Anglo-Chinese Junior College *H2 Mathematics 9740*

Qn	H2 Mathematics 9740 Paper 2 Solution				
1 (i)	$(2.5k + \lambda)$ $(3+4\mu)$				
	$\begin{bmatrix} 2.5k + k \\ k + 3\lambda \end{bmatrix} = \begin{bmatrix} 5+4\mu \\ 0.5k + 7\mu \end{bmatrix}$				
	$ \begin{vmatrix} k+3\lambda \\ 2k+\lambda \end{vmatrix} = \begin{vmatrix} 0.5k+7\mu \\ 0.5k+5\mu \end{vmatrix} $				
	Equating i, j, k components,				
	$2.5k + \lambda - 4\mu = 3 \qquad(1)$				
	$0.5k + 3\lambda - 7\mu = 0 \qquad(2)$				
	$1.5k + \lambda - 5\mu = 0 \qquad(3)$				
	Solving Equations (1), (2), (3):				
	$k=2$. $(\mu=1,\lambda=2.)$				
(ii)	When $k = 2$, $\lambda = 2$,				
	(2.5)(2)+2 (7)				
	$\mathbf{r} = \begin{pmatrix} (2.5)(2) + 2 \\ 2 + (3)(2) \\ (2)(2) + 2 \end{pmatrix} = \begin{pmatrix} 7 \\ 8 \\ 6 \end{pmatrix}$				
	(2)(2)+2 (6)				
	Intersection point is $(7,8,6)$				
2	Let $y = f(x)$				
	$y = e^{\sin^{-1} 2x}$				
	$ \ln y = \sin^{-1} 2x $				
	diff. w.r.t. x				
	1 dy 2				
	$\frac{1}{y}\frac{dy}{dx} = \frac{2}{\sqrt{1-4x^2}}$ $\sqrt{1-4x^2}\frac{dy}{dx} = 2y$				
	$\int_{1-Ax^2} dy = 2x$				
	dx				
	diff. w.r.t. x				
	$\frac{-4x}{\sqrt{1-4x^2}} \frac{dy}{dx} + \sqrt{1-4x^2} \frac{d^2y}{dx^2} = 2\frac{dy}{dx}$				
	VI IA				
	$-4x\frac{dy}{dx} + (1 - 4x^2)\frac{d^2y}{dx^2} = 2\sqrt{1 - 4x^2}\frac{dy}{dx}$				
	$\left(1-4x^2\right)\frac{d^2y}{dx^2} = 4x\frac{dy}{dx} + 2(2y)$				
	$\left(1 - 4x^2\right) \frac{d^2y}{dx^2} = 4x \frac{dy}{dx} + 4y \qquad \text{(shown)}$				
	ur ur				
	diff. w.r.t. x				
	$\left(1 - 4x^{2}\right) \frac{d^{3}y}{dx^{3}} + \frac{d^{2}y}{dx^{2}} \left(-8x\right) = 4x \frac{d^{2}y}{dx^{2}} + \frac{dy}{dx} \left(4\right) + 4\frac{dy}{dx}$				
	$\left(1 - 4x^2\right) \frac{d^3y}{dx^3} = 12x \frac{d^2y}{dx^2} + 8\frac{dy}{dx}$				

$$f(0) = 1$$

$$f'(0) = 2$$

$$f''(0) = 4$$

$$f''''(0) = 16$$

$$f(x) = 1 + 2x + 2x^{2} + \frac{8}{3}x^{3} + \dots$$

$$e^{\sin^{-1}2x} = e^{\frac{\pi}{6}}$$

$$\sin^{-1}2x = \frac{\pi}{6}$$

$$2x = \frac{1}{2}$$

$$x = \frac{1}{4}$$

$$e^{\frac{\pi}{6}} = 1 + 2\left(\frac{1}{4}\right) + 2\left(\frac{1}{4}\right)^{2} + \frac{8}{3}\left(\frac{1}{4}\right)^{3}$$

$$= 1\frac{2}{3}$$

3i
$$x = 1 + \sin u$$

 $\frac{dx}{du} = \cos u$

$$\int \sqrt{2x - x^2} dx$$

$$= \int \sqrt{2(1 + \sin u) - (1 + \sin u)^2} \cos u \, du$$

$$= \int \sqrt{2 + 2\sin u - 1 - 2\sin u - \sin u^2} \cos u \, du$$

$$= \int \sqrt{1 - \sin^2 u} \cos u \, du$$

$$= \int \cos^2 u \, du$$

$$= \int \frac{\cos^2 u \, du}{2} \, du$$

$$= \frac{\sin 2u}{4} + \frac{1}{2}u + c$$

$$= \frac{2\sin u \cos u}{4} + \frac{1}{2}u + c$$

$$= \frac{(x - 1)}{2} \sqrt{2x - x^2} + \frac{1}{2}\sin^{-1}(x - 1) + c$$

ii a)

Area
$$R = 2 \left[\int_0^1 |x| + 2 - \sqrt{2|x| - x^2} dx - \int_0^1 |x|^9 + |x| dx \right]$$

$$= 2 \left[\int_0^1 x + 2 - \sqrt{2x - x^2} dx - \int_0^1 x^9 + x dx \right]$$

$$= 2 \left[\frac{x^2}{2} + 2x - \frac{x - 1}{2} \sqrt{2x - x^2} + \frac{1}{2} \sin^{-1} (x - 1) - \frac{x^{10}}{10} - \frac{x^2}{2} \right]_0^1$$

$$= 2 \left[2 - \frac{1}{10} + \frac{\pi}{4} \right]$$

$$= \frac{19}{5} - \frac{\pi}{2}$$

Vol. of revolution formed when R is rotated completely about x-axis
$$= 2\pi \left[\int_0^1 \left(x + 2 - \sqrt{2x - x^2} \right)^2 dx - \int_0^1 \left(x^9 + x \right)^2 dx \right]$$

$$= 14.995$$

4 (i) Method 1:

line
$$l: \mathbf{r} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 2 \\ -3 \end{pmatrix}$$

Since (1,1,0) lies on p_2 ,

$$\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \begin{pmatrix} -1 \\ a \\ 1 \end{pmatrix} = 1$$
$$-1 + a = 1$$
$$a = 2$$

Method 2:

Since direction vector of line l is perpendicular to normal of p_2 ,

$$\begin{pmatrix} 1 \\ 2 \\ -3 \end{pmatrix} \begin{pmatrix} -1 \\ a \\ 1 \end{pmatrix} = 0$$
$$-1 + 2a - 3 = 0$$
$$a = 2$$

Method 3:

4(ii)

$$\begin{pmatrix} -1 \\ a \\ 1 \end{pmatrix} \times \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} a-1 \\ 2 \\ -1-a \end{pmatrix}$$

$$a-1=1$$

$$a=2$$

Method 1: Normal method

$$p_{1}: \mathbf{r} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = 2$$

$$line \ AN: \mathbf{r} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} + \mu \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} 0+\mu \\ 0+\mu \\ 1+\mu \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = 2$$

$$\mu+\mu+1+\mu=1$$

$$\mu = \frac{1}{3}$$

$$\overrightarrow{ON} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} + \left(\frac{1}{3}\right) \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \left(\frac{1}{3}\right) \begin{bmatrix} 1 \\ 1 \\ 4 \end{bmatrix}$$

Method 2: Projection Method

$$\overrightarrow{AN} = \left(\overrightarrow{AB} \cdot \frac{1}{\sqrt{3}} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right) \left(\frac{1}{\sqrt{3}} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right) \\
= \left(\begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix} \overrightarrow{\sqrt{3}} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right) \left(\frac{1}{\sqrt{3}} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right) \\
= \left(\frac{1+1-1}{3} \right) \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \frac{1}{3} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

$\overrightarrow{AN} = \overrightarrow{ON} - \overrightarrow{OA}$
$\overrightarrow{ON} = \overrightarrow{AN} + \overrightarrow{OA}$
$\begin{pmatrix} 1 \end{pmatrix} \begin{pmatrix} 0 \end{pmatrix} \begin{pmatrix} 1 \end{pmatrix}$
$= \frac{1}{3} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \frac{1}{3} \begin{pmatrix} 1 \\ 1 \\ 4 \end{pmatrix}$
(1) (1) (4)

4 Let the acute angle between planes p_1 and p_2 be θ .

 $\sin \theta = \frac{\begin{vmatrix} 1 \\ 1 \\ 1 \end{vmatrix} \begin{vmatrix} -1 \\ 2 \\ 1 \end{vmatrix} \end{vmatrix}}{\begin{vmatrix} 1 \\ 1 \\ 1 \end{vmatrix} \begin{vmatrix} -1 \\ 2 \\ 1 \end{vmatrix}}$ $= \frac{-1+2+1}{\sqrt{3}\sqrt{6}} = \frac{2}{\sqrt{18}}$ $\theta = 28.1^{\circ}$

(iv) Distance from Origin to $p_1 = \frac{|2|}{\begin{vmatrix} 1 \\ 1 \\ 1 \end{vmatrix}} = \frac{2}{\sqrt{3}}$

Distance from Origin to $p_3 = \frac{|b|}{\begin{vmatrix} 2 \\ 2 \\ 2 \end{vmatrix}} = \frac{b}{\sqrt{12}}$ (b > 0)

$$\frac{b}{\sqrt{12}} - \frac{2}{\sqrt{3}} = \sqrt{3}$$
$$\frac{b}{\sqrt{12}} = \frac{2}{\sqrt{3}} + \sqrt{3}$$
$$b = 4 + 6 = 10$$

(v) p_1 , p_2 and p_4 meet in a line l. Hence (1,1,0) lies on p_4 .

$$\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \begin{pmatrix} c \\ 2 \\ 3 \end{pmatrix} = d$$
$$c + 2 = d$$

Normal of p_4 is perpendicular to line l.

	(1)(c)		
	$\begin{vmatrix} 2 & 2 & 0 \end{vmatrix} = 0$		
	$\left \left(-3 \right) \left(3 \right) \right $		
	c + 4 - 9 = 0		
	c = 5		
(vi)	(vi) $\therefore d = 7$		

c=5 , $d \neq 7$

5 Randomly choose 10 programmers, 1 secretary and 1 section head for the sample.

Stratified sampling guarantees a **representative sample** of each group (i.e. programmers, secretaries and section heads) in the population.

CANNOT accept any of the following answers:

- "... allows the opinions of different strata to be considered separately."
- ♦ "... accurate ..."
- ♦ "... unbiased ..."

6 4 boys and 3 girls

(a)

7

(i)
$$\begin{bmatrix} B & B & B & B & B & B & 4! \times {}^{5}P_{3} = 24 \times 60 \\ & = 1440 \end{bmatrix}$$

Or
$$4! \times (^5C_3 \times 3!) = 24 \times 60 = 1440$$

- (ii) G BBBB GG type so $4! \times 4! = 576$
- **(b)** Case (i): 3 boys and 3 girls

$$\begin{array}{ccc} & & & ^{4}C_{3} \times (3-1)! \times 3! \\ & & & & = 4 \times 2 \times 6 = 48 \end{array}$$

Case (ii): 4 boys and 2 girls

$$\begin{array}{ccc}
G & B & (4-1)! \times {}^{3}C_{2} \times {}^{4}P_{2} \\
B & = 6 \times 3 \times 12 \\
G & B & = 216
\end{array}$$

Or
$$(4-1)! \times {}^{3}C_{2} \times {}^{4}C_{2} \times 2! = 216$$

Total number of arrangements = 48 + 216 = 264

6.3

Plot of *y* against *x*.

Highest y = 6.3; Lowest y = 2.7

Highest x = 12.3; Lowest x = 4.4

Correlation coefficient = r = 0.263

A linear model is <u>not</u> appropriate as the **scatter diagram** shows that the **points are not close to a straight line** and the **value of** *r* **is quite close to 0**.

For $y = ax^2 + b$, value of r = -0.913

For $y = a \ln x + b$, value of r = -0.971

Therefore, (b) $y = a \ln x + b$ is a better model as the value of r in (b) is **closer to -1** than for (a).

Line of regression is

$$y = 11.04294839 - 2.687231256 \ln x$$

When
$$y = 6.1$$
, $\ln x = 1.839420548$

$$\Rightarrow x = 6.29 (3 \text{ sf})$$

Accept
$$x = 6.3$$
 (1 dec place)

This estimate is valid since the value of r is close to -1 and the value of y used in within the range of experimental data $(4.5 \le y \le 6.3)$.

Or, may say that x comes from **interpolation** instead of "within the range of experimental data".

8(a)

Let *X* be the number of cars arriving at the jetty in 30 mins

 $X \square Po(6)$

(i)
$$P(X=2)=0.0446$$

(ii)
$$P(X \le 2) = 0.0620$$

8(b)

Let Y be the number of cars arriving at the jetty in 20 mins

$$Y \square Po(4)$$

$$P(Y \le k) > 0.9$$

Least k = 7

k	$P(Y \leq k)$	
6	0.88933	
7	0.94887	
8	0.97864	

Let *X* be the time of journey from Town *A* to Town *B*.

(a)

Let
$$X \square N(\mu, \sigma^2)$$

$$P(X > 60) = \frac{1}{4}$$

$$P(X > 70) = \frac{1}{20}$$

$$P\left(Z > \frac{60 - \mu}{\sigma}\right) = \frac{1}{4}$$

$$P(X > 60) = \frac{1}{4} \qquad P(X > 70) = \frac{1}{20}$$

$$P(Z > \frac{60 - \mu}{\sigma}) = \frac{1}{4} \qquad P(Z > \frac{70 - \mu}{\sigma}) = \frac{1}{20}$$

$$\frac{60 - \mu}{\sigma} = 0.67449 \qquad \frac{70 - \mu}{\sigma} = 1.64485$$

$$\frac{60-\mu}{\sigma} = 0.67449$$

$$\frac{70-\mu}{\sigma}$$
 = 1. 64485

Solve: $\mu = 53.0491 \approx 53$

$$\sigma = 10.3054 \approx 10$$
 (nearest minute)

(b) Let *Y* be the time of journey from Town *B* to Town *C*.

$$Y \square N(80,9)$$

$$P(Y > k) \leq 0.02$$

$$k \ge 86.1612$$

Min
$$k = 87 \, \text{mins}$$

Last time of departure 10 33h

	$\bar{Y} \square N\left(80, \frac{9}{20}\right)$				
	$P(\overline{Y} - 80 < 2) = P(78 < \overline{Y} < 82) = 0.997$				
10	Let L be the length and B be the breadth of a tile				
	$L \square N (18.9,0.3^2) \qquad B \square N (8.9,0.1^2)$				
	Let $P = 2L + 2B$				
	E(P) = 2(18.9) + 2(8.9) = 55.6				
	$Var(P) = 4(0.3^2) + 4(0.1^2) = 0.4$				
	$E(P_1 + P_2 + P_3 + \dots + P_{10}) = 10(55.6) = 556$				
	$Var(P_1 + P_2 + P_3 + \dots + P_{10}) = 10(0.4) = 4$				
	Let W be the number of tiles with a red tint.				
	$W \square B(500,0.6)$				
	$P(W \ge k) \ge 0.95$				
	np = 300 > 5 and $nq = 200 > 5$, n is large				
	Use Normal approximation:				
	$W \square N(300,120)$ approximately				
	$P(W \ge k) \ge 0.95$				
	$P(W < k) \le 0.05$				
	$P\left(W < k - \frac{1}{2}\right) \le 0.05$				
	$k - \frac{1}{2} < 281.98$				
	k<282.48				
	Greatest $k = 282$				
11	To test: $H_0: \mu = 27$				
	$H_1: \mu > 27$ at 2% level				
	Under H_0 : $T = \frac{\overline{X} - 27}{s/\sqrt{27}} \Box t(26)$				
	Test statistic = 1.22474				
	p-value = $0.1158 > 0.02$				
	Do not reject H ₀				
	There is insufficient evidence at the 2% level of significance to conclude the mean foot length of an 18 year old man of high intelligence is more than 27cm Assumption: Assume the population of foot length of 18 year old man of high intelligence is normally distributed				

To test:
$$H_0: \mu = k$$

$$H_1: \mu \neq k$$
 at 4% level

Under H_0 by Central limit theorem, since n is large

$$\bar{X} \square N\left(k, \frac{s^2}{60}\right) approx, where s^2 = \frac{1}{59}(123.20) = 2.088136$$

To reject H₀:

$$2P\left(Z < \frac{\overline{x} - k}{s / \sqrt{60}}\right) < 0.04$$

$$P\left(Z < \frac{\overline{x} - k}{\sqrt[S]{\sqrt{60}}}\right) < 0.02$$

$$\frac{\bar{x}-k}{s/\sqrt{s}}$$
 < -2.05375

or
$$\frac{s}{\sqrt{60}}$$
 >

$$\frac{26.6-k}{\sqrt{2.088136}/\sqrt{60}}$$
 < -2.05373

$$\frac{\overline{x}-k}{s/\sqrt{60}} < -2.05375 \qquad or \quad \frac{\overline{x}-k}{s/\sqrt{60}} > 2.05375$$

$$\frac{26.6-k}{\sqrt{2.088136}/\sqrt{60}} < -2.05375 \qquad or \quad \frac{26.6-k}{\sqrt{2.088136}/\sqrt{60}} > 2.05375$$

$$k > 26.9831 \qquad or \quad k < 26.21687$$

$$k > 26.9831$$
 or $k < 26.21687$

$$k > 27.0$$
 or $k < 26.2$

Let X be the r.v. "number of shots, out of 20, that hit the target". $X \sim B(20, 0.25)$ 12

(i)

X	Υ1	
BUTWOHE	.00317 .02114 .06695 .1339 .18969 .2023 .16861	
Press	+ for	^ ⊿Tbl

Most likely number of shots is 5.

12
$$P(X \ge 5 \mid X \le 10)$$

(ii)
$$= \frac{P(5 \le X \le 10)}{P(X \le 10)}$$

$$= \frac{P(X \le 10) - P(X \le 4)}{P(X \le 10)}$$

$$= \frac{0.5812163575}{0.9960578583} = 0.584 (3 sf)$$

| P(same number of shots each to hit target) |
| = P(1, 1) + P(2, 2) + P(3, 3) + ... |
| =
$$0.25^2 + (0.75 \times 0.25)^2 + (0.75 \times 0.75 \times 0.25)^2 + ...$$
| = $0.25^2 (1 + 0.75^2 + 0.75^4 + 0.75^6 + ...)$
| = $0.0625 \times \frac{1}{1 - 0.75^2}$
| = $0.0625 \times \frac{1}{0.4375} = \frac{1}{7}$ or $0.143 (3 \text{ sf})$