \frac{x \ln y - y}{x}$$
$$\frac{dy}{dx} = \frac{y(x \ln y - y)}{x}$$

Self-Practice 5:

Prove by differentiation that $\frac{d}{dx}(x^x) = x^x(1+\ln x)$.

3.9 Derivatives of Inverse Trigonometric Functions

3.9.1 Definitions of Inverse Trigonometric Functions

Recall that for trigonometric functions, the inverses are defined for the respective principal range. We have

Inverse Trigonometric Function	Principal Domain	Principal Range
$y = \sin^{-1} x$	[-1, 1]	$\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$
$y = \cos^{-1} x$	[-1, 1]	$\left[0,\pi ight]$
$y = \tan^{-1} x$	R	$\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$

 $\mathbb{E} \quad \underline{\mathbf{Remark:}} \ \sin^{-1} x \neq \frac{1}{\sin x}.$

 $\sin^{-1} x$ is the <u>inverse function</u> and is not the same as $(\sin x)^{-1}$, which is the <u>reciprocal</u> <u>function</u>. Similarly, $\cos^{-1} x \neq \frac{1}{\cos x}$ and $\tan^{-1} x \neq \frac{1}{\tan x}$.

3.9.2 Important Results

	Basic	General
(a)	$\frac{d}{dx}(\sin^{-1}x) = \frac{1}{\sqrt{1-x^2}}, -1 \le x \le 1$	$\frac{\mathrm{d}}{\mathrm{d}x}\left[\sin^{-1}f(x)\right] = \frac{1}{\sqrt{1 - \left[f(x)\right]^2}} \cdot \frac{\mathrm{d}f(x)}{\mathrm{d}x}, -1 \le f(x) \le 1$
(b)	$\frac{d}{dx}(\cos^{-1}x) = -\frac{1}{\sqrt{1-x^2}}, \ -1 \le x \le 1$	$\frac{\mathrm{d}}{\mathrm{d}x} \left[\cos^{-1} f(x) \right] = -\frac{1}{\sqrt{1 - \left[f(x) \right]^2}} \cdot \frac{\mathrm{d}f(x)}{\mathrm{d}x}, \ -1 \le f(x) \le 1$
(c)	$\frac{\mathrm{d}}{\mathrm{d}x}(\tan^{-1}x) = \frac{1}{1+x^2}, \qquad x \in \mathbb{R}$	$\frac{\mathrm{d}}{\mathrm{d}x} \left[\tan^{-1} f(x) \right] = \frac{1}{1 + \left[f(x) \right]^2} \cdot \frac{\mathrm{d}f(x)}{\mathrm{d}x}, \qquad f(x) \in \mathbb{R}$

To prove that
$$\frac{d}{dx}(\sin^{-1}x) = \frac{1}{\sqrt{1-x^2}}$$
:

Let $y = \sin^{-1} x$, then $\sin y = x$.

Differentiate both sides with respect to x, we have $\cos y \cdot \frac{\mathrm{d}y}{\mathrm{d}x} = 1$

$$\frac{\mathrm{d}x}{\mathrm{d}x} = \frac{1}{\cos y}$$

But $\sin^2 y + \cos^2 y = 1 \implies \cos y = \sqrt{1 - \sin^2 y}$

$$=\sqrt{1-x^2} \qquad \left[-\frac{\pi}{2} \le y \le \frac{\pi}{2} \quad \Rightarrow \quad \cos y \ge 0\right]$$
$$\frac{dy}{dx} = \frac{1}{\sqrt{1-x^2}}$$

$$\frac{\mathrm{d}x}{\mathrm{d}x} \sqrt{1-x^2}$$
$$\frac{\mathrm{d}}{\mathrm{d}x} \left(\sin^{-1}x\right) = \frac{1}{\sqrt{1-x^2}}$$

...

O Refer to Section 5: Appendix on Page 20 (Examples D and E) for the proofs of

$$\frac{d}{dx}(\cos^{-1}x) = -\frac{1}{\sqrt{1-x^2}}$$
 and $\frac{d}{dx}(\tan^{-1}x) = \frac{1}{1+x^2}$.

Example 13:	Differentiate the following with respect to x		
	(a) $\cos^{-1}(2x)$,	(b) $\tan^{-1}(x^2-1)$,	(c) $\sin^{-1}(ax+b)$.
Solution:	- 1		

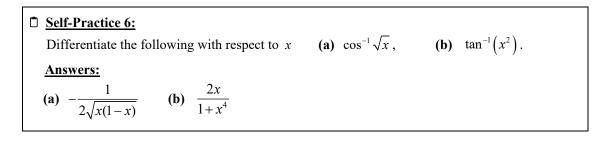
(a)
$$\frac{d}{dx} \Big[\cos^{-1}(2x) \Big] = -\frac{1}{\sqrt{1 - (2x)^2}} \cdot 2$$

= $-\frac{2}{\sqrt{1 - 4x^2}}$

(b)
$$\frac{d}{dx} \left[\tan^{-1} \left(x^2 - 1 \right) \right] = \frac{1}{1 + \left(x^2 - 1 \right)^2} \cdot 2x$$

= $\frac{2x}{1 + \left(x^2 - 1 \right)^2}$

(c)
$$\frac{\mathrm{d}}{\mathrm{d}x} \Big[\sin^{-1} (ax+b) \Big] = \frac{1}{\sqrt{1 - (ax+b)^2}} \cdot a$$
$$= \frac{a}{\sqrt{1 - (ax+b)^2}}$$



Evaluating Derivatives using a Graphing Calculator (G.C.) (

Example 14: Evaluate the first derivative of the following functions at the given value of x

(a) $y = x^2$ when x = 2, (b) $y = \ln(2x^3)$ when x = 5.

Solution:

4

(a) To find the first derivative of $y = x^2$ when x = 2 using G.C.:

	Press	Screen Display
1.	Press math followed by 8:nDeriv(. or Press alpha window followed by 3:nDeriv(.	NORMAL FLOAT AUTO REAL RADIAN MP
2.	Key in the given function as shown and press enter.	NORMAL FLOAT AUTO REAL RADIAN MP $\frac{d}{dx}(x^2) _{x=2}$

: first derivative of $y = x^2$ when x = 2 is 4.

(b) Using G.C., the first derivative of
$$y = \ln(2x^3)$$
 when $x = 5$ is 0.600 (to 3 s.f.).

5 Appendix

Example A: Let $f: x \mapsto \frac{1}{x}$. Using the first principles of differentiation, show that $f'(x) = -\frac{1}{x^2}$.

Solution:

$$f(x) = \frac{1}{x} \quad \text{and} \quad f(x + \delta x) = \frac{1}{x + \delta x}$$
From first principles, $\frac{f(x + \delta x) - f(x)}{\delta x} = \frac{\frac{1}{x + \delta x} - \frac{1}{x}}{\delta x}$

$$= \frac{x - (x + \delta x)}{(\delta x)(x)(x + \delta x)}$$

$$= -\frac{1}{x^2 + x(\delta x)}$$

$$\therefore f'(x) = \lim_{\delta x \to 0} \left[-\frac{1}{x^2 + x(\delta x)} \right] = -\frac{1}{x^2} \text{ (shown)}$$

Example B: Let f: $x \mapsto \sin x$. Using the first principles of differentiation, show that $f'(x) = \cos x$.

Solution:

$$f(x) = \sin x \text{ and } f(x + \delta x) = \sin(x + \delta x)$$
From first principles,

$$\frac{f(x + \delta x) - f(x)}{\delta x}$$

$$= \frac{\sin(x + \delta x) - \sin x}{\delta x}$$

$$= \frac{2\cos(\frac{x + \delta x + x}{2})\sin(\frac{x + \delta x - x}{2})}{\delta x} - \frac{\text{"Sum to Product" Formula:}}{\sin P - \sin Q = 2\cos \frac{1}{2}(P + Q)\sin \frac{1}{2}(P - Q)}$$

$$= \frac{2\sin(\frac{\delta x}{2})\cos(x + \frac{\delta x}{2})}{\delta x}$$

$$= \frac{\sin(\frac{\delta x}{2})}{(\frac{\delta x}{2})}\cos(x + \frac{\delta x}{2})$$

	Use G.C. to determine the value of $\lim_{\delta x \to 0} \frac{\sin\left(\frac{\delta x}{2}\right)}{\left(\frac{\delta x}{2}\right)}$:				
	Press	Screen Display	Remarks		
1.	Press $y=$ and key in the given function.	NORMAL FLOAT AUTO REAL RADIAN MP Image: Constraint of the second se	Enter the equation $y = \frac{\sin(\frac{x}{2})}{(\frac{x}{2})}$.		
2.	Press graph to view the graph of Y_1 in the viewing window.	NORMAL FLOAT AUTO REAL RADIAN MP	Note that the graph is discontinuous at $x = 0$ which is not clearly shown on the graph.		
3.	Press 2nd graph to view the table of values.	NORMAL FLOAT AUTO REAL RADIAN MP I X Y1 I X Y1 I X Y1 I Image: State	The table shows that $\operatorname{at} x = 0$, $\frac{\sin(0)}{0}$ gives an error.		
4.	Press 2nd window to view table setup. Key in as shown in the screen on the right.	NORMAL FLOAT AUTO REAL RADIAN MP TABLE SETUP TblStart=0	Set the start value of the table to 0 and the change in the x value to 1×10^{-7} . The small change allows us to observe how $\frac{\sin(\frac{x}{2})}{(\frac{x}{2})}$ behaves as x approaches 0.		
5.	Press 2nd graph to view the table of values.	NORMAL FLOAT AUTO REAL RADIAN MP PRESS + FOR Δ Tb1			

From G.C., it is observed that $\lim_{\delta x \to 0} \frac{\sin\left(\frac{\delta x}{2}\right)}{\left(\frac{\delta x}{2}\right)} = 1$.

$$\therefore f'(x) = \lim_{\delta x \to 0} \frac{\sin\left(\frac{\delta x}{2}\right)}{\left(\frac{\delta x}{2}\right)} \cdot \lim_{\delta x \to 0} \cos\left(x + \frac{\delta x}{2}\right) = 1 \cdot \cos x = \cos x \text{ (shown)}$$

Example C: Let f: $x \mapsto e^x$. Using the first principles of differentiation, show that $f'(x) = e^x$.

 $f(x) = e^x$ and $f(x + \delta x) = e^{x + \delta x}$ Solution: From first principles, $\frac{f(x+\delta x)-f(x)}{\delta x} = \frac{e^{x+\delta x}-e^x}{\delta x} = \frac{e^x(e^{\delta x}-1)}{\delta x}$ Use G.C. to determine the value of $\lim_{\delta x \to 0} \frac{(e^{\delta x} - 1)}{\delta x}$: Press **Screen Display** Remarks 1. Press y= and key in the given Enter the equation $y = \frac{(e^x - 1)}{r}$. NORMAL FLOAT AUTO REAL RADIAN MF function. Plot1 Plot2 Plot3 ■****Y1目<u>(e^X-1)</u> Y6= NY 7= 2. Press graph to view the graph Note that the graph is NRMAL FLOAT AUTO REAL RANTAN ME discontinuous at x = 0 which is of Y_1 in the viewing window. not clearly shown on the graph. The table shows that at x = 0, 3. Press 2nd graph to view the NORMAL FLOAT AU Press + for at61 IITO REAL RADTAN table of values. $\frac{(e^0-1)}{0}$ gives an error. 5 6 7 8 9 X=0 4. Press 2nd window to view Set the start value of the table to ORMAL FLOAT AUTO REAL RADIAN I 0 and the change in the x value table setup. Key in as shown in TABLE SETUP TblStart=0 to 1×10^{-7} . the screen on the right. aTbl=1e-7 Indent: Auto Ask Depend: Auto Ask The small change allows us to observe how $\frac{(e^x - 1)}{x}$ behaves as x approaches 0. Press 2nd graph to view the 5. NORMAL FLOAT AU Press + for _tb1 table of values. 1E-2E-3E-5E-6E-7E-8E-9E-1E-X=0

From G.C., it is observed that
$$\lim_{\delta x \to 0} \frac{\left(e^{\delta x} - 1\right)}{\delta x} = 1$$
$$\therefore f'(x) = \lim_{\delta x \to 0} \frac{e^x \left(e^{\delta x} - 1\right)}{\delta x} = e^x \lim_{\delta x \to 0} \frac{\left(e^{\delta x} - 1\right)}{\delta x} = e^x \text{ (shown)}$$

Example D: Prove that
$$\frac{d}{dx}(\cos^{-1}x) = -\frac{1}{\sqrt{1-x^2}}$$
.
Solution: Let $y = \cos^{-1}x$, then $\cos y = x$.
Differentiate with respect to x , we have $-\sin y \frac{dy}{dx} = 1$
 $\frac{dy}{dx} = -\frac{1}{\sin y}$
But $\sin^2 y + \cos^2 y = 1 \Rightarrow \sin y = \sqrt{1-\cos^2 y}$
 $= \sqrt{1-x^2}$ $[0 \le y \le \pi \Rightarrow \sin y \ge 0]$
 $\therefore \qquad \frac{dy}{dx} = -\frac{1}{\sqrt{1-x^2}}$
 $\frac{d}{dx}(\cos^{-1}x) = -\frac{1}{\sqrt{1-x^2}}$

Example E: Prove that
$$\frac{d}{dx}(\tan^{-1}x) = \frac{1}{1+x^2}$$
.
Solution: Let $y = \tan^{-1}x$, then $\tan y = x$.
Differentiate with respect to x , we have $\sec^2 y \frac{dy}{dx} = 1$
 $\frac{dy}{dx} = \frac{1}{\sec^2 y}$
But $1 + \tan^2 y = \sec^2 y \implies \sec^2 y = 1 + x^2$
 $\therefore \qquad \frac{dy}{dx} = \frac{1}{1+x^2}$
 $\frac{d}{dx}(\tan^{-1}x) = \frac{1}{1+x^2}$

MASTERY LEARNING OBJECTIVES

Techniques of Differentiation

At the end of this chapter, I should be able to:

	At the end of lecture	At the end of tutorial
• Find the limit of a given function		
• Find the derivative of a given function using the first principles		
• Apply the following rules of differentiation:		
 Chain Rule 		
Product Rule		
Quotient Rule		
• Use the following methods to differentiate:		
 Implicit differentiation 		
 Logarithmic differentiation 		
Differentiate functions involving:		
\blacktriangleright Powers of x		
> Trigonometric		
> Exponential		
> Logarithmic		
 Inverse Trigonometric 		
• Find the approximate value of a derivative at a given point using a graphing calculator		

H2 MATHEMATICS TUTORIAL TOPIC TECHNIQUES OF DIFFERENTIATION

DISCUSSION

1 Evaluate $\frac{d}{dx} 2^{3x^2 + \sin^2(e^{x^2})} \Big|_{x=1}$, correct to 5 significant figures.

2 Find the derivatives of the following

(a)
$$\frac{\pi\sqrt{8100+x^2}}{x}$$
, (b) $\sec^3(2x)$, (c) $\sin\sqrt{x^2+1}$,
(d) $\log_{10}5x$, (e) $\ln[(x^3+2)(x^2+3)]$, (f) $x^2e^{x\sin 2x}$,
(g) $(\frac{1}{\sin^{-1}3x})^4$, (h) $\sin^{-1}(2\sin x)$, (i) $\tan^{-1}(\frac{1+x}{1-x})$.

3 [2008/MJC/Promo/10]

A curve has equation $xy^2 + 3e^y = 4x$. Find $\frac{dy}{dx}$ in terms of x and y.

4 [2009/CJC/Promo/10(b)]

A curve has equation $\sin^{-1} y + xe^{y} = 3x$. Find $\frac{dy}{dx}$ in terms of x and y.

5 Find
$$\frac{dy}{dx}$$
 given that $y = x^{\sqrt{x}}$ where $x > 0$

6 [N99/I/12] Find $\frac{d}{dx} \left[\sin^{-1} \sqrt{(1-x^2)} \right]$.

7 [2015/MJC/Promo/7]

(a) Differentiate the following with respect to x, giving your answers as single fractions.

(i)
$$\ln\left(\frac{x}{\sqrt{(1-2x)}}\right)$$

(ii) $\frac{1}{\cos^{-1}(x^2)}$.

(b) The variables x and y are related by

$$\mathrm{e}^{xy^2}=y\big(x^2+2\mathrm{e}^x\big).$$

Find the value of $\frac{dy}{dx}$ when x = 0 and $y = \frac{1}{2}$.

Answers:

1 12.017
2 (a)
$$-\frac{8100\pi}{x^2\sqrt{8100+x^2}}$$
 (b) $6\sec^3(2x)\tan(2x)$ (c) $\frac{x\cos\sqrt{x^2+1}}{\sqrt{x^2+1}}$
(d) $\frac{1}{x\ln 10}$ (e) $\frac{3x^2}{x^3+2} + \frac{2x}{x^2+3}$ (f) $xe^{x\sin 2x}(2+x\sin 2x+2x^2\cos 2x)$
(g) $-\frac{12}{(\sin^{-1}3x)^5\sqrt{1-9x^2}}$ (h) $\frac{2\cos x}{\sqrt{1-4\sin^2 x}}$ (i) $\frac{1}{1+x^2}$
3 $\frac{4-y^2}{2xy+3e^y}$
4 $\frac{(3-e^y)\sqrt{1-y^2}}{1+xe^y\sqrt{1-y^2}}$
5 $\frac{x^{\sqrt{x}}(2+\ln x)}{2\sqrt{x}}$
6 $\frac{x}{|x|\sqrt{1-x^2}}$
7 (a)(i) $\frac{1-x}{x(1-2x)}$ (ii) $\frac{2x}{[\cos^{-1}(x^2)]^2\sqrt{1-x^4}}$ (b) $-\frac{3}{8}$

.....

ESSENTIAL PRACTICE

(i) $e^{\sec x}$, [1] (ii) $\tan^{-1}(x^2)$, [2]

(iii)
$$\cos^4(2x)$$
. [2]

2 [2013/NYJC/Promo/2]

Differentiate the following expressions with respect to x, simplifying your answers as far as possible:

(a)
$$\tan^{-1}\left(\frac{2}{x}\right)$$
, [3]

(b)
$$\ln \sqrt{\frac{1+x}{1-x}}$$
. [3]

3 [2013/ACJC/Promo/3]

Differentiate the following with respect to *x*.

(i)
$$\sqrt{\cos^{-1}\left(\frac{x}{2}\right)}$$
, [2]

(ii)
$$\ln \sqrt{\frac{(x+1)^3}{x^2-1}}$$
. [2]

4 [2016/PJC/Promo/1]

Differentiate with respect to x, giving your answers as a single fraction,

(a)
$$\ln \sqrt{a^2 - x^2}$$
, where *a* is a constant, [2]
(b) $\tan^{-1}\left(\frac{1}{2x}\right)$. [2]

5 [2015/CJC/Promo/1]

Differentiate the following expressions with respect to x, simplifying your answers whenever possible.

(a)
$$\tan^{-1}(e^{3x})$$
, [2]

(b)
$$5^{2x}$$
, [2]

(c)
$$\frac{ax}{\sqrt{x^3+1}}$$
, where *a* is a constant. [3]

6 [2010/ACJC/Promo/5]

Differentiate the following with respect to x, leaving your answers in terms of x.

(a)
$$e^{ex} \cot\left(\frac{x}{2}\right)$$
, [3]

(b)
$$(2x)^{(1/x)}$$
. [4]

7 [2012/ACJC/Promo/2]

Differentiate the following with respect to *x*.

(i)
$$\cos^{-1}(\sin x)$$
, where $\frac{\pi}{2} < x < \frac{3\pi}{2}$. [2]

(ii)
$$\ln \sqrt{\frac{e^x + 1}{1 - e^{-x}}}$$
. [3]

8 [2016/CJC/Promo/1]

Given that
$$y^3 + e^{\tan y} = \cos\left(2x + \frac{\pi}{3}\right)$$
, find $\frac{dy}{dx}$ in terms of x and y. [4]

9 [2014/CJC/Promo/2]

The variables x and y are related by $3^y = xy - \sec x$. Find $\frac{dy}{dx}$ in terms of x and y. [4]

10 [2012/CJC/Promo/11(b)]

Given that
$$y = (2x+1)^x$$
 for $x > 0$, find $\frac{dy}{dx}$. [3]

11 [2013/YJC/Promo/4a]

It is given that $y^{x} = e^{y}x^{2}$. Find $\frac{dy}{dx}$ in terms of x and y, simplifying your answer. [4]

12 [2014/MJC/Promo/5]

(a) Differentiate
$$\frac{x-2x^3}{\ln x}$$
 with respect to x. [2]

(b) Given that
$$0 < x < \frac{\pi}{2}$$
, show that $\frac{d}{dx} \left[\sin^{-1} (\cos x) \right] = k$, where k is a real constant to be determined. [3]

(c) Given that
$$e^{xy} = (1 + y^2)^2$$
, find $\frac{dy}{dx}$ in terms of x and y, simplifying your answer. [4]

Answers:

1 (i)
$$(\sec x \tan x) e^{\sec x}$$
 (ii) $\frac{2x}{1+x^4}$ (iii) $-8\cos^3(2x)\sin(2x)$
2 (a) $\frac{-2}{x^2+4}$ (b) $\frac{1}{(1-x)(1+x)}$
3 (i) $-\frac{1}{2\sqrt{(4-x^2)\cos^{-1}(\frac{x}{2})}}$ (ii) $\frac{1}{x+1} - \frac{1}{2(x-1)}$
4 (a) $-\frac{x}{a^2-x^2}$ (b) $-\frac{2}{4x^2+1}$
5 (a) $\frac{3e^{3x}}{1+e^{6x}}$ (b) $(2\ln 5)(5^{2x})$ (c) $a(x^3+1)^{-\frac{1}{2}} - \frac{3}{2}ax^3(x^3+1)^{-\frac{3}{2}}$
6 (a) $e^{ex} \left[-\frac{1}{2}\csc^2\left(\frac{x}{2}\right) + e\cot\left(\frac{x}{2}\right)\right]$ (b) $\frac{(2x)^{\left(\frac{1}{x}\right)}}{x^2} \left[1-\ln(2x)\right]$
7 (i) 1 (ii) $\frac{1}{2}\left(\frac{e^x}{e^x+1} - \frac{1}{e^x-1}\right)$
8 $-\frac{2\sin\left(2x+\frac{\pi}{3}\right)}{3y^2+\sec^2y\cdot e^{4\pi i y}}$
9 $\frac{y-\sec x \tan x}{3^y \ln 3-x}$
10 $(2x+1)^x \left[\frac{2x}{2x+1} + \ln(2x+1)\right]$
11 $\frac{y(2-x\ln y)}{x(x-y)}$
12 (a) $\frac{(1-6x^2)\ln x+2x^2-1}{(\ln x)^2}$ (b) $k=-1$ (c) $\frac{ye^{yy}}{4y(1+y^2)-xe^{yy}}$ or $\frac{y(1+y^2)}{4y-x(1+y^2)}$

.....