JPJC J2 Preliminary Examination 2024 H3 Mathematics Solutions

	,
Q1	
(a)i)	Let $gcd(a,b) = d$
	$\Rightarrow d \mid a \text{ and } d \mid b$
	Since $d \mid a$ and $d \mid b$,
	$\Rightarrow k_1 d = a \text{ and } k_2 d = b$, where k_1 and k_2 are integers
	$b - a = k_2 d - k_1 d = (k_2 - k_1) d$
	$\therefore d \mid b-a$
	Since $d \mid a$ and $d \mid b-a$, $d \mid \gcd(a,b-a)$
	Let $gcd(a,b-a) = e$
	$\Rightarrow e \mid a \text{ and } e \mid b - a$
	$\Rightarrow k_3 e = a \text{ and } k_4 e = b - a, \text{ where } k_3 \text{ and } k_4 \text{ are integers}$
	$a + (b-a) = k_3 e + k_4 e = (k_3 + k_4) e$
	$b = (k_3 + k_4)e$
	$\therefore e \mid b$
	Since $e \mid a$ and $e \mid b$, $e \mid \gcd(a,b)$
	$d \mid e \text{ and } e \mid d$, then $d = e$
	$\therefore \gcd(a,b-a) = \gcd(a,b)$
(ii)	$\gcd(72,120) = \gcd(72,120-72) = \gcd(72,48)$
	Similarly,
	$\gcd(48,72) = \gcd(48,24) = 24$
(b)	Let $gcd(a,gcd(b,c)) = d_1$ and $gcd(gcd(a,b),c) = d_2$
	Since $gcd(a,gcd(b,c)) = d_1$,
	$\Rightarrow d_1 \mid \text{a and } d_1 \mid \gcd(b,c)$
	\Rightarrow $d_1 \mid$ a and $d_1 \mid$ b and $d_1 \mid$ c
	$\Rightarrow d_1 \mid \gcd(a,b) \text{ and } d_1 \mid c$
	$\Rightarrow d_1 \gcd(\gcd(a,b),c)$
	$\Rightarrow d_1 d_2$
•	

Similarly, since $gcd(gcd(a,b),c) = d_2$,	
$\Rightarrow d_2 \mid \gcd(a,b) \text{ and } d_2 \mid c$	
\Rightarrow $d_2 \mid a \text{ and } d_2 \mid b \text{ and } d_2 \mid c$	
$\Rightarrow d_2 \mid a \text{ and } d_2 \mid \gcd(b,c)$	
$\Rightarrow d_2 \mid \gcd(a,\gcd(b,c))$	
$\Rightarrow d_2 \mid d_1$	
Since $d_2 \mid d_1$ and $d_1 \mid d_2$, $\Rightarrow d_1 = d_2$	

2(i)(a)

Equivalent to $x_1 + x_2 + x_3 + x_4 + x_5 = 13$, $x_i \in \mathbb{Z}^+ \cup \{0\}$

Number of ways

$$= \begin{pmatrix} 13+4 \\ 4 \end{pmatrix}$$

= 2380

(i)(b)

Equivalent to $x_1 + x_2 + x_3 + x_4 + x_5 = 13$, $x_1 \in \{1, 2, 3\}$, $x_i \in \mathbb{Z}^+$

Equivalent to $y_1 + y_2 + y_3 + y_4 + y_5 = 8$, $y_i \in \{0,1,2\}$, $y_i \in \mathbb{Z}^+ \cup \{0\}$ [so 1 coin of each type]

Number of ways = $\binom{8+4}{4}$

Complement is equivalent to $z_1 + z_2 + z_3 + z_4 + z_5 = 8$, $z_i \ge 3$, $z_i \in \mathbb{Z}^+ \cup \{0\}$ [at least 3 5 cent coins]

equivalent to $w_1 + w_2 + w_3 + w_4 + w_5 = 5$, $w_i \in \mathbb{Z}^+ \cup \{0\}$

Required number of ways = $\binom{5+4}{4}$

Required number of ways

$$= \binom{8+4}{4} - \binom{5+4}{4}$$

=369

(ii)(a)

Number of ways $= 5 \times 4^{12} = 83886080$

(ii)(b)

Number of ways

$$=5^{13} - {5 \choose 1} \times 4^{13} + {5 \choose 2} \times 3^{13} - {5 \choose 3} \times 2^{13} + {5 \choose 4} \times 1^{13}$$

=901020120

Q3		
3(i)	$(x+y)^{p} = x^{p} + y^{p} + \sum_{i=1}^{p-1} {p \choose i} x^{p-i} y^{i}$	
	Note that $\binom{p}{i} = \frac{p(p-1)\cdots(p-i+1)}{i!}$	
	For $1 \le i \le p-1$, since $i < p$ and p is prime, thus	
	$i! (p-1)\cdots(p-i+1)$ and p is a factor of $\binom{p}{i}$. Accordingly,	
	$(x+y)^p \equiv x^p + y^p \pmod{p}$	
3(ii)	Let P_a be the proposition that $a^p \equiv a \pmod{p}$ for all positive	
	integers a.	
	Clearly, $1^p = 1$. Thus P_1 is true.	
	Suppose P_k is true for some $k \in \mathbb{Z}^+$. Consider P_{k+1} .	
	$(k+1)^p \equiv k^p + 1 \pmod{p}$	
	$\equiv k+1 \pmod{p}$ (by induction hypothesis)	
	Thus P_{k+1} is true.	
	Since P_1 is true and P_k is true $\Rightarrow P_{k+1}$ is true, by mathematical	
	induction, $a^p \equiv a \pmod{p}$ for all positive integers a .	
3(iii)	Since n is not a multiple of 4, we must have	
	$n = 4k + r$ for some $k \in \mathbb{Z}^+$ and $r = 1, 2, 3$.	
	Using (ii), for $a < p$, we must have	
	$a \cdot a^{p-1} \equiv a \pmod{p} \Rightarrow a^{p-1} \equiv 1 \pmod{p}$	
	Now for $i = 1, 2, 3, 4$,	
	$i^n = i^{4k+r} = i^{4k}i^r \equiv 1^k i^r = i^r \pmod{5}$	
	Thus $\sum_{i=1}^{4} i^n \equiv \sum_{i=1}^{4} i^r \pmod{5}$	
	For $r = 1, 2, 3, \sum_{i=1}^{4} i^{r} = 10, 30, 100$ respectively. Thus	
	$\sum_{i=1}^4 i^n \equiv 0 \pmod{5}.$	

$$\left(\sqrt{a} \cdot \sqrt{p} + \sqrt{b} \cdot \sqrt{q} + \sqrt{c} \cdot \sqrt{r}\right)^{2} \le \left(a + b + c\right)\left(p + q + r\right)$$
$$\left(\sqrt{a} \cdot \sqrt{p} + \sqrt{b} \cdot \sqrt{q} + \sqrt{c} \cdot \sqrt{r}\right) \le \sqrt{\left(a + b + c\right)\left(p + q + r\right)}$$
$$\sqrt{ap} + \sqrt{bq} + \sqrt{cr} \le \sqrt{\left(a + b + c\right)\left(p + q + r\right)}$$

(b)

$$x + y \ge 2\sqrt{xy}$$

$$\frac{1}{x + y} \le \frac{1}{2\sqrt{xy}}$$

$$\frac{x}{x + y} \le \frac{x}{2\sqrt{xy}} = \frac{1}{2}\sqrt{\frac{x}{y}} - (1)$$

Similarly,

$$\frac{y}{y+z} \le \frac{1}{2} \sqrt{\frac{y}{z}} - (2)$$

$$\frac{z}{z+x} \le \frac{1}{2} \sqrt{\frac{z}{x}} - (3)$$

$(1)\times(2)\times(3)$

$$\frac{x}{(x+y)} \cdot \frac{y}{(y+z)} \cdot \frac{z}{(x+z)} \le \frac{1}{2} \sqrt{\frac{x}{y}} \cdot \frac{1}{2} \sqrt{\frac{y}{z}} \cdot \frac{1}{2} \sqrt{\frac{z}{x}}$$

$$\frac{xyz}{(x+y)(y+z)(x+z)} \le \frac{1}{8} \sqrt{\frac{x}{y}} \cdot \sqrt{\frac{y}{z}} \cdot \sqrt{\frac{z}{x}}$$

$$\frac{xyz}{(x+y)(y+z)(x+z)} \le \frac{1}{8}$$

 (\mathbf{c})

$$\sqrt{\frac{2x}{x+y}} + \sqrt{\frac{2y}{y+z}} + \sqrt{\frac{2z}{z+x}} = \sqrt{\frac{2x(y+z)(z+x)}{(x+y)(y+z)(z+x)}} + \sqrt{\frac{2y(x+z)(x+y)}{(y+z)(x+y)}} + \sqrt{\frac{2z(x+y)(y+z)}{(z+x)(x+y)(y+z)}}$$

$$= \frac{\sqrt{2x(y+z)(z+x)} + \sqrt{2y(x+z)(x+y)} + \sqrt{2z(x+y)(y+z)}}{\sqrt{(x+y)(y+z)(z+x)}}$$

$$\leq \frac{\sqrt{\{2x(y+z) + 2y(x+z) + 2z(x+y)\}\{(z+x) + (x+y) + (y+z)\}}}{\sqrt{(x+y)(y+z)(z+x)}}$$

$$= \frac{\sqrt{2\sqrt{2}}\sqrt{2(xy+yz+xz)(x+y+z)}}{\sqrt{(x+y)(y+z)(z+x)}}$$

$$= \frac{2\sqrt{2}\sqrt{(xy+yz+xz)(x+y+z)}}{\sqrt{(x+y)(y+z)(z+x)}}$$

$$= \frac{2\sqrt{2}\sqrt{(x+y)(y+z)(z+x)}}{\sqrt{(x+y)(y+z)(z+x)}}$$

$$= 2\sqrt{2}\sqrt{\frac{(x+y)(y+z)(z+x) + xyz}{(x+y)(y+z)(z+x)}}$$

$$= 2\sqrt{2}\sqrt{\frac{(x+y)(y+z)(z+x) + xyz}{(x+y)(y+z)(z+x)}}$$

$$= 2\sqrt{2}\sqrt{\frac{1+\frac{xyz}{(x+y)(y+z)(z+x)}}{(x+y)(y+z)(z+x)}}$$

5(i)

Eugene does not do a threshold run on two consecutive days and he does not do a recovery run for more than two consecutive days. Call this condition (*).

For a_{n+1} , Day 1 is a threshold run.

Day 2 cannot be a threshold run.

Days 2 to n+1 is a sequence of n runs satisfying (*) where Day 2 is a tempo run or recovery run.

By Addition Principle, $a_{n+1} = b_n + c_n$

For b_{n+1} , Day 1 is a tempo run.

Days 2 to n+1 is a sequence of n runs satisfying (*) where Day 2 can be any run.

By Addition Principle, $b_{n+1} = a_n + b_n + c_n$

For c_{n+2} , Day 1 is a recovery run.

Case 1: Day 2 is a threshold run

Days 2 to n+2 is a sequence of n+1 runs satisfying (*) where Day 2 is a threshold run.

Case 2: Day 2 is a tempo run

Days 2 to n+2 is a sequence of n+1 runs satisfying (*) where Day 2 is a tempo run.

Case 3: Day 2 is a recovery run

Day 3 cannot be a recovery run.

Case 3A: Day 3 is a threshold run

Days 3 to n+2 is a sequence of n runs satisfying (*) where Day 3 is a threshold run.

Case 3B: Day 3 is a tempo run

Days 3 to n+2 is a sequence of n runs satisfying (*) where Day 3 is a tempo run.

By Addition Principle,

$$c_{n+2} = a_{n+1} + b_{n+1} + (a_n + b_n)$$

(ii)

Doing a replacement yields

$$a_{n+4} = b_{n+3} + c_{n+3} \dots (1)$$

$$b_{n+4} = a_{n+3} + b_{n+3} + c_{n+3} \dots (2)$$

$$c_{n+3} = a_{n+2} + b_{n+2} + a_{n+1} + b_{n+1} \dots (3)$$

Sub (1) into (2),
$$b_{n+4} = a_{n+3} + a_{n+4} \dots (4)$$

Doing a replacement yields

$$b_{n+1} = a_n + a_{n+1}...(5)$$

$$b_{n+2} = a_{n+1} + a_{n+2} \dots (6)$$

$$b_{n+3} = a_{n+2} + a_{n+3} ...(7)$$

Sub (5) and (6) into (3),

$$c_{n+3} = a_{n+2} + (a_{n+1} + a_{n+2}) + a_{n+1} + (a_n + a_{n+1})$$

= $2a_{n+2} + 3a_{n+1} + a_n \dots (8)$

Sub (7) and (8) back into (1),

$$a_{n+4}$$

$$= (a_{n+2} + a_{n+3}) + (2a_{n+2} + 3a_{n+1} + a_n)$$

$$= a_{n+3} + 3a_{n+2} + 3a_{n+1} + a_n$$

(iii)

Method 1: Recurrence

$$a_1 = 1$$

 $a_2 = 1 \times 2 = 2$
 $a_3 = 1 \times 2 \times 3 = 6$
 $a_4 = \underbrace{2 + 3 + 3}_{\text{1st day THR}} + \underbrace{2 + 3 + 2}_{\text{2nd day REC}} = 15$
 $a_5 = 15 + 3(6 + 2) + 1$
 $= 40 \text{ (shown)}$

Method 2:

For a_5 , Day 1 is a threshold run

Day 2 can be only be a tempo run or recovery run.

Case 1: Day 2 is tempo run

Case 1A: Day 3 is threshold run, Day 4 is tempo or recovery run, Day 5 is any run No. of ways $= 2 \times 3 = 6$

Case 1B: Day 3 is tempo run, Day 4 is threshold run, Day 5 is tempo or recovery run No. of ways = 2

Case 1C: Day 3 is tempo run, Day 4 is tempo or recovery run, Day 5 is any run No. of ways $= 2 \times 3 = 6$

Case 1D: Day 3 is recovery run, Day 4 is threshold run, Day 5 is tempo or recovery run No. of ways = 2

Case 1E: Day 3 is recovery run, Day 4 is tempo run, Day 5 is any run No. of ways = 3

Case 1F: Day 3 is recovery run, Day 4 is recovery run, Day 5 is threshold or tempo run No. of ways = 2

Case 2: Day 2 is recovery run

Case 2A: Day 3 is threshold run, Day 4 is tempo or recovery run, Day 5 is any run No. of ways $= 2 \times 3 = 6$

Case 2B: Day 3 is tempo run, Day 4 is threshold run, Day 5 is tempo or recovery run No. of ways = 2

Case 2C: Day 3 is tempo run, Day 4 is tempo or recovery run, Day 5 is any run

No. of ways = $2 \times 3 = 6$

Case 2D: Day 3 is recovery run, Day 4 is threshold run, Day 5 is tempo or recovery run No. of ways = 2

Case 2E: Day 3 is recovery run, Day 4 is tempo run, Day 5 is any run No. of ways = 3

By Addition Principle, no. of ways = 40

Method 3:

For a_5 , Day 1 is a threshold run

Day 2 can be only be a tempo run or recovery run.

Total no. of ways for Days 2 to 5 without restriction, without restrictions for Days 3 to 5 = 2×3^3

No. of ways where there are at least 3 consecutive days of recovery runs

$$= 3 + 1$$

$$D2 \text{ to D4: All REC} D5: Any D2: TEM D3 \text{ to D5: All REC}$$

$$= 4$$

No. of ways where there are at least 2 consecutive days of threshold runs

$$= 2 \left(1 + 2 \times 2 \atop D2 \left(D3 \text{ to D5: All THR} \right) + 2 \times 2 \atop D3 \text{ to D5: 2 THR} \right)$$

$$= 10$$

Required no. of ways = $2 \times 3^3 - 4 - 10 = 40$

(iv)

$$b_5 = a_4 + a_5 = 55$$

 $c_5 = 2a_4 + 3a_3 + a_2 = 50$

Required no. of ways = 55 + 50 + 40 = 145 A1

Q6	
Q6 (i)	Substitute $x = \sin \theta$, then $\frac{dx}{d\theta} = \cos \theta$ and
	$\theta = \frac{\pi}{2}$, when $x = 1$ and $\theta = 0$, when $x = 0$.
	$\int_0^1 (1 - x^2)^n dx = \int_0^{\frac{\pi}{2}} (\cos^2 \theta)^n (\cos \theta) d\theta$
	$= \int_0^{\frac{\pi}{2}} (\cos \theta)^{2n+1} d\theta$
	$=I_{2n+1}$ Substitute
	$x = \tan \theta$, then $\frac{dx}{d\theta} = \sec^2 \theta$ and $\theta = \frac{\pi}{4}$, when $x = 1$ and $\theta = 0$, when $x = 0$.
	$\int_0^1 (1+x^2)^{-n} dx = \int_0^{\frac{\pi}{4}} (\sec^2 \theta)^{-n} (\sec^2 \theta) d\theta$
	$= \int_0^{\frac{\pi}{4}} (\cos \theta)^{2n} \left(\frac{1}{\cos^2 \theta} \right) d\theta$
	$= \int_0^{\frac{\pi}{4}} (\cos \theta)^{2n-2} d\theta$
	$<\int_0^{\frac{\pi}{2}} \left(\cos\theta\right)^{2n-2} d\theta = I_{2n-2}$
(ii)	From MF26, $x^{2} + 1 + 2 + x^{4} + x^{6} + \dots + 1 + (1 + 2)^{-1} + 1 + 2 + 4 + 6 + \dots$
	$e^{x^2} = 1 + x^2 + \frac{x^4}{2} + \frac{x^6}{6} + \dots$ and $(1 - x^2)^{-1} = 1 + x^2 + x^4 + x^6 + \dots$ hence, $1 + x^2 \le e^{x^2} \le (1 - x^2)^{-1}$
	taking reciprocal, $1-x^2 \le e^{-x^2} \le (1+x^2)^{-1}$ (shown)
	Raising to <i>n</i> power and integrate, $\int_0^1 (1-x^2)^n dx \le \int_0^1 e^{-nx^2} dx \le \int_0^1 (1+x^2)^{-n} dx$
	Substitute $y = \sqrt{n}x$, then $\frac{dy}{dx} = \sqrt{n}$ and
	$y = \sqrt{n}$, when $x = 1$ and $y = 0$, when $x = 0$.
	$\int_0^1 e^{-nx^2} dx = \frac{1}{\sqrt{n}} \int_0^{\sqrt{n}} e^{-y^2} dy$
	Using (i), c^1
	$I_{2n+1} = \int_0^1 (1 - x^2)^n dx \le \frac{1}{\sqrt{n}} \int_0^{\sqrt{n}} e^{-y^2} dy \le \int_0^1 (1 + x^2)^{-n} dx < I_{2n-2}$

	_	
	$ \sqrt{n}I_{2n+1} \le \int_0^{\sqrt{n}} e^{-y^2} dy < \sqrt{n}I_{2n-2} $ (shown)	
(iii)	As $n \to \infty$, $\sqrt{n} I_{2n+1} = \frac{\sqrt{n}}{\sqrt{2n+1}} \sqrt{2n+1} \ I_{2n+1} = \sqrt{\frac{1}{2+\frac{1}{n}}} \sqrt{2n+1} \ I_{2n+1} \to \frac{1}{\sqrt{2}} \sqrt{\frac{\pi}{2}} = \frac{\sqrt{\pi}}{2}$ $\sqrt{n} I_{2n-2} = \frac{\sqrt{n}}{\sqrt{2n-2}} \sqrt{2n-2} \ I_{2n-2} = \sqrt{\frac{1}{2-\frac{2}{n}}} \sqrt{2n-2} \ I_{2n-2} \to \frac{1}{\sqrt{2}} \sqrt{\frac{\pi}{2}} = \frac{\sqrt{\pi}}{2}$	
	hence, $\frac{\sqrt{\pi}}{2} \le \int_0^{\sqrt{n}} e^{-y^2} dy < \frac{\sqrt{\pi}}{2}$ as $n \to \infty$ therefore, $\int_0^{\infty} e^{-y^2} dy = \frac{\sqrt{\pi}}{2}$	
(iv)	Consider $\frac{d}{dx} \left(x^{2n-1} e^{-x^2} \right) = (2n-1)x^{2n-2} e^{-x^2} - 2x^{2n} e^{-x^2}$	
	$\int_0^\infty \frac{\mathrm{d}}{\mathrm{d}x} \left(x^{2n-1} e^{-x^2} \right) \mathrm{d}x = (2n-1) \int_0^\infty x^{2n-2} e^{-x^2} \mathrm{d}x - 2 \int_0^\infty x^{2n} e^{-x^2} \mathrm{d}x$	
	$\left(x^{2n-1}e^{-x^2}\right)_0^{\infty} = (2n-1)U_{n-1} - 2U_n$	
	$0 = (2n-1)U_{n-1} - 2U_n$ since $x^{2n-1}e^{-x^2} \to 0$ as $x \to \infty$	
	$U_n = \frac{2n-1}{2}U_{n-1} \text{ (shown)}$	
	$U_1 = \frac{1}{2}U_0$	
	$U_2 = \frac{3}{2}U_1 = \frac{1 \times 3}{2^2}U_0$	
	$U_{3} = \frac{5}{2}U_{2} = \frac{1 \times 3 \times 5}{2^{3}}U_{0}$:	
	$U_n = \frac{1 \times 3 \times 5 \times \ldots \times (2n-1)}{2^n} U_0$	
	$=\frac{(2n)!}{2^n(2\times 4\ldots \times 2n)}U_0$	
	$= \frac{(2n)!}{2^{2n}(n!)} \left(\frac{\sqrt{\pi}}{2}\right) \text{by (i) } U_0 = \int_0^\infty e^{-x^2} dx = \frac{\sqrt{\pi}}{2}$	
	$\int_0^\infty x^{2n} e^{-x^2} dx = \frac{(2n)! \sqrt{\pi}}{2^{2n+1} n!}$	

Q7		
	(x, y) (x, y) and (x, y) are collinear points $\Rightarrow \frac{y_2 - y_1}{y_2 - y_2} = \frac{y_3 - y_2}{y_2 - y_2}$	
	$(x_1, y_1), (x_2, y_2)$ and (x_3, y_3) are collinear points $\Rightarrow \frac{y_2 - y_1}{x_2 - x_1} = \frac{y_3 - y_2}{x_3 - x_2}$	
	$(x_3 - x_2)y_2 - (x_3 - x_2)y_1 = (x_2 - x_1)y_3 - (x_2 - x_1)y_2$	
	$(x_3 - x_1)y_2 - (x_3 - x_2)y_1 - (x_2 - x_1)y_3 = 0$	
	$-(x_3 - x_2)y_1 - (x_1 - x_3)y_2 - (x_2 - x_1)y_3 = 0$	
	$(x_3 - x_2)y_1 + (x_1 - x_3)y_2 + (x_2 - x_1)y_3 = 0$	
	Sub $y = -2x$, $g(f(x-2x)) = f(x) + (2x-2x)g(-2x)$	
	g(f(-x)) = f(x)	
	Sub x - x y	
	Sub $x = -x - y$, g(f(-x - y + y)) = f(-x - y) + (2(-x - y) + y)g(y)	
	g(f(-x)) = f(-x - y) - (2x + y)g(y)	
	but $g(f(-x)) = f(x)$, so	
	f(x) = f(-x - y) - (2x + y)g(y)	
	f(-x-y) = f(x) + (2x+y)g(y)	
	Let $x = -b$ and $y = a + b$	
	f(b-a-b) = f(-b) + (-2b+a+b)g(a+b)	
	f(-a) = f(-b) + (a-b)g(a+b)	
	WLOG, we have $f(-b) = f(-c) + (b-c)g(b+c)$	
	f(-c) = f(-a) + (c-a)g(c+a)	
	$\Gamma(-c) - \Gamma(-u) + (c - u)g(c + u)$	
	Adding the three equations in (iii),	
	f(-a) + f(-b) + f(-c) = f(-a) + f(-b) + f(-c)	
	+(a-b)g(a+b)+(b-c)g(b+c)+(c-a)g(c+a)	
	we have,	
	(a-b)g(a+b) + (b-c)g(b+c) + (c-a)g(c+a) = 0	
	Let $g(a+b) = y$ then $y = a+b$	
	$g(a+b) = y_1 \text{ then } x_1 = a+b$	
	$g(b+c) = y_2 \text{ then } x_2 = b+c$	
	$g(c+a) = y_3 \text{ then } x_3 = c+a$	
	and $[(a+c)-(b+c)]g(a+b)+[(a+b)-(c+a)]g(b+c)+[(b+c)-(a+b)]g(c+a)=0$	
	[(a + c) + (b + c)]g(a + b) + [(a + b) + (c + a)]g(b + c) + [(b + c) + (a + b)]g(c + a) = 0	
	by (i), $(a+b, g(a+b))$, $(b+c, g(b+c))$ and $(c+a, g(c+a))$ are collinear points	
	on $g(x)$, thus $g(x)$ is linear.	
	Let $g(x) = Ax + B$ where A and B are constants.	

From (ii), sub
$$x = 0$$
 and $y = -y$

$$f(y) = f(0) + (-y)(-Ay + B)$$

= $Ay^2 - By + C$ where $C = f(0)$

For all
$$x$$
, $g(f(-x)) = f(x) \Rightarrow g(Ax^2 + Bx + C) = Ax^2 - Bx + C$
 $A^2x^2 + ABx + AC + B = Ax^2 - Bx + C ---(1)$

Comparing coefficient, $A^2 = A \Rightarrow A = 0$ or 1

When
$$A = 0$$
, then (1) becomes $B = -Bx + C$ then $B = C = 0$ hence $f(x) = g(x) = 0$

When A = 1, then (1) becomes

$$x^{2} + Bx + C + B = x^{2} - Bx + C$$
$$2Bx + B = 0$$

$$B = 0$$

then
$$f(x) = x^2 + C$$
 and $g(x) = x$

Q8		
(i)	For $k \ge 2$, $m^m \ge 2^m$	
	$\frac{1}{m^m} \le \frac{1}{2^m}$	
	$x_n = \sum_{m=1}^n \frac{1}{m^m}$	
	$=1+\sum_{m=2}^{n}\frac{1}{m^{m}}$	
	$\leq 1 + \sum_{m=2}^{n} \frac{1}{2^m} \text{ for } m \geq 2$	
	$\leq 1 + \frac{\frac{1}{2^2} \left(1 - \frac{1}{2^{n-1}} \right)}{1 - \frac{1}{2^n}}$	
	$1-\frac{1}{2}$	
	$\frac{1}{2^2}$ 3	
	$\leq 1 + \frac{\frac{1}{2^2}}{1 - \frac{1}{2}} = \frac{3}{2}$	
	$\therefore x_n \le \frac{3}{2} \text{ for all } n \ge 1 \text{ (shown)}$	
(ii)	$x_n - x_{n-1} = \frac{1}{n^n} > 0$, hence the sequence $\{x_n\}$ is strictly increasing	
	By Monotone Convergence Theorem, since the sequence is bounded	
	above by $\frac{3}{2}$ and is strictly increasing, the sequence $\{x_n\}$ is convergent.	
(b)(i)	Show base case $r=1$ is true	
	$ \begin{aligned} F_1 &\leq 2^0 F_1 \\ F_1 &\leq F_1 \end{aligned} $	
	$\therefore F_r \le 2^{r-1} F_1 \text{ is true when } r=1$	
	A	
	Assume <i>case r=k</i> is true Assume $F_k \le 2^{k-1}F_1$ is true for all $k \ge 1$	
	To show case $r=k+1$ is true: $F_{k+1} \le 2^k F_1$	
	$F_{k+1} = F_k + F_{k-1}$ $\leq 2F_k \text{ since } F_{k-1} \leq F_k$	
	$\leq 2\left(2^{k-1}F_1\right)$ $\leq 2\left(2^{k-1}F_1\right)$	
	$\therefore F_{k+1} \leq 2^k F_1$	

	By Mathematical Induction, since $F_r \le 2^{r-1}F_1$ is true when $r=1$, and by
	assuming $F_k \le 2^{k-1} F_1$ is true for all $k \ge 1$, and $F_{k+1} \le 2^k F_1$ is true when
	$r=k+1$. Therefore $F_r \le 2^{r-1}F_1$ for all $r \ge 1$.
(ii)	$LHS = 81\sum_{r=1}^{n} \frac{F_{r+1}}{9^{r+1}} - 9\sum_{r=1}^{n} \frac{F_r}{9^r} - \sum_{r=1}^{n} \frac{F_{r-1}}{9^{r-1}}$
	replace r with $r-1$ replace r with $r+1$
	$=81\sum_{r=2}^{n+1}\frac{F_r}{9^r}-9\sum_{r=1}^{n}\frac{F_r}{9^r}-\sum_{r=0}^{n-1}\frac{F_r}{9^r}$
	$=81\left(\sum_{r=1}^{n+1}\frac{F_r}{9^r} - \frac{F_1}{9}\right) - 9\sum_{r=1}^{n}\frac{F_r}{9^r} - \left(\sum_{r=1}^{n-1}\frac{F_r}{9^r} + \frac{F_0}{9^0}\right)$
	$=81S_{n+1}-9F_1-9S_n-S_{n-1}-F_0$
	$=81(S_n + u_{n+1}) - 9F_1 - 9S_n - (S_n - u_n) - F_0$ where u_n is the n^{th} term
	$= (81 - 9 - 1)S_n - 9F_1 - F_0 + 81\frac{F_{n+1}}{9^{n+1}} + \frac{F_n}{9^n}$
	$=71S_n - 9F_1 - F_0 + \frac{F_n}{9^n} + \frac{F_{n+1}}{9^{n-1}}$
····	=RHS (shown)
(iii)	$\sum_{r=1}^{\infty} \frac{F_r}{9^r} = S_{\infty} = \lim_{n \to \infty} S_n$
	$\overline{r=1} \ 9^{r} \qquad n \to \infty$ From (b),
	$\sum_{r=1}^{n} \frac{1}{9^{r-1}} \left(F_{r+1} - F_r - F_{r-1} \right) = 71S_n - 9F_1 - F_0 + \frac{F_n}{9^n} + \frac{F_{n+1}}{9^{n-1}}$
	$0 = 71S_n - 9F_1 - F_0 + \frac{F_n}{9^n} + \frac{F_{n+1}}{9^{n-1}} \text{ since } F_{r+1} = F_r + F_{r-1} \text{ for } r \ge 1$
	$S_n = \frac{1}{71} \left(9F_1 + F_0 - \frac{F_n}{9^n} - \frac{F_{n+1}}{9^{n-1}} \right)$
	$=\frac{1}{71}\left(9-\frac{F_n}{9^n}-\frac{F_{n+1}}{9^{n-1}}\right)$
	$\lim_{n\to\infty} S_n = \lim_{n\to\infty} \frac{1}{71} \left(9 - \frac{F_n}{9^n} - \frac{F_{n+1}}{9^{n-1}} \right)$

$F_{r} \leq 2^{r-1}F_{1}$ $F_{n} \leq 2^{n-1}F_{1}$ $\leq 2^{n-1}F_{1}$ $\leq 2^{n}\left(\frac{1}{2}\right)$ $\therefore \frac{F_{n}}{g^{n}} \leq \frac{2^{n}}{g^{n}}\left(\frac{1}{2}\right) \text{ and } \frac{F_{n+1}}{g^{n-1}} \leq \frac{2^{n+1}}{g^{n-1}}\left(\frac{1}{2}\right)$ $\text{As } n \to \infty, \left(\frac{2}{9}\right)^{n}\left(\frac{1}{2}\right) \to 0 \text{ and } \left(\frac{2}{9}\right)^{n+1}\left(81\right)\left(\frac{1}{2}\right) \to 0,$ $\therefore \frac{F_{n}}{g^{n}} \to 0 \text{ and } \frac{F_{n+1}}{g^{n-1}} \to 0$ $\sum_{r=1}^{\infty} \frac{F_{r}}{g^{r}} = S_{\infty}$ $= \lim_{n \to \infty} \frac{1}{71}\left(9 - \frac{F_{n}}{g^{n}} - \frac{F_{n+1}}{g^{n-1}}\right)$ $= \frac{9}{71} \text{ (shown)}$ (iv) $\frac{9}{71} = \sum_{r=1}^{\infty} \frac{F_{r}}{g^{r}}$ $= \frac{F_{1}}{g^{1}} + \frac{F_{2}}{g^{2}} + \frac{F_{3}}{g^{3}} + \frac{F_{4}}{g^{3}} + \frac{F_{5}}{g^{5}} + \frac{F_{6}}{g^{6}} + \sum_{r=7}^{\infty} \frac{F_{r}}{g^{r}}$ $= \frac{1}{g^{1}} + \frac{1}{g^{2}} + \frac{2}{g^{3}} + \frac{3}{g^{4}} + \frac{5}{g^{5}} + \frac{8}{g^{6}} + \sum_{r=7}^{\infty} \frac{F_{r}}{g^{r}}$ $= 0.1267572506 + \sum_{r=7}^{\infty} \frac{F_{r}}{g^{r}}$ $= 0.014084139 + \frac{1}{9} \sum_{r=7}^{\infty} \frac{F_{r}}{g^{r}}$ where $\frac{1}{9} \sum_{r=7}^{\infty} \frac{F_{r}}{g^{r}} < \frac{1}{9} (2 \times 10^{-6}) = 2.2 \times 10^{-7} = 0.0000002$ Hence the first 6 digits of the decimal expansion of $\frac{1}{71}$ are 0.014084.		From (a),	
$\leq 2^{n-1}$ $\leq 2^{n} \left(\frac{1}{2}\right)$ $\therefore \frac{F_{n}}{9^{n}} \leq \frac{2^{n}}{9^{n}} \left(\frac{1}{2}\right) \text{ and } \frac{F_{n+1}}{9^{n-1}} \leq \frac{2^{n+1}}{9^{n-1}} \left(\frac{1}{2}\right)$ $\text{As } n \to \infty, \left(\frac{2}{9}\right)^{n} \left(\frac{1}{2}\right) \to 0 \text{ and } \left(\frac{2}{9}\right)^{n+1} \left(81\right) \left(\frac{1}{2}\right) \to 0,$ $\therefore \frac{F_{n}}{9^{n}} \to 0 \text{ and } \frac{F_{n+1}}{9^{n-1}} \to 0$ $\sum_{r=1}^{\infty} \frac{F_{r}}{9^{r}} = S_{\infty}$ $= \lim_{n \to \infty} \frac{1}{71} \left(9 - \frac{F_{n}}{9^{n}} - \frac{F_{n+1}}{9^{n-1}}\right)$ $= \frac{9}{71} \text{ (shown)}$ (iv) $\frac{9}{71} = \sum_{r=1}^{\infty} \frac{F_{r}}{9^{r}}$ $= \frac{F_{1}}{9^{1}} + \frac{F_{2}}{9^{2}} + \frac{F_{3}}{9^{3}} + \frac{F_{4}}{9^{4}} + \frac{F_{5}}{9^{5}} + \frac{F_{6}}{9^{6}} + \sum_{r=7}^{\infty} \frac{F_{r}}{9^{r}}$ $= \frac{1}{9^{1}} + \frac{1}{9^{2}} + \frac{2}{9^{3}} + \frac{3}{9^{4}} + \frac{5}{9^{5}} + \frac{8}{9^{6}} + \sum_{r=7}^{\infty} \frac{F_{r}}{9^{r}}$ $= 0.1267572506 + \sum_{r=7}^{\infty} \frac{F_{r}}{9^{r}}$ $= \frac{1}{71} = 0.014084139 + \frac{1}{9} \sum_{r=7}^{\infty} \frac{F_{r}}{9^{r}}$ where $\frac{1}{9} \sum_{r=7}^{\infty} \frac{F_{r}}{9^{r}} < \frac{1}{9} (2 \times 10^{-6}) = 2.2 \times 10^{-7} = 0.00000002$			
$\leq 2^{n-1}$ $\leq 2^{n} \left(\frac{1}{2}\right)$ $\therefore \frac{F_{n}}{9^{n}} \leq \frac{2^{n}}{9^{n}} \left(\frac{1}{2}\right) \text{ and } \frac{F_{n+1}}{9^{n-1}} \leq \frac{2^{n+1}}{9^{n-1}} \left(\frac{1}{2}\right)$ $\text{As } n \to \infty, \left(\frac{2}{9}\right)^{n} \left(\frac{1}{2}\right) \to 0 \text{ and } \left(\frac{2}{9}\right)^{n+1} \left(81\right) \left(\frac{1}{2}\right) \to 0,$ $\therefore \frac{F_{n}}{9^{n}} \to 0 \text{ and } \frac{F_{n+1}}{9^{n-1}} \to 0$ $\sum_{r=1}^{\infty} \frac{F_{r}}{9^{r}} = S_{\infty}$ $= \lim_{n \to \infty} \frac{1}{71} \left(9 - \frac{F_{n}}{9^{n}} - \frac{F_{n+1}}{9^{n-1}}\right)$ $= \frac{9}{71} \text{ (shown)}$ (iv) $\frac{9}{71} = \sum_{r=1}^{\infty} \frac{F_{r}}{9^{r}}$ $= \frac{F_{1}}{9^{1}} + \frac{F_{2}}{9^{2}} + \frac{F_{3}}{9^{3}} + \frac{F_{4}}{9^{4}} + \frac{F_{5}}{9^{5}} + \frac{F_{6}}{9^{6}} + \sum_{r=7}^{\infty} \frac{F_{r}}{9^{r}}$ $= \frac{1}{9^{1}} + \frac{1}{9^{2}} + \frac{2}{9^{3}} + \frac{3}{9^{4}} + \frac{5}{9^{5}} + \frac{8}{9^{6}} + \sum_{r=7}^{\infty} \frac{F_{r}}{9^{r}}$ $= 0.1267572506 + \sum_{r=7}^{\infty} \frac{F_{r}}{9^{r}}$ $= \frac{1}{71} = 0.014084139 + \frac{1}{9} \sum_{r=7}^{\infty} \frac{F_{r}}{9^{r}}$ where $\frac{1}{9} \sum_{r=7}^{\infty} \frac{F_{r}}{9^{r}} < \frac{1}{9} (2 \times 10^{-6}) = 2.2 \times 10^{-7} = 0.00000002$		$F_n \leq 2^{n-1} F_1$	
$ \frac{F_n}{g^n} \le \frac{2^n}{g^n} \left(\frac{1}{2}\right) \text{ and } \frac{F_{n+1}}{g^{n-1}} \le \frac{2^{n+1}}{g^{n-1}} \left(\frac{1}{2}\right) $ As $n \to \infty$, $\left(\frac{2}{g}\right)^n \left(\frac{1}{2}\right) \to 0$ and $\left(\frac{2}{g}\right)^{n+1} \left(81\right) \left(\frac{1}{2}\right) \to 0$, $ \frac{F_n}{g^n} \to 0 \text{ and } \frac{F_{n+1}}{g^{n-1}} \to 0 $ $ \sum_{r=1}^{\infty} \frac{F_r}{g^r} = S_{\infty} $ $ = \lim_{n \to \infty} \frac{1}{71} \left(9 - \frac{F_n}{g^n} - \frac{F_{n+1}}{g^{n-1}}\right) $ $ = \frac{9}{71} \text{ (shown)} $ (iv) $ \frac{9}{71} = \sum_{r=1}^{\infty} \frac{F_r}{g^r} $ $ = \frac{F_1}{g^1} + \frac{F_2}{g^2} + \frac{F_3}{g^3} + \frac{F_4}{g^4} + \frac{F_5}{g^5} + \frac{F_6}{g^6} + \sum_{r=7}^{\infty} \frac{F_r}{g^r} $ $ = \frac{1}{g^1} + \frac{1}{g^2} + \frac{2}{g^3} + \frac{3}{g^4} + \frac{5}{g^5} + \frac{8}{g^6} + \sum_{r=7}^{\infty} \frac{F_r}{g^r} $ $ = 0.1267572506 + \sum_{r=7}^{\infty} \frac{F_r}{g^r} $ $ \frac{1}{71} = 0.014084139 + \frac{1}{9} \sum_{r=7}^{\infty} \frac{F_r}{g^r} $ where $\frac{1}{9} \sum_{r=7}^{\infty} \frac{F_r}{g^r} < \frac{1}{9} (2 \times 10^{-6}) = 2.2 \times 10^{-7} = 0.00000002$			
As $n \to \infty$, $\left(\frac{2}{9}\right)^n \left(\frac{1}{2}\right) \to 0$ and $\left(\frac{2}{9}\right)^{n+1} \left(81\right) \left(\frac{1}{2}\right) \to 0$, $\therefore \frac{F_n}{9^n} \to 0 \text{ and } \frac{F_{n+1}}{9^{n-1}} \to 0$ $\sum_{r=1}^{\infty} \frac{F_r}{9^r} = S_{\infty}$ $= \lim_{n \to \infty} \frac{1}{71} \left(9 - \frac{F_n}{9^n} - \frac{F_{n+1}}{9^{n-1}}\right)$ $= \frac{9}{71} \text{ (shown)}$ (iv) $\frac{9}{71} = \sum_{r=1}^{\infty} \frac{F_r}{9^r}$ $= \frac{F_1}{9^1} + \frac{F_2}{9^2} + \frac{F_3}{9^3} + \frac{F_4}{9^4} + \frac{F_5}{9^5} + \frac{F_6}{9^6} + \sum_{r=7}^{\infty} \frac{F_r}{9^r}$ $= \frac{1}{9^1} + \frac{1}{9^2} + \frac{2}{9^3} + \frac{3}{9^4} + \frac{5}{9^5} + \frac{8}{9^6} + \sum_{r=7}^{\infty} \frac{F_r}{9^r}$ $= 0.1267572506 + \sum_{r=7}^{\infty} \frac{F_r}{9^r}$ $= \frac{1}{71} = 0.014084139 + \frac{1}{9} \sum_{r=7}^{\infty} \frac{F_r}{9^r}$ where $\frac{1}{9} \sum_{r=7}^{\infty} \frac{F_r}{9^r} < \frac{1}{9} (2 \times 10^{-6}) = 2.2 \times 10^{-7} = 0.0000002$		$\leq 2^n \left(\frac{1}{2}\right)$	
$ \frac{F_n}{9^n} \to 0 \text{ and } \frac{F_{n+1}}{9^{n-1}} \to 0 $ $ \sum_{r=1}^{\infty} \frac{F_r}{9^r} = S_{\infty} $ $ = \lim_{n \to \infty} \frac{1}{71} \left(9 - \frac{F_n}{9^n} - \frac{F_{n+1}}{9^{n-1}} \right) $ $ = \frac{9}{71} \text{ (shown)} $ (iv) $ \frac{9}{71} = \sum_{r=1}^{\infty} \frac{F_r}{9^r} $ $ = \frac{F_1}{9^1} + \frac{F_2}{9^2} + \frac{F_3}{9^3} + \frac{F_4}{9^4} + \frac{F_5}{9^5} + \frac{F_6}{9^6} + \sum_{r=7}^{\infty} \frac{F_r}{9^r} $ $ = \frac{1}{9^1} + \frac{1}{9^2} + \frac{2}{9^3} + \frac{3}{9^4} + \frac{5}{9^5} + \frac{8}{9^6} + \sum_{r=7}^{\infty} \frac{F_r}{9^r} $ $ = 0.1267572506 + \sum_{r=7}^{\infty} \frac{F_r}{9^r} $ $ \frac{1}{71} = 0.014084139 + \frac{1}{9} \sum_{r=7}^{\infty} \frac{F_r}{9^r} $ where $\frac{1}{9} \sum_{r=7}^{\infty} \frac{F_r}{9^r} < \frac{1}{9} (2 \times 10^{-6}) = 2.2 \times 10^{-7} = 0.0000002$		$\therefore \frac{F_n}{9^n} \le \frac{2^n}{9^n} \left(\frac{1}{2}\right) \text{ and } \frac{F_{n+1}}{9^{n-1}} \le \frac{2^{n+1}}{9^{n-1}} \left(\frac{1}{2}\right)$	
$\sum_{r=1}^{\infty} \frac{F_r}{9^r} = S_{\infty}$ $= \lim_{n \to \infty} \frac{1}{71} \left(9 - \frac{F_n}{9^n} - \frac{F_{n+1}}{9^{n-1}} \right)$ $= \frac{9}{71} \text{ (shown)}$ $\frac{9}{71} = \sum_{r=1}^{\infty} \frac{F_r}{9^r}$ $= \frac{F_1}{9^1} + \frac{F_2}{9^2} + \frac{F_3}{9^3} + \frac{F_4}{9^4} + \frac{F_5}{9^5} + \frac{F_6}{9^6} + \sum_{r=7}^{\infty} \frac{F_r}{9^r}$ $= \frac{1}{9^1} + \frac{1}{9^2} + \frac{2}{9^3} + \frac{3}{9^4} + \frac{5}{9^5} + \frac{8}{9^6} + \sum_{r=7}^{\infty} \frac{F_r}{9^r}$ $= 0.1267572506 + \sum_{r=7}^{\infty} \frac{F_r}{9^r}$ $= 0.014084139 + \frac{1}{9} \sum_{r=7}^{\infty} \frac{F_r}{9^r}$ where $\frac{1}{9} \sum_{r=7}^{\infty} \frac{F_r}{9^r} < \frac{1}{9} (2 \times 10^{-6}) = 2.2 \times 10^{-7} = 0.0000002$		As $n \to \infty$, $\left(\frac{2}{9}\right)^n \left(\frac{1}{2}\right) \to 0$ and $\left(\frac{2}{9}\right)^{n+1} \left(81\right) \left(\frac{1}{2}\right) \to 0$,	
$= \lim_{n \to \infty} \frac{1}{71} \left(9 - \frac{F_n}{9^n} - \frac{F_{n+1}}{9^{n-1}} \right)$ $= \frac{9}{71} \text{ (shown)}$ $\frac{9}{71} = \sum_{r=1}^{\infty} \frac{F_r}{9^r}$ $= \frac{F_1}{9^1} + \frac{F_2}{9^2} + \frac{F_3}{9^3} + \frac{F_4}{9^4} + \frac{F_5}{9^5} + \frac{F_6}{9^6} + \sum_{r=7}^{\infty} \frac{F_r}{9^r}$ $= \frac{1}{9^1} + \frac{1}{9^2} + \frac{2}{9^3} + \frac{3}{9^4} + \frac{5}{9^5} + \frac{8}{9^6} + \sum_{r=7}^{\infty} \frac{F_r}{9^r}$ $= 0.1267572506 + \sum_{r=7}^{\infty} \frac{F_r}{9^r}$ $= \frac{1}{71} = 0.014084139 + \frac{1}{9} \sum_{r=7}^{\infty} \frac{F_r}{9^r}$ where $\frac{1}{9} \sum_{r=7}^{\infty} \frac{F_r}{9^r} < \frac{1}{9} (2 \times 10^{-6}) = 2.2 \times 10^{-7} = 0.00000002$		$\therefore \frac{F_n}{9^n} \to 0 \text{ and } \frac{F_{n+1}}{9^{n-1}} \to 0$	
(iv) $ \frac{9}{71} = \sum_{r=1}^{\infty} \frac{F_r}{9^r} $ $ = \frac{F_1}{9^1} + \frac{F_2}{9^2} + \frac{F_3}{9^3} + \frac{F_4}{9^4} + \frac{F_5}{9^5} + \frac{F_6}{9^6} + \sum_{r=7}^{\infty} \frac{F_r}{9^r} $ $ = \frac{1}{9^1} + \frac{1}{9^2} + \frac{2}{9^3} + \frac{3}{9^4} + \frac{5}{9^5} + \frac{8}{9^6} + \sum_{r=7}^{\infty} \frac{F_r}{9^r} $ $ = 0.1267572506 + \sum_{r=7}^{\infty} \frac{F_r}{9^r} $ $ = 0.014084139 + \frac{1}{9} \sum_{r=7}^{\infty} \frac{F_r}{9^r} $ $ \text{where } \frac{1}{9} \sum_{r=7}^{\infty} \frac{F_r}{9^r} < \frac{1}{9} (2 \times 10^{-6}) = 2.2 \times 10^{-7} = 0.00000002 $		$\sum_{r=1}^{\infty} \frac{F_r}{9^r} = S_{\infty}$	
(iv) $\frac{9}{71} = \sum_{r=1}^{\infty} \frac{F_r}{9^r}$ $= \frac{F_1}{9^1} + \frac{F_2}{9^2} + \frac{F_3}{9^3} + \frac{F_4}{9^4} + \frac{F_5}{9^5} + \frac{F_6}{9^6} + \sum_{r=7}^{\infty} \frac{F_r}{9^r}$ $= \frac{1}{9^1} + \frac{1}{9^2} + \frac{2}{9^3} + \frac{3}{9^4} + \frac{5}{9^5} + \frac{8}{9^6} + \sum_{r=7}^{\infty} \frac{F_r}{9^r}$ $= 0.1267572506 + \sum_{r=7}^{\infty} \frac{F_r}{9^r}$ $= \frac{1}{71} = 0.014084139 + \frac{1}{9} \sum_{r=7}^{\infty} \frac{F_r}{9^r}$ where $\frac{1}{9} \sum_{r=7}^{\infty} \frac{F_r}{9^r} < \frac{1}{9} (2 \times 10^{-6}) = 2.2 \times 10^{-7} = 0.00000002$		$= \lim_{n \to \infty} \frac{1}{71} \left(9 - \frac{F_n}{9^n} - \frac{F_{n+1}}{9^{n-1}} \right)$	
$= \frac{F_1}{9^1} + \frac{F_2}{9^2} + \frac{F_3}{9^3} + \frac{F_4}{9^4} + \frac{F_5}{9^5} + \frac{F_6}{9^6} + \sum_{r=7}^{\infty} \frac{F_r}{9^r}$ $= \frac{1}{9^1} + \frac{1}{9^2} + \frac{2}{9^3} + \frac{3}{9^4} + \frac{5}{9^5} + \frac{8}{9^6} + \sum_{r=7}^{\infty} \frac{F_r}{9^r}$ $= 0.1267572506 + \sum_{r=7}^{\infty} \frac{F_r}{9^r}$ $= \frac{1}{71} = 0.014084139 + \frac{1}{9} \sum_{r=7}^{\infty} \frac{F_r}{9^r}$ where $\frac{1}{9} \sum_{r=7}^{\infty} \frac{F_r}{9^r} < \frac{1}{9} (2 \times 10^{-6}) = 2.2 \times 10^{-7} = 0.00000002$		$=\frac{9}{71} \text{ (shown)}$	
$= \frac{1}{9^{1}} + \frac{1}{9^{2}} + \frac{2}{9^{3}} + \frac{3}{9^{4}} + \frac{5}{9^{5}} + \frac{8}{9^{6}} + \sum_{r=7}^{\infty} \frac{F_{r}}{9^{r}}$ $= 0.1267572506 + \sum_{r=7}^{\infty} \frac{F_{r}}{9^{r}}$ $= \frac{1}{71} = 0.014084139 + \frac{1}{9} \sum_{r=7}^{\infty} \frac{F_{r}}{9^{r}}$ where $\frac{1}{9} \sum_{r=7}^{\infty} \frac{F_{r}}{9^{r}} < \frac{1}{9} (2 \times 10^{-6}) = 2.2 \times 10^{-7} = 0.00000002$	(iv)	$\frac{9}{71} = \sum_{r=1}^{\infty} \frac{F_r}{9^r}$	
$= 0.1267572506 + \sum_{r=7}^{\infty} \frac{F_r}{9^r}$ $\frac{1}{71} = 0.014084139 + \frac{1}{9} \sum_{r=7}^{\infty} \frac{F_r}{9^r}$ where $\frac{1}{9} \sum_{r=7}^{\infty} \frac{F_r}{9^r} < \frac{1}{9} (2 \times 10^{-6}) = 2.2 \times 10^{-7} = 0.00000002$		$= \frac{F_1}{9^1} + \frac{F_2}{9^2} + \frac{F_3}{9^3} + \frac{F_4}{9^4} + \frac{F_5}{9^5} + \frac{F_6}{9^6} + \sum_{r=7}^{\infty} \frac{F_r}{9^r}$	
$\frac{1}{71} = 0.014084139 + \frac{1}{9} \sum_{r=7}^{\infty} \frac{F_r}{9^r}$ where $\frac{1}{9} \sum_{r=7}^{\infty} \frac{F_r}{9^r} < \frac{1}{9} (2 \times 10^{-6}) = 2.2 \times 10^{-7} = 0.00000002$		$= \frac{1}{9^1} + \frac{1}{9^2} + \frac{2}{9^3} + \frac{3}{9^4} + \frac{5}{9^5} + \frac{8}{9^6} + \sum_{r=7}^{\infty} \frac{F_r}{9^r}$	
where $\frac{1}{9} \sum_{r=7}^{\infty} \frac{F_r}{9^r} < \frac{1}{9} (2 \times 10^{-6}) = 2.2 \times 10^{-7} = 0.00000002$		$=0.1267572506 + \sum_{r=7}^{\infty} \frac{F_r}{9^r}$	
		$\frac{1}{71} = 0.014084139 + \frac{1}{9} \sum_{r=7}^{\infty} \frac{F_r}{9^r}$	
Hence the first 6 digits of the decimal expansion of $\frac{1}{71}$ are 0.014084.			
		Hence the first 6 digits of the decimal expansion of $\frac{1}{71}$ are 0.014084.	
		Hence the first 6 digits of the decimal expansion of $\frac{1}{71}$ are 0.014084.	