2024 RI H2 Chemistry Paper 4 - Suggested Solutions

1(a)(i) Table 1.1

temperature of room temperature water, T_1 / $^{\circ}$ C	30.4
temperature of hot water, T ₂ / °C	70.1
maximum temperature of combined water, T_3 / $^{\circ}$ C	48.2

1(a)(ii) Heat energy lost by the hot water Heat energy gained by the room temperature

 $= mc\Delta T$ water = $mc\Delta T$

 $= 50 \times 4.18 \times (T_2 - T_3)$ $= 50 \times 4.18 \times (T_3 - T_1)$

 $= 50 \times 4.18 \times (70.1 - 48.2)$ $= 50 \times 4.18 \times (48.2 - 30.4)$

= 4577.1 J= 3720.2 J= 4580 J (3 s.f.)= 3720 J (3 s.f.)

1(a)(iii) Heat energy absorbed by the calorimeter

Heat capacity of calorimeter, Ccal

 $\frac{856.9}{T_3 - T_1} = \frac{856.9}{48.2 - 30.4}$ = heat energy lost by hot water

 $= 48.14 \text{ J} {}^{\circ}\text{C}^{-1}$ - heat energy gained by room temp water

= 4577.1 - 3720.2 $= 48.1 \text{ J} \circ \text{C}^{-1} (3 \text{ s.f.})$

= 856.9 J

= 857 J (3 s.f.)

1(b)(i)

mass of capped weighing bottle and FA 1 / g	8.782
mass of capped weighing bottle after emptying FA 1 / g	4.745
mass of FA 1 used / g	4.037

time / min	temperature / °C
0.0	30.4
0.5	30.4
1.0	30.4
1.5	30.4
2.0	30.4
2.5	_
3.0	36.2
3.5	36.4
4.0	36.5
4.5	36.3
5.0	36.2
5.5	36.1
6.0	36.0
6.5	36.0
7.0	35.9
7.5	35.8
8.0	35.6

1(b)(ii)

1(b)(iii) $T_{\text{min}} = 30.4 \,^{\circ}\text{C}$ $T_{\text{max}} = 36.8 \,^{\circ}\text{C}$ $\Delta T = +6.4 \,^{\circ}\text{C}$

1(b)(iv) Total heat change, q

= heat absorbed by solution + heat absorbed by calorimeter

 $= (\text{mc}\Delta T) + (C_{\text{cal}} \Delta T)$

 $= (100 \times 4.18 \times 6.4) + (48.14 \times 6.4)$

= +2983 J

= +2980 J (3 s.f.)

1(b)(v) Amount of MgSO₄ used

 $=\frac{4.037}{24.3 + 32.1 + 4(16.0)}$

= 0.03353 mol

 $\Delta H_{\text{sol}} = -\frac{q}{\text{n(MgSO}_4)} = -\frac{+2983}{0.03353} = -89000 \text{ J mol}^{-1} \text{ (or } -89.0 \text{ kJ mol}^{-1}\text{) (3 s.f.)}$

The heat energy absorbed by and <u>heat capacity of calorimeter</u> obtained in **(a)(iii)** is <u>higher than expected</u>. Hence, the ΔH_{sol} of **FA 1** obtained in **(b)(v)** is <u>more exothermic than expected</u> (or the magnitude of ΔH_{sol} of **FA 1** obtained in **(b)(v)** is higher than expected).

2(a)(i)

	tests	observations
1	Add 1 cm depth of FA 2 into a clean test-tube. To this test-tube add 10 drops of	
	sodium hydroxide followed by iodine solution, dropwise, until a permanent orange colour is present.	
	Warm the test-tube in the beaker of hot water for 2 minutes.	(pale) Yellow ppt formed.
2	Add 1 cm depth of FA 2 into a clean test-tube.	
	Add 8 drops of Fehling's solution.	
	Warm the test-tube in the beaker of hot water for 3 minutes.	Brick-red ppt formed.
3	Test solution FA 2 with Universal Indicator paper.	Universal Indicator paper turned <u>dark</u> <u>yellow-green</u> .
		pH is <u>7</u> .

2(a)(ii) H-

2(b)(i)

	tests	observations	
1	Using a 10 cm ³ measuring cylinder, add 2 cm ³ of FA 3 into a clean boiling tube.		
	Using another 10 cm ³ measuring cylinder, measure out 7 cm ³ of aqueous sodium hydroxide. Slowly with shaking, add this completely to FA 3 .	Off-white ppt. rapidly turned brown on contact with air. Ppt. is insoluble in excess NaOH(aq).	
	Stir the contents of the boiling tube with a glass rod.		
	Filter the mixture into a clean test-tube. The filtrate will be used for test 4 .	Brown residue. Colourless filtrate.	
	While waiting, proceed to test 2 and 3 .	Colouriess mitrate.	

2(b)(i)

	tests	observations
2	Add 1 cm depth of FA 3 into a clean test-tube.	
	Add 2 cm depth of aqueous sodium carbonate.	Off-white/ white ppt.
		Effervescence was observed. CO ₂ gas evolved gave a white ppt. with limewater.
3	Add 1 cm depth of FA 3 into a clean test-tube.	
	Add 1 cm depth of aqueous silver nitrate.	White ppt formed.
	Filter the mixture and discard the filtrate.	White residue obtained.
	Wash the residue by pouring deionised water through it. Discard the washings.	
	Place the filter funnel containing the residue into a test-tube containing 1 cm depth of dilute nitric acid.	
	Carefully add aqueous ammonia to the filter funnel until it covers the residue.	Colourless filtrate.
	The filtrate will collect in the test-tube containing the dilute nitric acid.	White ppt formed.
4	Add 1 cm depth of the filtrate from test 1 into a clean test-tube.	The professional
	Add dilute sulfuric acid drop-wise, until in excess.	White ppt. formed, soluble in excess dilute H ₂ SO ₄ to give a colourless solution.

2(b)(ii)

cation	evidence	
<u>Mn²+</u>	In <u>test 1</u> , FA 3 reacted with NaOH(aq) to give <u>an off-white ppt. of Mn(OH)</u> ² which was insoluble in excess NaOH(aq). On contact with air, Mn(OH) ₂ was oxidised <u>to brown Mn(OH)</u> ₃ .	
<u>A/³+</u>	In <u>test 2</u> , FA3 reacted with Na ₂ CO ₃ (aq) to give a <u>white ppt. of A/(OH)</u> ₃ together with the effervescence of <u>CO₂ gas</u> .	
anion	evidence	
<u>C/</u>	In <u>test 3</u> , FA 3 reacted with $AgNO_3(aq)$ to form a <u>white ppt. of AgC_1</u> . White ppt of AgC_1 soluble in excess ammonia to form colourless solution of $[Ag(NH_3)_2]^+$.	

3(a)(i)

Titration number	1	2
Final burette reading / cm ³	21.90	41.80
Initial burette reading / cm ³	0.00	20.00
Volume of FA 4 used / cm ³	21.90	21.80
Values used (✓)	✓	✓

3(a)(ii) Average volume of **FA 4** used = $\frac{21.90 + 21.80}{2}$ = $\frac{21.85 \text{ cm}^3}{2}$

3(b)(i) Amount of Na₂S₂O₃ =
$$\frac{21.85}{1000}$$
 × 0.100
= 2.185 × 10⁻³ mol
Amount of I₂ produced = (½) (2.185 × 10⁻³)
= 1.093 × 10⁻³ mol
= 1.09 × 10⁻³ mol

3(b)(ii) Amount of KMnO₄ reacted = (2/5) (1.093 × 10⁻³) = 4.372×10^{-4} mol = 4.37×10^{-4} mol

3(b)(iii) Amount of KMnO₄ in 25.0 cm³ **FA 7** = 4.372×10^{-4} mol

Amount of KMnO₄ in 250 cm³ **FA 7** = Amount of KMnO₄ in 34.50 cm³ **P** = $4.372 \times 10^{-4} \times 10 = 4.372 \times 10^{-3}$ mol Conc. of KMnO₄ in **P** = $\frac{4.372 \times 10^{-3}}{34.5 \times 10^{-3}} = 0.1267$ mol dm⁻³ = $\frac{0.127 \text{ mol dm}^{-3}}{34.5 \times 10^{-3}}$ (3sf)

3(b)(iv) Mass of KMnO₄ =
$$0.1267 \times (39.1 + 54.9 + 4 \times 16.0) = 20.02 \text{ g} = \underline{20.0 \text{ g}} (3\text{sf})$$

3(c)(i) Percentage =
$$\frac{21.0 - 20.0}{21.0} \times 100 = \frac{4.76\%}{100}$$
 (3sf)

- **3(c)(ii)** I <u>do not agree</u> with the student, as <u>KI used was in excess</u>, hence the precision of the apparatus used is not relevant.
- 4(a) Excess H₂NCH₂CH₂NH₂(aq) must be used so that the equilibrium position of equation 4 lies to the right and the reaction mixture contains mainly [Ni(en)₃]²⁺(aq).

 OR

 Excess H₂NCH₂CH₂NH₂(aq) must be used to ensure complete ligand exchange.
- **4(b)** Dilution of **FA 8**, 2.00 x 10^{-3} mol dm⁻³ [Ni(H₂O)₆]²⁺(aq)
 - 1. Using a burette, transfer 50.00 cm³ of **FA 8** to a 100 cm³ volumetric flask.
 - 2. Top up to the mark with deionised water, stopper the volumetric flask and shake this solution to obtain a homogeneous solution. Label this solution as solution 1.
 - 3. Repeat steps 1 to 2 using the volumes of **FA 8** shown in the table below to prepare solution 2 to solution 5.

Solution	Volume of FA 8 / cm ³	$[Ni(H_2O)_6]^{2+}$ / mol dm ⁻³
1	50.00	1.00 x 10 ⁻³
2	40.00	8.00 x 10 ⁻⁴
3	30.00	6.00 x 10 ⁻⁴
4	20.00	4.00 x 10 ⁻⁴
5	10.00	2.00 x 10 ⁻⁴

4(c) Procedure

- 1. Using separate 25.0 cm³ pipettes, transfer 25.0 cm³ of 2.00 x 10^{-3} mol dm⁻³ **FA 8** and 25.0 cm³ of 6.00 x 10^{-3} mol dm⁻³ **FA 9** into a 100 cm³ conical flask/ beaker.
- 2. Shake/Swirl the conical flask/ beaker to ensure a homogeneous solution.
- 3. Place the conical flask/ beaker in a <u>thermostatically controlled water bath</u> maintained at 80 °C for about 5 min.
- 4. Measure and record the temperature of the solution using a thermometer.
- 5. Remove the solution in conical flask/ beaker from the water bath and use the spectrometer to immediately measure and record the absorbance.
- 6. Repeat steps 3 5 at 70 °C, 60 °C, 50 °C and 40 °C.
- 7. For each absorbance obtained, <u>read off the calibration line to determine the corresponding concentration of [Ni(en)₃]²⁺(aq) at each temperature.</u>
- 8. Calculate the K_c for each temperature according to the following method.

Let the concentration of [Ni(en)₃]²⁺(aq) obtained from the calibration line be x mol dm⁻³

$$[Ni(H_2O)_6]^{2+} \quad + \quad 3H_2NCH_2CH_2NH_2 \quad \rightleftharpoons \quad [Ni(en)_3]^{2+} \quad + 6H_2O(I)$$
 initial / mol dm⁻³
$$\frac{2.00 \times 10^{-3}}{2} \qquad \qquad \frac{6.00 \times 10^{-3}}{2} \qquad \qquad 0 \qquad \qquad -$$
 mol dm⁻³
$$= 3.00 \times 10^{-3} \qquad \qquad + \times \qquad -$$
 mol dm⁻³
$$eqm \ / \qquad 0.001 - x \qquad \qquad 0.003 - 3x \qquad \qquad [Ni(en)_3]^{2+} \qquad -$$
 mol dm⁻³
$$= x \qquad \qquad \mathcal{K}_c = \frac{x}{(0.001-x)(0.003-3x)^3}$$

4(d)(i)

Compare the equation given to y = mx + c, gradient $= -\Delta H / R$. As $\Delta H < 0$ and R > 0, gradient is a positive constant

4(d)(ii)
$$\ln K_{c} = -\frac{\Delta H}{R} \left(\frac{1}{T}\right) + \frac{\Delta S}{R}$$

$$y = m \quad x + c$$

gradient = $-\Delta H / R$ Hence, $\Delta H = -$ gradient $\times R$ y-intercept = $\Delta S / R$ Hence, $\Delta S = y$ -intercept × R