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 National Junior College 
 2016 – 2017 H2 Further Mathematics 
 Topic F3: Further Differential Equations (Lecture Notes) 
 

 

Key Questions to Answer: 
 
1. How do we solve differential equations of the following forms analytically? 
 

(i)    d f g
d

y x y
x
 , 

(ii) d P( ) Q( ).
d

y x y x
x
  , 

(iii) 
2

2
d d 0
d d

y ya b cy
x x

   , 

(iv)  
2

2
d d f
d d

y ya b cy x
x x

   , where  f x is a polynomial or ekxp or    cos sinp kx q kx , 

including equations that can be reduced to the above by means of a given substitution. 
 
2. How do we sketch a family of solution curves of a differential equation? 

 
3. How do we determine the equilibrium points and draw the phase lines of autonomous 

differential equations? 
 

4. How do we model and solve problems related to the spread of diseases or population growth, 
with competition and harvesting? 

 
5. What is the relationship between the solution of a nonhomogeneous equation and the associated 

homogeneous equation?  
 

6. How do we model and solve problems related to the motion of particles that involves resistance, 
free or driven oscillation and damping? 

 
 
 
 
§1 Analytic Solutions of First Order Differential Equations 
 
 
1.1 Separation of Variables 
 

A first-order differential equation of the form  

d f ( )g( )
d

y x y
x
  

is said to be separable or to have separable variables. 
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Example 1.1.1  
 

Solve d(1 )
d
yx y
x

  , expressing y in terms of x. 

 
Solution: 

d(1 )
d

yx y
x

   

d d
1

y x
y x

 


  
 

ln ln 1y x C     

ln
1

y C
x

 


 

e
1

Cy
x

 


 

e
1

Cy
x

  


 

, e
1

Cy A A
x

   


 

(1 )y A x    
 
 
Example 1.1.2 
 

Solve 2d 4
d

y y
x
  , expressing y in terms of x. 

 
Solution: 

2d 4
d

y y
x
   

2

d 1 d
4

y x
y

 




   

2 2

d
2

y x C
y

  






 

1 2ln
2(2) 2

y x C
y


  


 

2ln 4
2

y x C
y
   


 

4 42 e e , e
2

x C x Cy A A
y

 
     


 

42 e ( 2)xy A y     
4 4e 2 e 2x xy Ay A     
4 4(1 e ) 2(1 e )x xy A A     

 4

4

2 1 e
1 e

x

x

A
y

A


 

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Example 1.1.3 
 

The gradient of a curve at any point (x, y) is given by the expression d , 0.
d

y yy x
x x
   Find the 

equation of the curve if it passes through the point  22, e . 
 
Solution: 
d 11
d

y yy y
x x x

     
 

 

d 11 dy x
y x

   



 

ln lny x x C     

ln xy x C    

ex Cxy    

e e ,  ex C x Cxy A A       
exAy
x

   

Since the curve passes through  22, e , 
2

2 ee 2
2

A A  
2ex

y
x

   

 
 
Example 1.1.4  
 

Find the general solution of the differential equation d 2
d
y x
x y
  .  

Sketch 3 members of the family of solution curves.  
 
Solution:  
 
d 2
d
y x
x y
   

d 2 dy y x x    
2

2

2
y x C    

2 2

1
2
y x
C C
   

 
 
 
Note: Family of solution curves is a set of ellipses. 
 
  

2  ̶ -2 
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Example 1.1.5 
 

Show that the differential equation 2 2d2 2
d

yxy x y
x
  can be reduced by means of the substitution 

y vx  to d2 1
d

vvx
x
 . Hence, find the general solution, giving 2y explicitly in terms of x. 

  
Solution: 
 

d d
d d

y vy vx v x
x x

     

2 2d2 ( ) 2( )
d

vx vx v x x vx
x

     
 

d2 1
d

vvx
x

   

12 d dv v x
x




2

2
2

2 2
2ln ln e

y C
xyv x C x v C C x

x


           

2 2 2

2 2 2
2

2

1e e , e e ln( ) ,
y y yC Cx x xx yx A A Bx B

A x A


           2 2 ln( )y x Bx   

 
 
 
 
1.2 Linear Equations and Integrating Factor 
 
 
A linear differential equation takes the general form 

( ) ( 1)
1 0( ) ( ) ... ( ) g( )n n

n na x y a x y a x y x
    , where ( ) d

d

n
n

n

yy
x

 . 

 
Every first-order linear differential equation can be expressed in the standard form 

 
d P( ) Q( ).
d

y x y x
x
   

 
For a first-order differential equation of the above form, the function 

 
P( ) d

I( ) e
x x

x   
 
is defined to be the integrating factor of the differential equation. 

 
The following proof illustrates how the integrating factor can be used to solve a linear first-order 

differential equation of the form d P( ) Q( ).
d

y x y x
x
   

 
Proof: 
 

Multiplying both sides of the differential equation by 
P( )  d

I( ) e ,
x x

x   we obtain 
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P( ) d P( )  d

P( )  d P( )  d P( )  d

P( )  d P( ) d P( )  d

P( )  d P( )  d

P( ) d P( ) d

P( ) d

de P( ) e Q( )
d

de e P( ) e Q( )
d

d de e e Q( )
d d

d e e Q( )
d

e e Q( ) d

e

x x x x

x x x x x x

x x x x x x

x x x x

x x x x

x x

y x y x
x

y y x x
x

y y x
x x

y x
x

y x x

y

     

   

      
    

 





P( )  d

P( )  d

Q( ) d I( )Q( ) d
,  where I( ) e . 

I( )e

x x

x x

x x x x x
x

x
 


 

 

 
This procedure in solving a differential equation is called the method of integrating factor. 
 
 
Example 1.2.1 
 

Solve the differential equation 2d 3 5
d

yx y x
x
   for 0x   , expressing y in terms of x. 

 
Solution: 
 
Step 1: Rewrite the differential equation in standard form. 

2d d 33 5 5
d d

y yx y x y x
x x x

      
 

 

 
Step 2: Compute the integrating factor. 

 
3  d 3ln 3e e

x xxI x x

    

 
Step 3: Multiply both sides of the differential equation (in standard form) by the integrating factor. 

3 2 4d 3 5
d

yx x y x
x
   

 
Step 4: Rewrite the equation into an exact differential. 

 3 4d 5
d

x y x
x

  

 
Step 5: Solve the differential equation by direct integration. 

3 4

3 5

2
3

5 dx y x x

x y x C
Cy x
x



 

 


 

 
Will the solution be different if 0x  ? 
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Example 1.2.2  
 

Express x in terms of t given that 3d
d
xt x t
t
   and x = 1 when t = 1.  

 
Solution: 
 

3d
d
xt x t
t
  2d 1

d
x x t
t t

    
 

 

Integrating factor 
1

1d ln ln 1e e e
t t tt

t
 


     

2 3

2

1 d 1 d d
d d 2 2
x x x x t tx t t t t C x Ct

t t t t t t t
                  
      

At t = 1, x = 1, 1 11
2 2

C C     
3

2 2
t tx   . 

 
 
Example 1.2.3 
 

Find the solution of the differential equation 3dsin cos sin
d

yx y x x
x
  , given that y = 1 when x = π

2
. 

 
Solution: 
 

3 2d d cossin cos sin sin
d d sin

y y xx y x x y x
x x x

      
 

 

 

Integrating factor 
cos  d ln(sin )sin 1e e

sin

x x xx

x
 

    

2

1 d cos sin
sin d sin

y x y x
x x x

        
   

 

d sin
d sin

sin d
sin

cos
sin

y x
x x
y x x

x
y x C

x

   
 

 

   

  

 

At x = π
2

, y = 1, 
 π

2

1 πcos 1
sin 2

C C      
 

 

sin (1 cos )y x x    
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Example 1.2.4 
 

By means of the substitution 2

1 2z
y

  , show that the differential equation 3d
d

y y y
x x
   may be 

reduced to d 2 1
d

z z
x x
  .  Hence find the solution of 3d ,

d
y y y
x x
   given that  y = 2 when x = 1.  

 
Solution:   
 

2 3

1 2 d d2 2
d d
y zz

y y x x
      3d d

d d
y zy
x x

   

3 3 3d d
d d

y y z yy y y
x x x x

         

2

d 1 1
d

z
x xy

   d 2 1
d

z z
x x

    (shown) 

 

Integrating factor = 
2 d 2ln

2

1e e
x xx

x
 

     

2 3 2

1 d 2 1
d

z z
x x x x

    

 2 2

d 1
d

z
x x x
   
 

 

 2 2

1 dz x
x x

    

 2

1z C
x x

    

 2 2

1 1
2

C
y x x

     

 
At x = 1, y = 2,   

2 2

1 1 7
2(2) (1) 1 8

C C       

2
2

1 7
2 8

x x
y

   2 4
(8 7 )

y
x x

 

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§2    Equilibrium Points and Phase Lines of Autonomous Differential Equations 
 
 
2.1   Equilibrium Point 
 

Definition (Equilibrium Point) A real number c is called an equilibrium point of the autonomous 

differential equation d f ( )
d

y y
x
  if it is a zero of f, i.e. f(c) = 0.  

 
An equilibrium point is also called a critical point or a stationary point.  The solution y(x) = c is a 
constant solution and is called the equilibrium solution of the autonomous differential equation. 
 
Note: An autonomous differential equation does not explicitly depend on the independent variable. 
 

For example, the equilibrium points of d (1 )
d
y y y
t
   are 0 and 1. 

 
 
2.2    Phase Line 
 
A phase line is a simple one-dimensional picture that captures all of the information provided by the 
differential equation in a single vertical line. 
 

The phase line of an autonomous equation d f ( )
d

y y
x
  is constructed as follows: 

(1) Find the equilibrium points by solving f(y) = 0. 
(2) Draw a vertical line and divide the line into various regions by marking all the equilibrium 

points on it. 
(3) For each region where f (y) > 0, draw an arrow on the line pointing upwards. The solution 

curve y(x) should be increasing in this case. 
(4) For each region where f(y) < 0, draw an arrow on the line pointing downwards. The solution 

curve y(x) should be decreasing in this case. 
 

The diagram below shows the phase line for the differential equation d (1 )
d
y y y
t
  . 

 
 
 
 
 

  
 
  
 
 
 
  
 

 
 
 

As shown in the diagram, 

 y = 0 and y = 1 are the equilibrium points;  
 when y < 0, f(y) < 0, thus the arrow is pointing downwards in the phase line;  
 when  0 < y < 1,  f(y) > 0, thus the arrow is pointing upwards in the phase line;  
 when y > 1, f(y) < 0, thus the arrow is pointing downwards in the phase line.  
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2.3 Sketching Solution Curves Using Phase Lines 
 
Phase lines are useful in showing how a solution behaves as the variable on the horizontal axis (say 
x) increases. With the help of the phase lines, we can sketch the solution curves as we know whether 
y(x) is increasing, decreasing, or remains constant in the various regions. However, phase lines do not 
show how quickly or slowly the solution curves increase or decrease with respect to x.  

 

The diagram below illustrates how the phase line of the above differential equation d (1 )
d
y y y
t
   

can be used to sketch the solution curves.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

As shown in the diagram, 

 y = 0 and y = 1 are the equilibrium points and 0)(ty and
( ) 1y t   are the equilibrium (constant) solutions; 

 when y < 0, the arrow is pointing downwards in the phase line 
and the particular solution curves shown are decreasing and 
bounded above such that 0 as y t  ; 

 when 0 < y < 1, the arrow is pointing upwards in the phase line 
and the particular solution curves shown are increasing and 
bounded above and below by the two equilibrium points such 
that 1 as y t   and 0 as y t  ; 

 when y > 1, the arrow is pointing downwards in the phase line 
and the particular solution curve shown is decreasing and 
bounded below such that 1 as y t  . 
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Example 2.3.1    
 

Find the equilibrium points and draw the phase line for the differential equation 2d 1.
d
y y
x
   Hence, 

on a single diagram, sketch the solution curves, which pass through the point 

(i) (0, 1.5), (ii) (0, 0.5), (iii) (0, 1.5). 

State the behaviour of y in (ii) as  and x x    . 
 
Solution:      
 
Let 2 f ( ) 1.y y   then 2 f ( ) 0    1 0  1y y y        
 
 The equilibrium points are 1 and  . 

 

 
 
 

For the solution curve in (ii), 1 and 1y y  as  and x x    respectively. 
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§3 Population Dynamics 
 
In population dynamics, we study how population changes with time under different conditions or in 
different environments.   In reality, population dynamics can be very complex.  Several assumptions 
have to be made in order to develop a mathematical model.  We will introduce three basic models of 
population growth, namely, exponential growth, logistic growth and logistic growth with harvesting. 
 
3.1 Exponential Growth (Malthus) Model 
 
The Malthus (exponential growth) model introduced by Thomas Robert Malthus (an English 
economist) in 1798, assumes that the growth rate of a population at a particular time is proportional 
to its total population at that time. 
 
This means that if there are more people at a particular time, then the growth rate of the population at 
that time will be higher than if there were fewer people.  This model assumes that the size of the 
population is not limited by space and resources (e.g. food), and also ignores random fluctuations 
such as epidemics, natural disasters and migration effects. 
 
We shall now look at how the exponential model is established. 
 
Real World Problem 
 
Consider the rats infestation problem at Bukit Batok during December 2014. Suppose the National 
Environment Agency wishes to formulate a mathematical model which describes the growth of the 
population of the rats in the area, if nothing is done about the problem. 
 
Make Assumptions 

 
 Assume there is no movement of rats in or out of Bukit Batok Area. 
 The per-capita birth rate and the per-capita death rate of the population are constants.  (In more 

complex models, these rates may vary with time and space.) 
 Population is large enough to ignore random fluctuations.  E.g. no sudden disease strikes the 

rats. 
 
Represent the Problem in a Mathematical Form and Solving the Mathematical Problem 
 
Independent variable : time, t 
Dependent variable : size of population, P 
 
Per-capita birth rate, β = number of births per unit population per unit time (constant). 
Per-capita death rate, α = number of deaths per unit population per unit time (constant). 
 
Rate of change of population  =  Rate of births – Rate of deaths 

i.e.          d
d
P P P P
t

        

Let k     and we have the differential equation   
d
d
P kP
t
  

 
Hence, the rate of growth of a population at a particular time is proportional to its total population at 
the time.   
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Analytic Solution 
 
This equation is separable and we can solve it analytically.  Separating variables and integrating, we 
obtain: 

 
 

1 d d d
d

ln 0

e e ekt C kt C

P t k t
P t

P kt C P

P A A

 

  

  

 
   

 
If at t = 0,  (i.e. initial population), then we get 0e

ktP P   
 
k is sometimes called the net growth rate. 
 
If 0k  , there is growth in the population.  If 0k  , there is decay in the population. 
 
Graph of Solution Curves 

 

 
 
When 0k  , the population declines and tend to 0 as t increases. i.e. the rats in the area will die out 
over time.  
When 0k  , the model suggests that the population will increase exponentially.  However, in reality, 
the population will eventually be limited by some factor, e.g. limited food resources. 
 
Question:  What happens when k = 0? 
 
 
Example 3.1.1 
 
In 1800, the world's population was approximately 1 billion.  In 1900, it was 1.7 billion.  If the 
population P (in billions) at time t (in years, measured from 1800) obeys the differential equation 
d
d
P kP
t
 , estimate the world's population in the year 2000.  Find also the time taken, correct to the 

nearest 0.1 years, for the population to reach 2 billion. 
 
Solution: 

0
d e
d

ktP kP P P
t
    

 

0P P

t 

P 
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When t = 0, P = 1, we have 0 1P  .  Hence ektP  . 

When t = 100, P = 1.7, we have 1001.7 e t . Hence 
ln1.7
100e

t
P

 
 
  . 

When t = 200, 
 ln1.7 200

2ln1.7 2100e e 1.7 2.89P
 
 
     . 

Hence, the world's population in the year 2000 is approximately 2.89 billion.  

When P = 2, 
ln1.7
100 ln1.7 100 ln 22 e ln 2 130.6

100 ln1.7

t
t t

 
 
         

 
  

The time taken for the population to reach 2 billion is approximately 130.6 years from 1800. 
 
 
3.2 Logistic Growth (Verhulst) Model 
 
Pierre François Verhulst (1804 – 1849) was a Belgian demographer who generalised the Malthus 
model by allowing for the fact that populations encounter internal competition as they grow within a 
closed environment, and this competition has a tendency to retard the rate of growth.  His idea is that 
while the population will continue to grow as time goes on, the rate at which it does so will also get 
slower and eventually reach saturation. 
 
In the Verhulst (logistic growth) model, the idea of limited resources and competition is taken into 
consideration. In other words, crowding effects become important.  One way to incorporate these 
effects is to consider how the assumption on the per-capita death rate may be modified. 
 
Instead of a constant per-capita death rate (as in the exponential growth model), we now assume a 
linear dependence of the per-capita death rate with the population size: 

 
Per-capita death rate =  rP t  ,   

where  and  are positive constants. 
 
Using this assumption, the exponential growth model now becomes  

 

 

  2

2

d
d
P P P P
t

P P

kP P

  

  



  

  

 

  

which may be rewritten as 
 

d 1
d
P PkP
t N

   
 

 

for some constants k and  This equation is also known as the logistic equation and the 

constant N is known as the carrying capacity of the environment.   
 

Observe that when P is small compared to N (i.e. 0P
N
 ), the equation reduces to the exponential 

growth model, which is reasonable since P is expected to increase exponentially as long as resources 
are abundant. 
 

 

.kN


 
 
 
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Analytic Solution of the Logistic Equation 
 

We begin by first writing the equation in the form d 1
d
P PkP
t N

   
 

. 

This equation is separable and we can solve it analytically.  Separating variables and integrating, we 
obtain: 
 

 

 

By partial fractions, we have    

 
Integrating, we get    

 

If , then . Hence, 

 

 
Making P the subject, we obtain the solution of the logistic equation as 
 

. 

 
 
 
 
Graph of Solution Curves of the Logistic Equation 
 
Some typical solutions for the cases where k > 0 and k < 0 are shown below: 
 

 
d   dN P k t

P N P





 

1 1 d  dP k t
P N P

    


 

1

1 1

1

1

ln ln

ln

e

e e , e .

kt C

kt C Ckt

P N P kt C
P kt C

N P
P

N P
P C C

N P





   

 





    


0(0)P P 0

0

PC
N P




 

 

0

0

0

0

0

0

0 0

0

e

e

e
1

e

kt

kt

kt

kt

PP
N P N P

N PN P
P P

N PN
P P

P N P
P







 
    

 
  
 


 

 


   
0

0 0 e kt

NPP t
P N P 
 
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Note that for P > 0, 
 
 if ,  as ; 

 
 if  (now 0N  )  as  provided 0 0P  . 
 
This is a more realistic approach than the exponential growth model, which predicts that populations 
will grow exponentially, and without a bound – a prospective that defies physical limitations. 
 
 
 
 
 
 
 
 
 
 
Example 3.2.1 
 
A junior college has 4,000 students.  On the first day of the semester, a group of 4 students thought 
they heard their mathematics lecturer say that everyone would receive an A-grade for the course.  The 
next day, a carefully conducted survey of the entire student population revealed that by now 80 
students had heard this rumour.  If the rumour spreads according to the logistic equation, then 
 

, 

 
where y is the number of students who have heard the rumour, t is the number of days after the day 
which the rumour started, and a and b are constants.  At what time will 90% of the students have 
heard the rumour? 
 
Solution: 

 

 
Comparing this differential equation to the logistic equation, and since a and b are constants, it follows 
that  (carrying capacity, which in this case is the total number of students).  
 

k  0 P  N t 

k  0 P  0 t 

 d
d
y ay b y
t
 

 d 1
d
y yay b y aby
t b

     
 

b  4000
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With  (the number of students who first heard the rumour), 
 

. 

 
Now when , : 
 

   

       

 
For 90% of students to have heard the rumour, .  Hence, 
 

 

     3.02 days  (3 sig. fig.) 

 
 
3.3 Logistic Equation with Harvesting 
 
Recall the rats infestation problem at Bukit Batok during December 2014. On 22 Dec 2014, it was 
reported that “An estimated 180 rats have been caught, five days into an operation to rid an area 
beside Bukit Batok MRT station of the rodents.” This process of catching the rats over a period of 
time is termed as harvesting1. 
 
The simplest way to include harvesting into the logistic equation is to assume that the population is 
continually being harvested at a constant rate, H.  The equation thus becomes: 
 

, 

where k is the net growth rate and N is the carrying capacity of the environment. 
 
We could, if we wish, solve the above equation analytically.  However, for models like this, the more 
critical question is whether the population will survive or face extinction.  That is, we are more 
interested in studying the long-term behaviour of the population under different values of H, assuming 
that k and N are positive constants.   
                                                             
1 Harvesting refers to the removal of a certain number of individuals from the population of a species over a period of 
time.  This is traditionally a result of hunting or gathering natural resources for use.    In particular, we may wish to know 
the amount of resources that should be harvested so that the resource will not face extinction.  (The fact that there are 
over 750 plants and animals on the endangered species list indicates that humans are not always cognizant of how their 
actions will affect plants and animals. 

P0  4

 
     
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4 4000 4 e 4 3996eab t ab ty
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1600080
4 3996e abt



196e
3996

abt 

 a4000ln 196
3996

 0.9 4000 3600y  

 

160003600
4 3996e
404 3996e
9

4e
9 3996

abt

abt

abt










 



 
1 4ln

4000 9 3996
t

a
  

d 1
d
P PkP H
t N

    
 
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To do so, we look for equilibrium solutions and assuming that one can do nothing about the net 
growth rate (k) and the carrying capacity (N), we can then treat H as a real parameter in the model, 
and study its effects on the solutions of the model. 
 

The graph of  against P for different values of H is shown below: 

 

 
By setting , we can determine the equilibrium points as: 

 

 

 
The following can be observed. 
 

1. When the value of H increases, the graph of  against P moves down. 

 
2. When the value of H increases, the equilibrium points 

 
 

 and  

 
 move towards each other. 
 

 
3. (i) When H = 0, the equilibrium points are . 
 

 (ii) When , i.e. , there are 2 equilibrium points.  

 

 (iii) When , i.e. , there are no equilibrium points. 

 

  For case (iii),  is negative for all values of P.  In this scenario, the harvesting rate is large 

enough to ensure that the population will decrease regardless of the size of the initial population.  
The species will eventually become extinct when the population reaches zero. 

 

d
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t

d 0
d
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Example 3.3.1 
 
Let P(t) be the population of a certain animal species.  It was observed that if the population was 
large, the rate of growth decreases or even becomes negative; if the population was too small, fertile 
adults run the risk of not being able to find suitable mates so that the rate of growth is again negative.  
A suggested model for this population is given by 
 

. 

 
The carrying capacity N indicates when the population is too big and the sparsity parameter M 
indicates when the population is too small. 
 
(a) Find the equilibrium points and sketch a phase line for the above model. 

 
(b) Assume N = 100, M = 1 and k = 1.  Hence, sketch a graph of the solution which satisfies the 

initial condition P(0) = 20, to show the behaviour of the population of the animal species in the 
long run. 
 

(c) Assume that the animals are emigrating with a fixed rate E. Write down the new differential 
equation and find the set of values of E at which there are two, one or no equilibrium points for 
P > 0. Leave your answers to 2 decimal places. 

 
Solution: 

(a) For equilibrium points,   

 P = 0, P = N or P = M 
 
 
 
 
 
 
 
 
(b) Given: N = 100, M = 1 and k = 1. 

 

0  , 11
d
d







 





  k

M
P

N
PkP

t
P

d 1 1 0
d

        
   

P P PkP
t N M

P 

t 
O 

P = 100 

20 

P = 0 

P = M 

P = N 
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(c) If the animals are emigrating with a fixed rate E, then the differential equation becomes 

 

  

 Consider  

  

Let .  When N = 100, M = 1 and k = 1, we have 

. 

 

 
 
The graph of f(P) has a maximum turning point at (66.83, 1459.29) and a minimum turning 
point at (0.4987, −0.2488). 
 
Hence, for  

   
 (i) , there are no equilibrium points for P > 0. 
 
 (ii) , there is only one equilibrium point for P > 0. 
 
 (iii) , there are two equilibrium points for P > 0. 

 

Note: When ,  < 0 for all positive values of P.  Thus, the population P 

decreases and becomes zero in a finite amount of time.  As such, the species will become 
extinct. 

 
 
 
 
  

d 1 1
d
P P PkP E
t N M

       
  

d 1 1 0 1 1
d
P P P P PkP E kP E
t N M N M

                  
     

 f 1 1P PP kP E
N M

       
  

   f 1 1
100
PP P P E     

 

1459.29E 

1459.29E 

0 1459.29E 

1459.29E  d
d
P
t

(66.83, 1459.29) 

(0.4987, −0.2488) 

1 

f(P) = E 
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Example 3.3.2 
 

Consider the population model  for a species of fish in a lake.  Suppose it is decided 

that fishing will be allowed, but it is unclear how many fishing licenses should be issued.  Suppose 
the average catch of a fisherman with a license is 3 fish per year. 
 
(a) What is the largest number of licenses that can be issued if the fish are to have a chance to 

survive in the lake? 
 
(b) Suppose the number of fishing licenses in part (a) is issued.  Discuss the long-term behaviour 

of the fish population for different initial population. 
 
Solution: 
 
(a) Let n denote the number of licenses issued. 

Then, the differential equation becomes . 

Equilibrium points:  

      

      

The graph of  for different values of n are shown below: 

 
 

Note: 

(i) When , i.e. , there are no equilibrium points and .  In 

other words, if the number of licenses issued is more than , the species of fish will 

be wiped out in a finite period of time. 

50
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d
d 2PP

t
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100 10000 600 50 2500 150

2
nP n 
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(ii) When , i.e. , there are two equilibrium points.  In other words, 

if the number of licenses issued is less than , the species of fish will eventually 

stabilise at a number greater than 50.  However, this number will be smaller with more 
licenses issued. 

 
Thus, the largest number of licenses that can be issued for the fishes to have a chance to 
survive is 16. 

 

(b) When n = 16, the equilibrium points are 
. 

 

 
 

(i) If initial population  > 60, then  < 0 and hence, the population P will decrease 

to the equilibrium value of 60. 
 

(ii) If 40 <  < 60, then  > 0 and hence, the population P will increase to the 

equilibrium value of 60. 
 

(iii) If 0 <  < 40, then  < 0 and hence, the population P will decrease to zero after a 

finite period of time. 
  

2500 150 0n  50
3

n 

50
3

50 2500 150(16) 50 10 40 or 60P      

(0)P d
d
P
t

(0)P d
d
P
t

(0)P d
d
P
t
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P = 40 
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§4 Analytic Solutions of Second Order Differential Equations 
 
 
4.1 Introduction 
 

A second order differential equation is one that contains the term  as the highest derivative.  The 

following are examples of second order differential equations: 
 

(a)     (c)   

(b)    (d)  

 
Which of the above types of differential equations do you already know how to solve? 
 
 
4.2 Homogenous Linear Second Order Differential Equations with Constant Coefficients 
 
A second order differential equation of the form  
 

  --- (1) 

 
where a, b and c are real constants is said to be a homogenous linear second order ordinary 
differential equation with constant coefficients.  

 
Note that we sometimes use the notations  and  to represent the first and second derivative of y 
with respect to x respectively.  Equation (1) may then be written as 

 
  --- (2) 

 
We shall now look at how to solve such a differential equation analytically. 
 
Definition 
 
Two functions defined on an open interval I are said to be linearly independent on I if neither 
function is a constant multiple of the other. 

 
 
Example 4.2.1 
 
Which of the following pairs of functions are linearly independent on the entire real line? 
(a)  
(b)  
(c)  
 
Solution:  
 

d2y
dx2

d2y
dx2  f x  a d2y

dx2  b dy
dx

 cy  0

d2y
dx2  g y  a d2y

dx2  b dy
dx

 cy  f x 

a d2y
dx2  b dy

dx
 cy  0

y y

a y  b y  cy  0

sin  and cosx x
sin 2  and sin cosx x x

2e  and ex x
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,   

 
For (a) and (c), the ratio of each pair does not give a constant-valued function on the entire real line 
and hence, they are linearly independent on the real line. 
 

 (constant on the entire real line)  

 
 are linearly dependent on the real line. 

 
 

Theorem 4.2.1 
 

If y1 and y2 are linearly independent solutions of the differential equation , 

then the general solution is , where A and B are arbitrary constants.  Note that y1 
and y2 are functions of x. 

 
Proof: 

 
Since y1 and y2 are solutions of equation (1), we have  

 

 --- (3) 

 --- (4) 

From , we can obtain   

 and . 

 
Substitute into equation (1), we have 
 

   

Hence,  is a solution to . 

 

sin tan  
cos

x x
x
 3

2

e e  
e

x
x

x 

sin 2 2sin cos= 2
sin cos sin cos

x x x
x x x x



 sin 2  and sin cosx x x

a d2y
dx2  b dy

dx
 cy  0

1 2y Ay By 

2
1 1

12

d d 0
d d

y ya b cy
x x

  

2
2 2

22

d d 0
d d

y ya b cy
x x

  

1 2y Ay By 

1 2d dd
d d d

y yy A B
x x x
 

2 22
1 2

2 2 2

d dd
d d d

y yy A B
x x x

 

 
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2 2
1 2 1 2

1 22 2

2 2
1 1 2 2

1 22 2

d dLHS
d d

d d d d
d d d d

d d d d
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0 0
0
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x x

y y y ya A B b A B c Ay By
x x x x

y y y yA a b cy B a b cy
x x x x

A B

  

           
  

   
        

   
 




1 2y Ay By  a d2y
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Strictly speaking, we have only proven that  is a solution to the differential equation, 
and not that it must be the general solution.  We shall accept that  is the form of the 
general solution without proof. 
 
One natural question to ask now will be what will be the forms of y1 and y2.  It turns out that a function 
of the form , where m is a constant seems to be a possible candidate. 
 

If  is to be a solution, then  and .   

Substituting these expressions into equation (1), we see that  if  
 

 
 
  or    --- (5) 
 
Since  is never zero, thus  is a solution to equation (1) if m is a root of the equation  

 
  --- (6) 

 

Equation (6) is known as the characteristic equation or auxiliary equation of  

Note that it can be obtained from the differential equation by replacing  with m2,  with m and 

y with 1. 
 

The characteristic equation is a quadratic equation whose roots can be easily obtained.  Let the roots 
be m1 and m2.  It is well know that the roots of a quadratic equation with real coefficients may be 
classified into three cases: 

 
Case 1:  The roots are real and distinct. 
Case 2:  The roots are complex conjugate pairs. 
Case 3:  The roots are real and equal. 
 

Depending on the nature of the roots of the characteristic equation, we will obtain different forms of 
the general solutions.  We will discuss each case in turn. 
 
Case 1: The roots are real and distinct. 
 
In this case, the roots m1 and m2 of the characteristic equation are real and distinct and so  
and  are two linearly independent solutions of equation (1).  By Theorem 4.1, we have the 
following result. 
 
Result 4.2.2 
 
If the roots m1 and m2 of the characteristic equation  are real and distinct, then the 

general solution of  is , where A and B are arbitrary constants. 
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emx emxy 
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a d2y
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 cy  0
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Example 4.2.2 

Solve the differential equation . 

 
Solution: 
 
Characteristic equation: 

 

 
General solution:  

 
 

Case 2: The roots are complex conjugate pairs. 
 
In this case, the roots m1 and m2 of the characteristic equation are complex numbers and we can write 

 
  and   

 
where α and β are real numbers. (Taking 1 i  , e.g. 16 4i  ) 
 
From , and using Euler’s formula (i.e. ), we obtain 

 

 

 
Result 4.2.3 
 
If the roots m1 and m2 of the characteristic equation  are the complex numbers 

 and , then the general solution of  is 

 e cos sinxy A x B x    , where A and B are arbitrary constants. 
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  







   

 

 

 



 

 

   
     
     
     

2 0am bm c  

1 im    2 im    a d2y
dx2  b dy

dx
 cy  0
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Example 4.2.3 

Solve the differential equation . 

Solution: 
 
Characteristic equation: 

 

 
General solution:  2e cos sinxy A x B x   
 
 
Case 3: The roots are real and equal. 
 
If m1 = m2 = m, then, we immediately only have one solution of the form .  We need to find 
another solution. It turns out that  is also a solution in this case which we shall verify. 
 
In solving the characteristic equation, we get  

. 

 
Since the roots are real and equal,  and we obtain  

 

 

 
From , we have  

 

and  

 
Substitute into LHS of equation (1), we obtain 

 

 

 

2

2

d d4 5 0
d d

y y y
x x

  

  
 

2

2

4 5 0

4 4 4 1 5
2 1

4 4 2 i
2

m m

m

  

  


  
   

emxy 
emxy x

2
2 40

2
b b acam bm c m

a
  

    

2 4 0b ac 

2 0
2

bm ma b
a


   

emxy x

d e e
d

mx mxy mx
x
 

2
2 2

2

d e e e 2 e e
d

mx mx mx mx mxy m m m x m m x
x

    

LHS  a d2 y
dx2  b dy

dx
 cy

 a 2memx m2xemx  b emx mxemx  cxemx

 2ma  b emx  am2  bm  c  xemx

 0 emx  0  xemx

 0
 RHS
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Using Theorem 4.2.1, we have the following result. 
 

Result 4.2.4 
 
If the roots of the characteristic equation  are real and equal such that m1 = m2 = m, 

then the general solution of  is , where A and B are arbitrary 

constants. 
 
 
Example 4.2.4 

Solve the differential equation . 

 
Solution: 
 
Characteristic equation: 

 

 
General solution:  
 
 
Example 4.2.5 

 
Show by means of the substitution  that the differential equation 

 

 
can be reduced to the form 

 

 
where a and b are real numbers to be determined. 

 
Hence, or otherwise, find the general solution of the given differential equation, expressing y in 
terms of x. 

 
Solution: 

   and    

 

2 0am bm c  

a d2y
dx2  b dy

dx
 cy  0  emxy A Bx 

2

2

d d4 4 0
d d

y y y
x x

  

 

2

2

4 4 0

2 0
2

m m

m
m

  

 

 

  2e xy A Bx  

3z y
22

2 2 3
2

d d d3 9 6 2 0
d d d

y y yy y y y
x x x

     
 

2

2

d d 0
d d

z za bz
x x

  

3 2d d3
d d

z yz y y
x x

  
22 2

2
2 2

d d d3 6
d d d

z y yy y
x x x

    
 

22
2 2 3

2

2

2

d d d3 9 6 2 0
d d d

d d3 2 0    (Shown)
d d

y y yy y y y
x x x

z z z
x x

     
 

  
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Characteristic equation: 

 

 
General solution:    

   

 
 
4.3 Non-Homogenous Linear Second Order Differential Equations with Constant 

Coefficients 
 
The general form for a non-homogeneous second order differential equation with constant 
coefficients is  
 

 
2

2

d d f
d d

y ya b cy x
x x

     --- (7) 

 
where a, b and c are real constants and  f 0x  . 
 
Now, we call its homogeneous equivalent (i.e. equation (1) under Section 4.2) the associated 
homogeneous equation. The general solution to the associated homogeneous equation is known as 
the complementary function, which we will denote by cy . 
 
Any function, py , that satisfies equation (7) is known as its particular solution or particular 
integral. 
 
Theorem 4.3.1 
 
Let py  be any particular solution of the non-homogeneous linear second order differential equation 

 
2

2

d d f
d d

y ya b cy x
x x

   , and let y1 and y2 be linearly independent solutions of the associated 

homogeneous differential equation . Then the general solution is 

1 1 2 2 py c y c y y   , where 1 2 and c c are arbitrary constants. 
 
Thus, the general solution of the non-homogeneous linear second order differential equation can be 
written as c py y y  , where 1 1 2 2cy c y c y  . 
 
As discussed earlier, cy  may be obtained by solving the characteristic equation of the associated 
homogeneous differential equation. Now, the question is, how do we find py ? One way is to use the 
method of undetermined coefficients. 
 
 
 

  

2 3 2 0
1 2 0

2   or   1

m m
m m

m

  

  

  

2e ex xz A B  
3 2

3 2

e e

e e

x x

x x

y A B

y A B

 

 

 

 

a d2y
dx2  b dy

dx
 cy  0
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Method of Undetermined Coefficients 
 
The main idea behind this method is to guess a possible form for py  by looking at the type of function 

that makes up the RHS of equation (7), i.e.  f x . We may choose a possible py  that is kind of similar 

to  f x  in some ways. The chosen py would probably contain some unknown (hence, 
‘undetermined’) coefficients. We then substitute this chosen py  into equation (7) and by equating 
like terms, we determine the values of these coefficients.  
 
This method would have a good chance of success if  f x is a constant, a polynomial function, an 
exponential function, a sine or cosine function, or some sums of products of these functions. 
 
The following table shows some common  f x  and their corresponding suitable particular 
integrals: 
 

 f x   Trial function for particular integral 

Polynomial: 
  2

0 1 2f ... n
nx a a x a x a x       

0 1 ... ,n
p ny x x      where ,0i i n    

are constants to be determined. 
 

Exponential function: 
  0f axx k e   

,ax
py ke  where ݇ is a constant to be 

determined. 
 

Trigonometric functions: 
 f cos sinx a kx b kx    

cos sin ,py kx kx    where   and   are 
constants to be determined. 
 

 
For example, 
 

 f x   Trial function for particular integral 

 f 3 4x x    py ax b    

  2f 2 12x x    2
py ax bx c     

  2f 5e xx    2e x
py k    

 f 2sin 3cosx x x    sin cospy a x b x    

 f 3 4exx x    ex
py ax b k     

 f 2sin 2x x    sin 2 cos 2py a x b x    
 
Note: 
 
If the particular integral contains a term found in the complementary function, then the choice for the 
particular integral must be multiplied by ݔ, repeatedly, until the chosen particular integral is no longer 
a solution of the corresponding homogeneous equation.   
For example, if  f 10exx   and 3e ex x

cy A B   , then we should choose e .x
py kx   
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Example 4.3.1 
 
Find the general solution of  
 

(a) 
2

2

d d3 6
d d

y y x
x x

  , 

(b) 
2

2
2

d d4 4 16e ,
d d

xy y y
x x

    

(c) 
2

2

d d2 5 sin 2 .
d d

x x x t
t t
    

 
Solution: 
 
(a) Characteristics equation: 2 3 0 0 or 3m m m      

Complementary function: 3e x
cy A B    

 
Let the particular integral 2

py ax bx  . Then 2  and 2 .p py ax b y a     
Substituting into the differential equation:  

 
3 6

2 3 2 6
6 2 3 6

p py y x

a ax b x
ax a b x

  

  

  

 

21,
3

a b      

Thus 2 2 .
3py x x    

General solution is 3 2 2e .
3

x
c py y y A B x x        

(b) Characteristics equation: 2 4 4 0 2m m m       
Complementary function:   2e x

cy Ax B    
 
Let 2 2e x

py kx   . 
Then 

 

2 2 2

2 2 2 2 2

2 2 2 2

2 e 2 e , 

2 e 4 e 4 e 4 e

         2 e 8 e 4 e

x x
p

x x x x
p

x x x

y kx kx

y x k kx kx kx

k kx kx

 

   

  

  

    

  

 

 
Substituting into the differential equation: 

     
 

2

2 2 2 2 2 2 2 2 2 2

2 2

4 4 16e

2 e 8 e 4 e 4 2 e 2 e 4 e 16e

2 e 16e
8

x
p p p

x x x x x x x

x x

y x y x y x

k kx kx kx kx kx

k
k



      

 

   

      

 
 

  

Thus 2 28 e .x
py x   

 
General solution is   2 2 2 e 8 ex xy Ax b x     
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(c) Characteristics equation: 2 2 5 0 1 2im m m       . 
Complementary function:  e cos 2 sin 2t

cy A t B t   

   

1 4, .
17 17

a b     

Thus 1 4sin 2 cos 2 .
17 17py t t   

 

General solution is   1 4 e cos2 sin 2 sin 2 cos2 .
17 17

tx A t B t t t      

 
 
 
 
 
 
 
 
  

   
   

Let sin 2 cos 2 .

Then
2 cos 2 2 sin 2 ,

4 sin 2 4 cos 2

Substituting into the differential equation:
2 5 sin 2

4 sin 2 4 cos 2 2 2 cos 2 2 sin 2 5 sin 2 cos 2 sin 2

4 sin 2 4 cos

p

p

p

p p p

y a t b t

y a t b t
y a t b t

y y y t

a t b t a t b t a t b t t

a b t b a

 

  

   

   

      

   2 sin 2t t
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§5 Modelling with Second Order Differential Equations 
 
In this section, we will examine how the motion of a vibrating spring (under various circumstances) 
can be modelled by second order differential equations and henceforth describe this motion 
completely by solving these differential equations. 
 
 
5.1 Free Undamped Motion 
  
A spring is an elastic object which is typically used to store energy due to resilience and subsequently 
release it to absorb shock, or to maintain a force between contacting surfaces. 
 
For example, suspension systems in vehicles (that comprise multiple springs) contribute to the 
vehicles’ road holding/handling and braking for good active safety and driving pleasure, and keeping 
vehicle occupants comfortable and reasonably well isolated from road noise, bumps, and vibrations. 
 
Consider an elastic string or a spring in both its natural state, as well as when it is suspended with a 
mass hanging from it as shown in Figure 1.  
 
 
 
 
 
 
 
 
 
 
 
  
  
 
 
 
 
 
Now, suppose the initial length of the spring is at x = 0, the equilibrium position. Adding on a mass 
will stretch the spring by a certain distance as shown in Figure 1. Let x be the displacement of the 
mass, m, from the equilibrium position, where the positive direction is in the same direction as the 
gravitational acceleration, g. The spring will tend to restore to its original length by reacting with a 
restoring force. 
 
In general, we can describe the restoring force using a physical principle known as Hooke’s Law. 
 
Hooke’s Law  
 
The restoring force FR exerted by an elastic spring on a mass is directly proportional to the 
displacement x of the mass m from its equilibrium position. In other words, 
 

FR = –kx 
 

for some positive constant k (known as the spring constant). 

Equilibrium Position: 

the position of the mass 
attached to the spring 
when the spring is 
unstretched 

Restoring Force: 

the force that the 
spring exerts on the 
mass 

x = 0 

x 

mg 

kx 
mass, m 

Figure 1: Elastic Spring 
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Note that the negative sign on the right hand side of Hooke’s Law indicates that the restoring force 
FR acts in the opposite direction of the displacement x. 
 
Before we discuss how to describe the motion of the mass in Figure 1 mathematically, let us first 
consider another spring-mass system as shown in Figure 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Here, a mass is attached to one end of a spring whose other end is fixed to a vertical wall. The mass 
is allowed to move on a smooth, frictionless horizontal surface. Suppose this spring-mass system is 
set in motion by displacing the mass from its resting position and letting it oscillate. 
 
Using Newton’s second law (which states that the net force on a body is equal to its mass multiplied 
by its acceleration), the equation of motion of the mass may be written as 
 

 
where xʺ is the second derivative of x with respect to time, which represents the acceleration of the 
mass due to its motion.  
 
Rewriting the equation, we obtain 
 

 

 
which is a linear homogeneous second order differential equation with constant coefficients.  
 
Hence, by finding its characteristic equation, we can obtain the general solution as 
 

 
 

where A is the amplitude (i.e. maximum distance from the equilibrium position), is the 
angular frequency, and  is the phase angle. This equation models the motion of the mass, which in 
this case, will oscillate about the equilibrium position freely without resistance. This motion is known 
as simple harmonic motion. 
 

,   mx F kx

2

2

d 0,
d

 
x k x

t m

cos( ),x A t  

  k m


Figure 2: A spring-mass system 

x = 0 

(equilibrium position) 

spring mass 
FR frictionless 

horizontal 

FR = 0 

Dashed arrows represent 
the direction of the 
motion of the mass. 

x 

 

FR 
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Depending on the initial conditions, the values of A and  can be found. If the constants k and m are 
known, we can calculate the angular frequency ω. The graph below shows the solution curve for the 
case when k = 6 and m = 2, and A = 5 and  
 

 
 
As one would expect, the mass will oscillate indefinitely and the motion repeats itself i.e. it is 
periodic. The period (the time taken for the mass to complete one full oscillation) is given by 
 

2π 2π mT
k

  . 

The frequency (the number of complete cycles per second) of the motion, measured in Hertz (Hz), 
is given by  
 

1 1
2π 2π

kf
T m


   . 

 
Note that both the period and frequency of the motion is independent of the amplitude A and the phase 
angle . 
 
 
  



0. 


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5.2 Free Damped Motion 
 
Another important model that uses the homogeneous linear second order differential equation is the 
spring-mass-dashpot system. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The equation of motion for the mass m shown above is 
 

 

 
where c is a positive constant called the damping constant of the dashpot. The higher the value of c, 
the higher the damping or higher resistance to motion is. Rewriting, the above equation gives 
 

 

 
which is a homogeneous linear second order differential equation with constant coefficients. Note 
that the right hand side of the equation is zero, which indicates that no external force is exerted on the 
system to force the motion. Consequently, the motion is referred as a free damped motion or free 
damped oscillation. 
 
Using the characteristic equation, the equation can be solved. As discussed in the previous chapter, 
the solution depends on the roots of the characteristic equation (whether they are (a) real and distinct, 
(b) real and equal, or (c) complex conjugate pairs). 
 
 
  

   
net force on mass restoring force force exerted exerted by spring by dashpot

,mx kx cx    

2

2

d d 0,
d d

x c x k x
t m t m
  

spring mass 
F 

frictionless horizontal surface 

 x = 0 

(equilibrium position) 

x 

 

dashpot 

A device which resists motion, 
such as door closers and shock 
absorbers. The force it exerts on 
the mass is proportional to the 
velocity of the mass. 

Figure 3: A Spring-mass-dashpot system 

www.KiasuExamPaper.com 
226



National Junior College Mathematics Department 2016 

 
2016 – 2017 / H2 FMaths / Further Differential Equations (Teacher’s Version) Page 36 of 42 

Example 5.2.1 
 
Consider a spring-mass-dashpot system modelled by the equation 
 

 
 
where the coefficient b determines the amount or degree of damping. It is also given that the initial 
displacement of the mass from its equilibrium position and its initial velocity are 1 m and 1 ms–1 
respectively. For each of the following cases, find x in terms of t and sketch the corresponding solution 
curve. 
 
(a) b = 7, 
(b) b = 2,  
(c) b =  
 
Solution: 
 
(a)  

Characteristic equation:  

 

 
Hence the general solution is given by  
 
When t = 0, x = 1  

 
When t = 0, xʹ = 1  
Solving (1) and (2) simultaneously, A = 2, B = –1. Hence  
The graph is as shown below. Note that the motion is not oscillatory. 

 

 
 

As can been observed from the graph, the displacement x approaches zero in a gradual manner. 
This signifies that the damping provided by the dashpot is quite large compared to the restoring 
force exerted by the spring. In this case, we say that the motion is over-damped. 

 
 

10 0,x bx x   

2 10.

7 10 0x x x   
2 7 10 0m m  

( 2)( 5) 0
2 or 5

m m
m m

   
    

2 5e e .t tx A B  

1  (1)A B     
2 5 2 5e e 2 e 5 et t t tx A B x A B        

1 2 5  (2)A B      
2 52e e .t tx   

2 52e et tx     
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(b)  
 

Characteristic equation:  
 

 

 
Hence the general solution is given by  
 
When t = 0, x = 1  
 

 

 
When t = 0, xʹ = 1  
 
Hence  

 
The graph is as shown below. Note that the motion is not periodic. 
 

 
 

As can been observed from the graph, the mass moves past the equilibrium position, then 
oscillates about it but with a smaller amplitude after each oscillation. As time goes on, the 
oscillations eventually taper off. In this case, because there is insufficient damping (since b has 
been reduced) to resist the motion, the system is said to be under-damped. 

 
 
  

2 10 0x x x   

2 2 10 0m m  

22 2 4(1)(10)
2(1)

1 3i

m

m

  
 

   

e ( cos3 sin 3 ).tx A t B t 

1 A 

 
e ( cos3 sin 3 ) e ( 3 sin 3 3 cos3 )

e ( 3 )sin 3 ( 3 ) cos3

t t

t

x A t B t A t B t
B A t A B t

 



      

   

1 1 3  0B B    

e cos3 .tx t

e cos 3tx t  
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(c)  
 

Characteristic equation:  
 

 

 
Hence the general solution is given by  
 
When t = 0, x = 1  
 

 

 
When t = 0, xʹ = 1  
 

Hence  

 
The graph is as shown below. Note that the motion is not oscillatory. 
 

 
 

As can been observed from the graph, the system moves very quickly towards zero and remains 
close to it without any oscillation. This is the case where the motion is said to be critically 
damped. 
 
It is useful to note that critically damped systems are similar to over-damped systems and are 
not oscillatory. In many mechanical vibration systems where damping is employed to reduce 
or control oscillations, one hopes to achieve critical damping. 

 
 

2 10 10 0x x x   

2 2 10 10 0m m  

 2
10 0

10 (repeated roots)

m

m

  

  

10 10e e .t tx At B  

1  (1)B   

 10 10 10 10 10e e e 10 e 10et t t t tx At B x A t B         

1 10 1 10A A     

  101 10 1 e .tx t     

  101 10 1 e tx t     
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5.2 Driven Motion 
 
A non-homogeneous linear second order differential equation with constant coefficients used to 
represent a mechanical system may be written as  
 

 
2

2

d d
d d

x xa b cx F t
t t
       ---    (8) 

 
where a, b and c are real constants,  x t  is the response function and   F t  is the input function. So 
far, we have considered free undamped and damped motion. These motions are called ‘free’ because 
there is no ‘input function’. In other words,   F t = 0 in the equation of the motion, and this means 
that there is no force driving the motion. 
 
Damped Driven Motion 
 
Now, suppose the RHS of equation (8) is not zero, i.e. , so that there is now an external force 
acting on the mass that is vibrating or allowed to vibrate. For instance, in a spring-mass-dashpot 
system, instead of having the spring fixed to a stationary wall or support, a driving force is moving 
the spring, as illustrated below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
This gives rise to a system with a damped driven or forced motion. 
 
  

  0F t 

spring mass 

frictionless horizontal 
surface 

 

x = 0 

(equilibrium position) 

x 

 

dashpot 

Figure 4: A Spring-mass-dashpot system with driven motion 

driving force 
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Undamped Driven Motion 
 
Consider now the case of a spring-mass system without damping, and driven by some external force. 
The figure below depicts a mass hanging from a spring without any resisting force. The support to 
which the spring is attached is moved under some kind of force, and in response, the mass will move 
and oscillate. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This system where the motion is undamped but driven by some force may be modelled using the 
same equation (8), with b = 0. 

Equilibrium 
Position 

x = 0 

x 
mg 

kx 
mass, m 

Figure 5: Elastic spring with driven motion 

Support moves 
under applied 
force 
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Example 5.3.1 
A 10 kg mass is attached to a spring having a spring constant of 140 Nm-1. The mass is started in 
motion from the equilibrium position with an initial velocity of 1 ms-1 in the upward direction and 
with an applied external force   5sinF t t . Find an expression for the position of the mass, x, at 
any time t, if the force due to air resistance is 90x   N. 
Solution: 
The equation of motion for the mass: 

10 90 140 5sin
19 14 sin
2

x x x t

x x x t

  

   

 

 
 

Characteristics equation: 2 9 14 0 2 or 7m m m         
Complementary function: 2 7e ex x

cy A B     
Let cos sinpy a t b t  . 
Then sin cospy a t b t     and cos sinpy a t b t    . 

   

   

1cos sin 9 sin cos 14 cos sin sin
2

113 9 sin 9 13 cos sin
2

139 13 0
9

13 1 9 and 13 9
9 2 500

13 9 13
9 500 500

a t b t a t b t a t b t t

b a t b a t t

b a b a

a a a

b

       

   

     

       
 

      
 

 

Thus 13 9sin cos .
500 500py t t    

General solution is 2 7 13 9 e e sin cos .
500 500

t tx A B t t      

2 7 13 92 e 7 e cos sin .
500 500

t tx A B t t       
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When t = 0, 0 and 1x x   . 
9 90

500 500
A B A B       

Also, 
13 5131 2 7 2 7
500 500

9 513 99 992 7 5
500 500 100 500

9 99 9
500 500 50

A B A B

B B B B

A

       

         
 

    

 

Thus, 2 79 99 13 9 e e sin cos .
50 500 500 500

t tx t t       
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