1 The mass of a radioactive substance reduces by half every 4 hours. It is given that m_0 is the mass of the substance at a particular time and that *m* is the mass of the substance *t* hours later. Calculate the value of the constant *k* in the relationship $m = m_0 e^{-kt}$.

$m = m_0 e^{-kt}$	Note: m_0 is a constant
i.e when $t = 4$ sub $m = \frac{1}{2}m_0$	When $t = 0$, initial $m = m_0$
$\frac{1}{2}m_0 = m_0 e^{-4k}$	
$\ln\frac{1}{2} = -4k\ln e$	
$k = -\frac{1}{4}\ln\frac{1}{2}$ or $\frac{1}{4}\ln 2$ or $\frac{0.173}{(3.s.f.)}$	

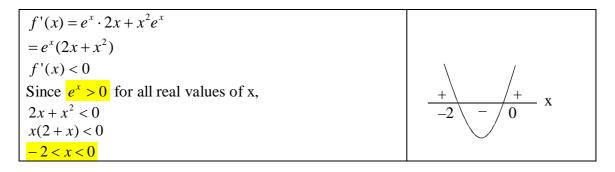
2 Solve the equation
$$3^{2x+1} - 6(3^x) = 27 - 2(3^{2x})$$
.

$$3^{2x} \times 3 - 6(3^{x}) = 27 - 2(3^{2x})$$

Let $u = 3^{x}$,
 $3u^{2} - 6u = 27 - 2u^{2}$
 $5u^{2} - 6u - 27 = 0$
 $(u - 3)(5u + 9) = 0$
 $u = 3$, $u = -\frac{9}{5}$
 $3^{x} = 3$, $3^{x} = -\frac{9}{5}$ (no solution)
 $x = 1$

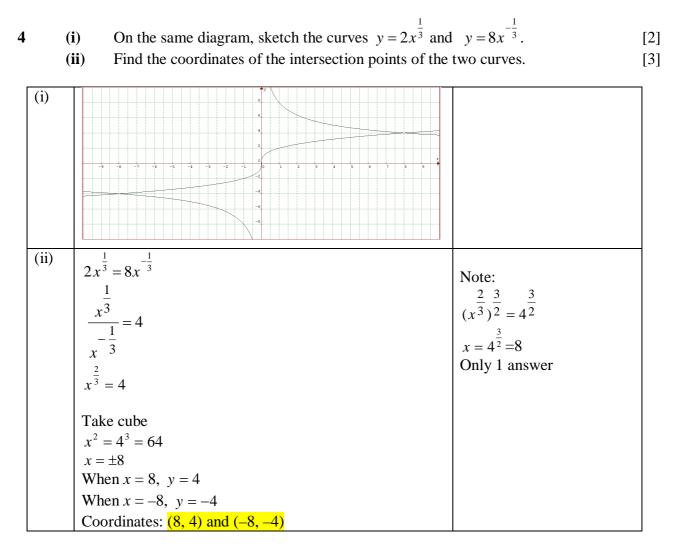
3 The function f is defined, for all values of x, by $f(x) = x^2 e^x$. Find the range of values of x for which f is a decreasing function.

[6]



[3]

[4]



5 The equation of a curve is $y = \frac{x-8}{5-2x}$. A particle moves along the curve in such a way that the y-coordinate of the particle is decreasing at a constant rate of 2 units per second. Find the possible y-coordinates of the particle at the instant when the x-coordinate of the particle is increasing at $1\frac{7}{11}$ units per second.

$\frac{dy}{dx} = \frac{(5-2x)(1) - (x-8)(-2)}{(5-2x)^2}$	
$=\frac{5-2x+2x-16}{(5-2x)^2}$	Note: mistake in expansion
$=\frac{-11}{(5-2x)^2}$	
$\frac{dy}{dt} = \frac{dy}{dx} \times \frac{dx}{dt}$	
$-2 = \frac{-11}{(5-2x)^2} \times \frac{18}{11}$	
$\frac{-11}{9} = \frac{-11}{(5-2x)^2}$	

[6]

2

$$9 = (5 - 2x)^{2}$$

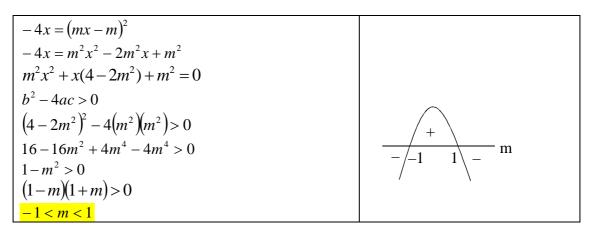
$$5 - 2x = \pm 3$$

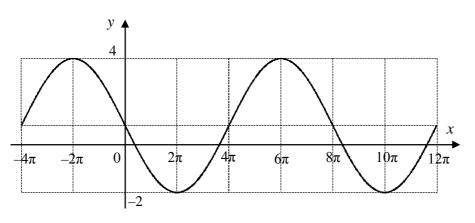
$$x = 1 , \quad x = 4$$

$$y = -2\frac{1}{3} , \quad y = 1\frac{1}{3}$$

6

A curve has equation $y^2 = -4x$ and a line has equation y = m(x-1). Find the range of values of *m* for which the line y = m(x-1) intersects the curve $y^2 = -4x$ at two distinct points.





The diagram shows part of the graph of $y = a \sin\left(\frac{x}{b}\right) + c$.

[2]

[5]

[3]

(i) State the amplitude and period.(ii) Find the value of each of the constants *a*, *b* and *c*.

(i) Amplitude = $\frac{3}{2}$ Period = $\frac{8\pi}{2}$	Period $\neq \frac{1}{4}$
(ii) $a = -3$ $8\pi = \frac{2\pi}{\left(\frac{1}{b}\right)}$ $\frac{1}{b} = \frac{1}{4}$	Note: <i>a</i> is negative based on the inverted sine curve

b =	- <mark>4</mark>	
c =	- <mark>1</mark>	

A line of gradient *m* passes through the point (0, 1). (ii) In the case where m = -2, find the coordinates of any point of intersection

Determine the set of values of m for which the line intersects the graph of

Sketch the graph of y = 4 - |x|.

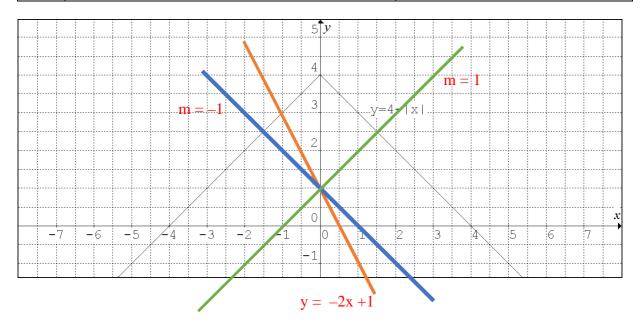
of the line and the graph of y = 4 - |x|.

8

(i)

(iii)

	y = 4 - x at one point.	[
(i)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Steps to sketch 1) When $x = 0$, $y = 4$ 2) When $y = 0$, x = 4, $x = 4$ or $x = -4Need to show correct x and y-intercepts (0, 4), (4, 0), (-4, 0)$
(ii)	$y = -2x + 1 \dots (1)$ $y = 4 - x \dots (2) \text{ or } y = 4 + x \dots (3)$ (1) = (2), -2x + 1 = 4 - x x = -3 and y = 7 (n.a.) (1) = (3), -2x + 1 = 4 + x 3x = -3 x = -1 and y = 3 Intersection point is (-1, 3)	Note: (-3, 7) is (n.a.) because the y-coordinate is greater than the maximum y-value of the modulus graph.
(iii)	$m \leq -1$ or $m \geq 1$	Read from graph



[2]

[3]

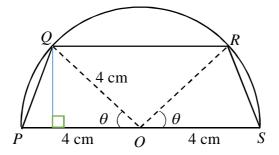
(i) Prove that
$$\tan A + \frac{\cos A}{1 + \sin A} = \sec A$$
. [3]

(ii) Hence, find the exact solutions of
$$\tan 2x + \frac{\cos 2x}{1 + \sin 2x} = \csc x$$
 for $0 \le x \le 2\pi$. [5]

(i)	LHS	
(1)		
	$=\frac{\sin A}{\cos A}+\frac{\cos A}{\cos A}$	
	$\cos A = 1 + \sin A$	
	$=\frac{\sin A + \sin^2 A + \cos^2 A}{2}$	
	$-\cos A(1+\sin A)$	
	$=\frac{\sin A+1}{\cos(1-1)}$	
	$-\cos A(1+\sin A)$	
	$=\frac{1}{1}$	
	$-\cos A$	
	$= \sec A = \text{RHS}$	
(ii)	A = 2x	
	$\sec 2x = \csc x$	Sub part (i) into LHS, RHS
	$\frac{1}{1} = \frac{1}{1}$	remains
	$\frac{1}{\cos 2x} = \frac{1}{\sin x}$	
	$\cos 2x = \sin x$	
	$1 - 2\sin^2 x = \sin x$	
	$2\sin^2 x + \sin x - 1 = 0$	
	$(\sin x+1)(2\sin x-1)=0$	
	$\sin x = -1 \qquad , \qquad \sin x = \frac{1}{2}$	
	$\sin x = -1$, $\sin x = -\frac{1}{2}$	
	$\frac{3\pi}{2}$ π	
	$x = \frac{3\pi}{2}$ ref $\angle = \frac{\pi}{6}$	
	$x = \frac{\pi}{6} , \frac{5\pi}{6}$	Must be exact values

O is given by $a = -0.6e^{0.2t}$.		
(i) Find the value of t when the particle is at instantaneous rest.		[4]
(ii)	Find the distance travelled by the particle in the first 5 seconds.	[4]
	of 3 n <i>O</i> is g (i)	(i) Find the value of t when the particle is at instantaneous rest.

(i)	$a = -0.6e^{0.2t}$
	$v = \int -0.6e^{0.2t} dt$
	$v = -3e^{0.2t} + c$
	Sub v =3, t=0
	<i>c</i> = 6
	$v = -3e^{0.2t} + 6$
	Sub $v = 0$,
	$-3e^{0.2t} + 6 = 0$
	$3e^{0.2t} = 6$
	$\ln e^{0.2t} = \ln 2$
	$t = \frac{\ln 2}{0.2} = 3.465 = \frac{3.47}{5}$
(ii)	$s = \int -3e^{0.2t} + 6 dt$
	$s = -15e^{0.2t} + 6t + c$
	Sub $s = 0, t = 0$
	<i>c</i> = 15
	$s = -15e^{0.2t} + 6t + 15$
	At $t = \frac{\ln 2}{0.2}$, $s = 5.7944$
	At $t = 5$, $s = 4.226$
	Distance travelled
	$= 5.7944 + (5.7944 - 4.226) = 7.3628 = \frac{7.36}{1.36}$
	Alternative method
	Distance travelled
	$= \left \int_{0}^{5\ln 2} \left(-3e^{0.2t} + 6 \right) dt \right + \left \int_{5\ln 2}^{5} \left(-3e^{0.2t} + 6 \right) dt \right $
	$= \left \left[-15e^{0.2t} + 6t \right]_{0}^{5\ln 2} \right + \left \left[-15e^{0.2t} + 6t \right]_{5\ln 2}^{5} \right $
	$= \left -15e^{\ln 2} + 30\ln 2 + 15 - 0 \right + \left -15e + 30 + 15e^{\ln 2} - 30\ln 2 \right $
	$= -15 + 30 \ln 2 + 60 - 15e - 30 \ln 2 $
	=5.7944 +1.5686
	= <mark>7.36 m</mark>



The diagram shows a trapezium *PQRS* inscribed in a semicircle with centre *O*. The radius of the semicircle is 4 cm. Angle POQ = angle $SOR = \theta$ radians.

[2]

[6]

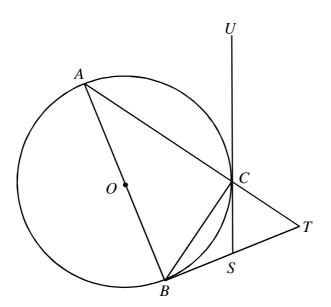
(i) Show that the area, $A \text{ cm}^2$, of the trapezium *PQRS* is given by $A = 16\sin\theta + 8\sin 2\theta$.

11

(ii) Given that θ can vary, find the value of θ for which the area of the trapezium is a maximum.

(i) Horizontal =
$$4\cos\theta$$

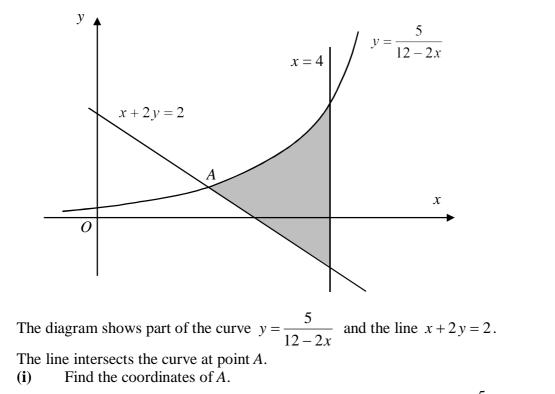
Vertical height = $4\sin\theta$
Area = $\frac{1}{2}(4\sin\theta)(8 + 2 \times 4\cos\theta)$
= $16\sin\theta + 16\sin\theta\cos\theta$
= $16\sin\theta + 16\sin\theta\cos\theta$
= $16\sin\theta + 8\sin 2\theta$
(ii) $\frac{dA}{d\theta} = 16\cos\theta + 16\cos 2\theta$
 $16\cos\theta + 16\cos 2\theta = 0$
 $\cos\theta + \cos 2\theta = 0$
 $\cos\theta + \cos 2\theta = 0$
 $\cos\theta + 2\cos^2\theta - 1 = 0$
 $2\cos^2\theta + \cos\theta - 1 = 0$
 $(\cos\theta + 1)(2\cos\theta - 1) = 0$
 $\cos\theta = -1$, $\cos\theta = 0.5$
 $\theta = \pi$ (NA) ref $\angle = \frac{\pi}{3}$
 $\theta = \frac{\pi}{3}$ or 1.05 (3s.f.)
Check for max
 $\frac{d^2A}{d\theta^2} = -16\sin\theta - 32\sin 2\theta$
At $\theta = \frac{\pi}{6}$, $\frac{d^2A}{d\theta^2} = -41.6 < 0$, max
value



In the diagram, *AB* is a diameter of the circle with centre *O*. *CS* and *BT* are the tangents to the circle at *C* and *B* respectively. *UCS*, *ACT* and *BST* are straight lines. Prove that

(i)	triangle ABC and triangle ATB are similar,	[2]
(ii)	angle SCT = angle CTS ,	[3]
(iii)	S is the midpoint of BT.	[2]

(i)	$\angle BAC = \angle TAB$ (common angle)	
	$\angle ACB = 90^{\circ}$ (right angle in semi-circle)	
	$\angle ABT = 90^{\circ}$ (tangent perpendicular to radius)	
	$\therefore \angle ACB = \angle ABT = 90^{\circ}$	
	\therefore triangle <i>ABC</i> and triangle <i>ATB</i> are similar.	
(ii)	$\angle ABC = \angle ATB = \angle CTS (\Delta ABC \text{ similar } \Delta ATB, \text{ proven in i})$	
	$\angle ABC = \angle ACU$ (tangent chord theorem)	
	$\angle ACU = \angle SCT$ (vertically opposite $\angle s$)	
	$\therefore \angle CTS = \angle SCT$	
(iii)	BS = CS (tangents from external point)	
	Since $\angle CTS = \angle SCT$ (proven in ii)	
	$CS = ST$ (base $\angle s$ of isosceles triangle)	
	\therefore BS = ST	
	\therefore S is the midpoint of BT.	



(ii) Find the area of the shaded region bounded by the curve $y = \frac{5}{12 - 2x}$, the lines x = 4 and x + 2y = 2. [5]

[3]

(i)	$\frac{5}{12-2x} = \frac{2-x}{2}$ 10 = 24 - 12x - 4x + 2x ²	
	$2x^{2}-16x+14 = 0$ $x^{2}-8x+7 = 0$ (x-7)(x-1) = 0	
	x = 1, $x = 7y = 0.5$, $y = -2.5$ (NA) A is (1, 0.5)	
(ii)	Method 1	
	Area= $\int_{1}^{4} \frac{5}{12 - 2x} - \frac{2 - x}{2} dx$	Method: y1 – y2
	$= \int_{1}^{4} \frac{5}{12 - 2x} - 1 + \frac{1}{2}x dx$	
	$= \left[\frac{5\ln(12-2x)}{-2} - x + \frac{x^2}{4}\right]_{1}^{4}$	
	$= \left(-\frac{5}{2}\ln 4 - 4 + 4\right) - \left(-\frac{5}{2}\ln 10 - 1 + \frac{1}{4}\right)$	
	$= 3.0407 = \frac{3.04 \text{ sq units}}{3.04 \text{ sq units}}$	

13

Method 2 Sub y = 0, $\therefore x = 2$ Area of $\Delta 1 = \frac{1}{2} \times 1 \times \frac{1}{2} = \frac{1}{4}$ sq units Sub x = 4 into straight line, 2y = 2 - 4 y = -1Area of $\Delta 2 = \frac{1}{2} \times 2 \times 1 = 1$ sq unit Area under curve $= \int_{1}^{4} \frac{5}{12 - 2x} dx$ $= \left[\frac{5 \ln(12 - 2x)}{-2}\right]_{1}^{4}$ = -3.4657 - (-5.7564) = 2.2907Total area = 2.2907 + 1 - 0.25= 3.04 sq units