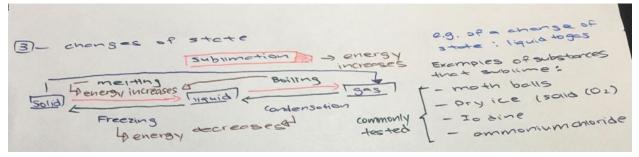
Units and measurements

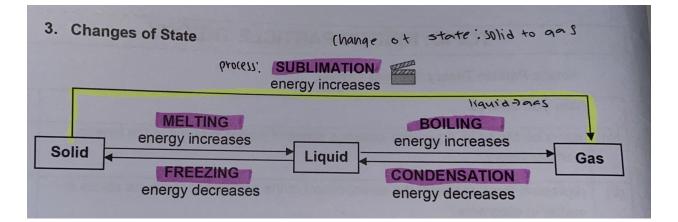
Physical quantities	Apparatus	Accuracy
Temperature	Thermometer	1 decimal place Up to 0.5 degree Celsius (E.g.37.0 <to accuracy<br="" the="">of one d.p.>)</to>
Mass	Electronic Balance	2 decimal place Up to 0.01g (e.g.2.56 to measure mass)
Time	Stopwatch	Nearest Second

- Volume (liquid)
 - → Measuring cylinder (no decimal place, approximately nearest cm³)
 - → Pipette (25.0 cm³, 1 decimal place always " 0 ", volume measured in multiples of 5)
 - → Burette (2 decimal place, 2nd decimal is either " 0 " or " 5 ")
- Volume (gas)
 - \rightarrow Gas syringe (depends on the gas syringe)
- Gas collection

Method	Experimental set up	Characteristics of gas collected
Downward delivery		 Gas collected is more dense than air (hence the gas will sink soluble in water)
Upward delivery		 Gas collected is less dense than air (hence the gas will float soluble in water) ©wzkai

<u>Kinetic Particle Theory</u>

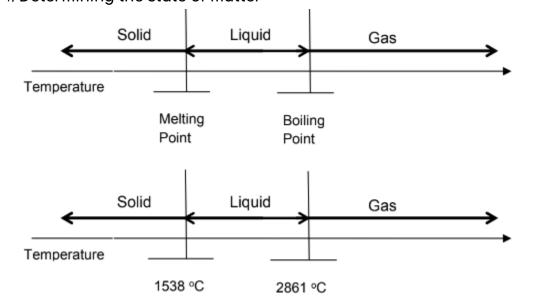

(a) All matter is made up of tiny discrete particles
 (b) The particles are always in constant random motion

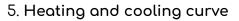

2. State of matter

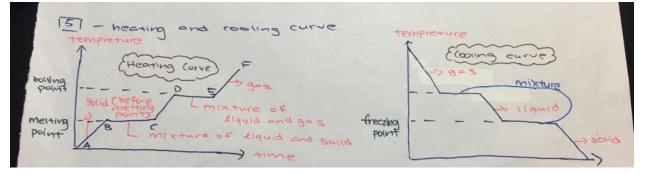
	Solid	Liquid	Gases
Arrangement of particles	Very <u>closely</u> <u>packed</u> in an orderly manner	<u>Closely packed</u> but not in an orderly manner	Very <u>far apart</u> and in random arrangement
Movement of particles	<u>Vibrate</u> about in <u>fixed p</u> osition	<u>Slide</u> over each other	Move <u>freely</u> at <u>high speed</u>
Attractive forces between particles	Very <u>strong</u>	<u>Strong</u>	Very weak or almost negligible
			©wzkai

Diagrams			
	* 4 rows x 4 columns * similar sizes	* should not have any pattern * should touch each other * should not be floating in the air	* very far apart * at least 6 particles
		(touching the ground)	

3. Changes of State




Examples of sublime are


- Moth balls
- Dry ice (solid CO2)
- lodine

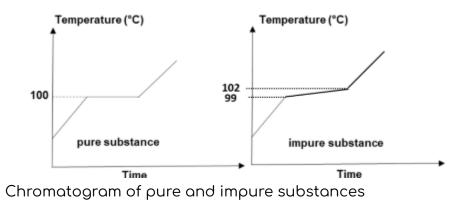
• Ammonium chloride (white solid)

4. Determining the state of matter

MELTING	CONDENSATION
A The particles are very closely packed in an orderly manner and vibrate at their fixed position.(Solid state)	A The particles are <u>randomly arranged</u> and <u>move</u> <u>freely</u> at high speed. (gaseous state)
<u>A-B</u>	<u>A-B</u>
As the solid is heated, the particles gain	As the gas is cooled, the particles lose kinetic
kinetic energy and start to vibrate faster.	energy and start to move slower.
<u>B-C</u>	<u>B-C</u>
A mixture of <u>solid and liquid</u> exists here. During	A mixture of gas and liquid exists here. The
the melting process, the temperature of the	particles lose kinetic energy and they move
substance <u>remains constant</u> . All the heat	slower and closer together.
energy taken in by the particles is used to	©wzkai

overcome the forces of attraction. between particles.	
<u>C-D</u> The particles are <u>randomly arranged</u> and <u>slide</u> <u>over</u> one another. The substance becomes <u>liquid</u> .	<u>C – D</u> The particles become closer, <u>randomly</u> <u>arranged</u> and <u>slide over</u> one another. The substance becomes <u>liquid</u> .
BOILING	FREEZING
<u>C</u> The particles are <u>closely packed but not in an</u> <u>orderly manner</u> and <u>slide over</u> one another. (liquid state)	<u>C</u> The particles are <u>randomly arranged</u> and <u>slide_over_</u> one another. (liquid state)
<u>C-D</u> As the liquid is heated, the particles <u>gain kinetic</u> <u>energy</u> and start to <u>vibrate/ move faster.</u>	<u>C – D</u> As the liquid is cooled, the particles <u>lose</u> kinetic energy and start to <u>slide over one</u> another slower.
<u>D-E</u> A mixture of <u>liquid and gas</u> exists here. During the boiling process, the temperature of the substance <u>remains constant.</u> [All the heat energy taken in by the particles is used to overcome the forces of attraction between particles.]	<u>D – E</u> A mixture of <u>liquid and solid</u> exists here. The <u>particles lose energy</u> , the particles <u>start to</u> <u>move closer and slower.</u>
<u>E – F</u> They spread far apart and <u>more rapidly</u> in all directions. The substance is now a <u>gas.</u>	<u>E – F</u> The particles become closer and <u>vibrate</u> <u>about fixed position</u> one another. The substance becomes solid.

Separation techniques


1.Criteria for purity <Element, compound>

- (a) A pure substance has
- → A fixed melting and boiling point
- → Only one spot on the chromatogram
- (b) An impure substance has
- → Melts and boils over a range of temperatures. It also has a lower melting point and higher boiling point than the pure substance
- → More than one spot on the chromatogram.

<u>Methods to test fo purity</u>

- → Measure m.p / b,p
- \rightarrow Conduct a paper chromatography experiment.

Boiling point of pure and impure substances

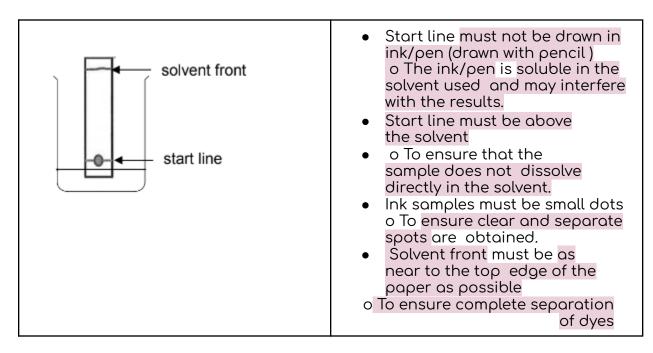
MIXTURE	Method of separation		
Solid-liquid mixture ; solid is insoluble residue filtrate	Filtration Solid collected as the residue, liquid collected as filtrate.		
Solid-liquid mixture ; solid is soluble evaporating dish	Evaporation to dryness 1. The solution is heated till <u>dryness</u> . (100% water removal) 2. Wash the crystals formed with cold distilled water and tap dry.	Crystallisation 1. The solution is heated till <u>saturated</u> . (most water being removed) 2. Cooled for the crystals to form. 3. Wash the crystals with cold distilled water and tap dry.	
	For <u>heat-stable</u> solid (does not decompose on heating). Eg. sodium chloride salt.	For <u>heat-unstable</u> solid (decompose on heating). Eg. sugar. ©wzkai	

Two immiscible liquids	Separating Funnel Denser liquid is collected first from the tap below.		
Two solids, one can sublime sublimate	and collect the sublimate	to gaseous state) Heat the mixture on a cold surface, like an inverted solid that sublime on heating:	
Solid-liquid, solid is soluble thermometer water out condenser adaptor distillate	 Simple distillation The solution boils in the flask. Boiling chips are added to ensure smooth boiling. The thermometer measures the boiling point of the vapour before it enters the condenser. In the condenser, the vapour condenses and changes from gaseous to liquid state. Water enters from the bottom and exits from the top of the condenser to ensure that it is fully filled. (to maximise efficiency of condensation) Liquid collected is known as the 	©wzkai	

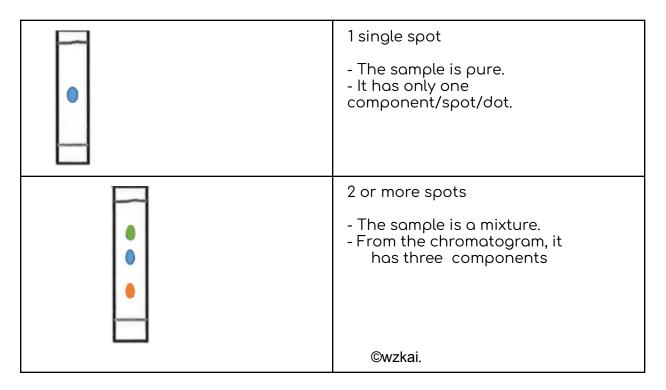
	distillate. 5. The solid is left at the bottom of the flask.	
Two or more miscible liquids thermometer water out condenser fractionating column water in distillate miscible liquids	 Fractional distillation A liquid of higher boiling point will condense at the fractionating column and fall back into the flask. A liquid with lower boiling point will be able to pass through the fractionating column. This ensures separation of liquids according to their boiling points. Lower boiling point liquid is collected first distillate. Example: alcohol and water, crude oil 	

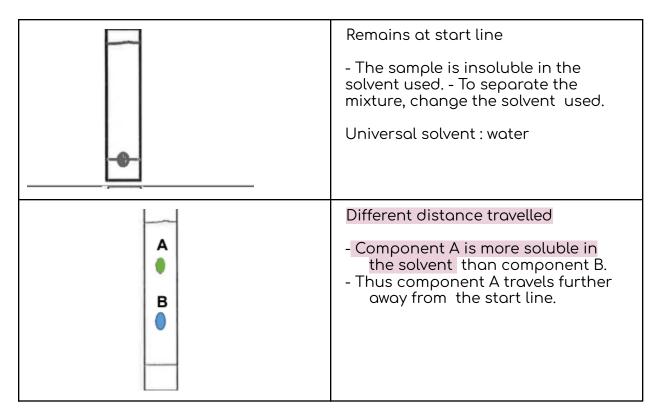
Condenser – To condense hot vapour from the delivery tube to liquid state.

Thermometer – Placed at the opening of the delivery tube to measure the temperature of the vapour entering the delivery tube.


Fractionating column – It is used to improve the efficiency of fractionating column.

Miscible Vs Immiscible –


Miscible liquids are ones that can mix together – like water and ethanol.


Immiscible liquids are ones that can't – like oil and water.

3.Paper chromatography

Analysis of results

Elements, Compounds and Mixture

- ★ Diatomic (2 atoms) → Gp VII elements, hydrogen, oxygen, nitrogen.
- ★ Monoatomic (1 atoms) \rightarrow Gp 0 elements (unreactive)
- 1. Definitions

a. An **element** is a substance that cannot be broken down into two or more simpler substances by physical or chemical processes. (An element contains only one type of atom.)

b. A **compound** is a substance made up of two or more elements combined together by chemical methods. (oxidation, combustion, thermal decomposition)

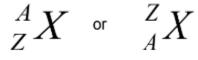
c. A **mixture** is a substance made up of two or more constituents which can be separated by physical methods. (filtration, paper chromatography)

i. An **alloy** is a mixture of a metal and other element(s). E.g. brass, bronze, steel

<u>Differences between elements, compound and mixtures</u>

	Element	Compound	Mixture
Look out for the keyword or key phrases used	 Cannot decompose Cannot breakdown Simplest 	 Constant Composition (fixed ratio) Decompose Breakdown 	 Only some Speckle Filtration Chromatography Distillation/distilled
	✤ Test1 : Pure substan boiling point	ce: fixed melting and	 Melts over a range of temperature
	 Test 2 : shows one spot (pure substance) for paper chromatography 		 Shows more than one spot for paper chromatography
(reaction with O2) On <mark>combustion</mark> / burning with air	• Form only ONE Product E.g. C+O2 → CO2	 Form two or more products E.g. Methane (H4+2O2 → C02+H20) 	-
Diagram representation	• Only one type of particle	 2 or more types of particles Combine in a fixed ratio 	 2 or more types of particles Mix in variable ratio

	Element	Compound	Mixture
Examples	Anything found in the Periodic Table	lonic compound: sodium chloride potassium carbonate Covalent compound: water, carbon dioxide	Air Seawater Brass(alloy) Crude oil Steel (Fe and C) (alloy) ©wzkai


<u>Atomic Structure</u>

Subatomic Particles				
subatomic particles	symbol	relative mass	relative charge	Where are they found? (in a nucleus or in an electron shell?)
Proton	ρ	1	+1	nucleus
Neutron	n	1	0	nucleus
Electron	е	1/1840	-1	electron shell

Important relationship!

proton number (atomic number)
 number of protons = number of electrons (in an atom)

nucleon number (mass number/ relative atomic mass)
 nucleon number = number of proton + number of neutrons

A: nucleon number Z: proton number (Always the smaller value than A) X: Chemical symbol

<u>Isotopes</u>

Isotopes:

Definition:

Isotopes are atoms of the same element with the **same number of proton** but **different number of neutrons**.

✤ They have different physical properties due to different number of neutrons

✤ They have same chemical properties due to the same number of valence electrons.

<u>Atoms & Ions</u>

Diagram of an atom:

Protons and neutrons from the nucleus in the center.

 $\boldsymbol{\diamond}$ First electron shell can only hold up

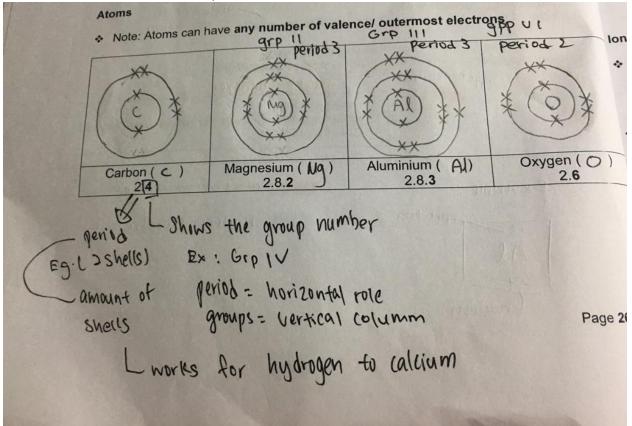
to two electrons

Subsequent shells can hold up to an eight electrons

o **Period number =** total number of electron shells

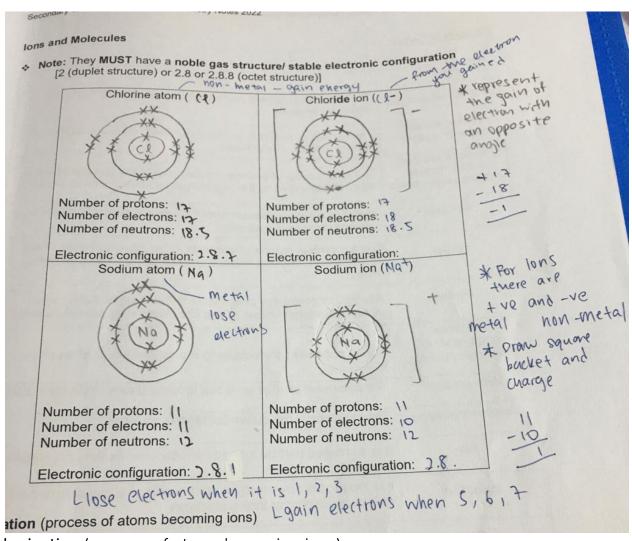
Valence shell = outermost shell

 Valence electrons = outermost shell electrons


o **Group number =** number of valence electrons

✤ 2.8.8... rule is only applicable to first twenty elements (H to Ca)

2.8.8 <maximum electrons per cells>


Atoms

Note: Atoms can have any number of valence/ outermost electrons

Ions and Molecules

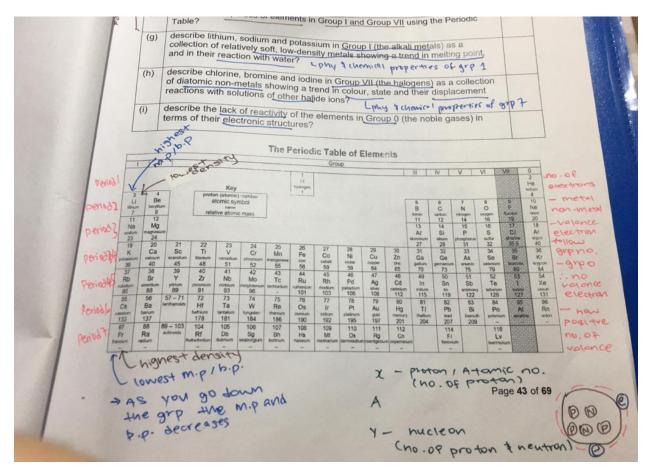
Note: They MUST have a noble gas structure/ stable electronic configuration [2 (duplet structure) or 2.8 or 2.8.8 (octet structure)]

Ionisation (process of atoms becoming ions)

♦ Sodium loses one electron to become <u>a positive</u> ion in order to have a <u>stable electronic configuration</u> (This is a positive ion – <u>more proton than electron</u>)

 Chlorine gains <u>one</u> electron to become <u>a negative</u> ion in order to have a <u>stable electronic configuration</u>. (This is a negative ion – more <u>electrons</u> than <u>protons</u>)

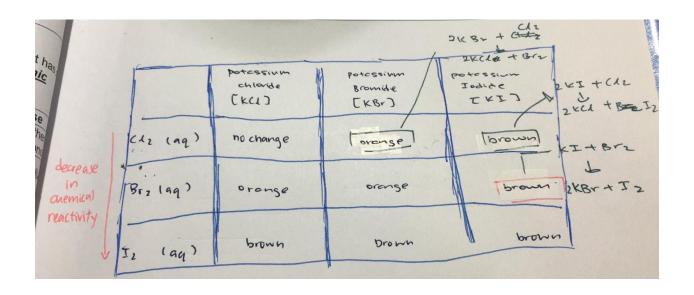
 Argon does not need to gain or lose electrons because it already has a <u>stable electronic configuration</u>
 ©wzkai


<u>Chemical Bonding</u>

	IONIC COMPOUNDS	SIMPLE COVALENT SUBSTANCE
Form between	Metal atoms (gain electrons) and non-metal atoms (lose electrons)	Non-metal atoms
Definition	<u>Transfer</u> of electrons from metal to non-metal	<u>Sharing</u> of electrons between non-metals
Product formed	Charged lons	Neutral Molecules
Dot-and cross diagram (only valence electrons)	Example: Calcium fluoride	Example of a covalent Newtreal Molecule Newtreal

Electrical	In <mark>solid</mark> state,	In every state,
conductivity (structure and bonding)	 It has <u>no free moving ions</u> To carry <u>electric charge</u> from one end to the other. Thus it is a <u>poor</u> conductor of electricity. In aqueous or molten state, It has <u>free moving ions</u> To carry <u>electrical charges</u> from one end to the other. Thus it is a <u>good</u> conductor of electricity. 	 It has <u>no free moving ions</u> or <u>electrons</u> To carry <u>electrical charges</u> from one end to the other. Thus it is a <u>poor</u> conductor of electricity.
Melting and boiling point (structure and bonding)	 It has a <u>giant crystal lattice</u> structure With <u>strong</u> <u>electrostatic</u> <u>attraction</u> <u>force</u> between <u>oppositely charged ions</u> Thus <u>large</u> amount of energy is need to break these <u>forces</u> Hence it has a <u>high</u> melting and boiling point. 	 It has a <u>simple molecular</u> structure With <u>weak attraction force</u> between <u>molecules</u> Thus <u>small</u> amount of energy is need to break these <u>forces</u>. Hence it has a <u>low</u> melting and boiling point.

Solubility	• Most ionic compounds are <u>soluble</u> in water but	• Most covalent substances are <u>insoluble</u> in water but
	• <u>insoluble</u> in organic solvent.	• <u>soluble</u> in organic solvent.


<u>Group Properties</u>

	Alkalis Metals <high level="" ph=""> (Group I)</high>	Halogen (Group VII)	Noble Gases (Group 0)
Melting/ Boiling points	General: Low Trend: <i>Decreases</i> down the grp	General: Low Trend: <i>Increases</i> down the grp	General: Low Trend: <i>Increases</i> down the grp
Density	General: Low Trend: <i>Increases</i> down the grp	General: Low Trend: <i>Increases</i> down the grp	General: Low Trend: <i>Increases</i> down the grp ©wzkai

	Qn: What is solution of Unive	H₂O I 2NaOH+ H2 the colour of the when a few drops rsal Indicator is after the reaction?	Observation: Colourless solution turns brown . (Note: the brown colouration is due to either aq Br ₂ or I ₂ formed)	©wzkai	
	<u>increase</u>	emical reactivity <u>es</u> down grp I.	Chemical reactivity <u>decreases</u> down grp VII	no reaction	
	Fr	Explosively	astatine		Noble gases already have 8e- (or 2e- → He)
	Cs	Explosively	iodine		figuration)
	Rb	Explosively	bromine		ms are trying to iieve stability (8e-
	К	Violently Lilac flame	chlorine		1
	Na	Vigorously Yellow flame	fluorine	Ar Ne	Light bulbs Advertising light
	Li	Fizzes		He	Weather balloons
		<u>Observation</u>	solution.		<u>Use</u>
Chemical reactivity <chemical properties></chemical 	Reactior form hydroxic Hydroge		Halogen Displacement Idea: A more reactive halogen displace a less reactive halogen from its salt	Unrea <u>stable</u>	nation: active as it has a <u>e electronic</u> g <u>uration</u> .
Others <physical properties></physical 			<u>fluorine g F₂ Yellow</u> <u>chlorine g Cl₂ Green</u> <u>bromine l Br₂ Brown</u> <u>iodine s l₂Black</u> <u>astatine s At₂Black</u> (Colour become darker, more intense)		
	melting	ne density and /boiling point is low arison to other			

<u>Purple.</u>	 Explanation: X₂ is more reactive than Y₂. Thus X₂ displaces Y₂ from its salt solution. 	
	Eg	
	C <i>l</i> ₂ + KBr I 2 <u>KCL</u> + <u>Br2</u>	

Acid and Bases

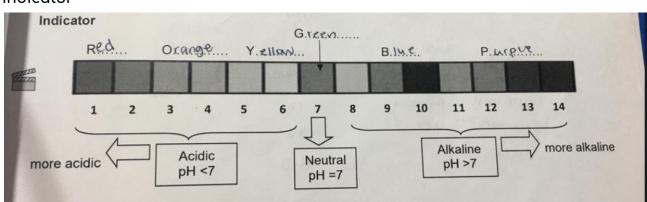
Chemical and Physical Properties of Acids & Bases

	Acids	Bases (soluble in alkali and insoluble in water)
Definition	A substance that produces <u>Hydrogen</u> ions (H+) in water. Particle responsible for acidic properties: <u>Hydrogen</u> ions (H+)	A metal <u>oxide</u> <u>hydroxide</u> that reacts with acids to form <u>salt</u> and <u>water</u> only. Soluble bases: <u>Alkalis</u> Particle responsible for alkaline properties: <u>hydrogen</u> ions (OH-) ©wzkai

Physical properties	• Taste sour • pH less. than 7	 Taste <u>bitter</u> pH <u>more</u> than 7 Soapy feeling
Chemical properties	 Reaction with metal Reaction with carbonate Reaction with alkalis (Neutralisation) Ionic equation: H+(aq) +OH-(aq)>H2O(l). e.g.Hcl+NaOH →Nacl + H2O 	1. Reaction with acid 2. Reaction with <u>ammonium</u> salt
Examples	In daily life: vinegar, lemons. Chemicals: hydrochloric acid (<u>HCL</u>), sulfuric acid (<u>H2So4</u>) nitric acid (<u>HNO3</u>)	In daily life: soap, detergent, most cleaning agent Chemicals: sodium hydroxide (<u>NaOH</u>) calcium hydroxide (<u>Ca(OH)2</u>)

	Chemical Reaction	Observation
1	Acid + Metal 🛛 Salt + H2	<u>Lighted</u> splint will extinguish with a <u>pop</u> sound
2	Acid + Metal Carbonate 🛛 Salt + CO ₂ + H ₂ O	Bubbles formed When gas produced is bubbled into <u>limewater</u> a <u>white</u> precipitate is formed.
3	Acid + Alkali 🛛 Salt + H2O (<u>Neutralisation</u>)	No visible change
4	Alkalis + Ammonium salt 🛛 Salt + NH₃ + H₂O	<u>Pungent</u> gas is produced Gas produced turns <u>moist red</u> litmus paper will turn <u>blue</u>

Test for Gases


	Hydrogen gas	Carbon dioxide gas	Ammonia gas
Test	Place a <u>lighted</u> splint at the mouth of the test tube.	Bubble the gas produced through <u>limewater</u>	Place a <u>moist red</u> litmus paper at the mouth of the test tube.
Observation	If hydrogen gas is produced, the <u>lighted</u> splint will extinguish with a <u>pop</u> sound	If carbon dioxide gas is produced, a <u>white</u> precipitate will be formed.	If ammonia gas is produced, the <u>moist</u> . <u>red</u> litmus paper will turn <u>blue</u>

pH Scale and Universal Indicators

 \bullet The ρH of a solution is a measure of the $\underline{acidity}$, $\underline{alkalinity}$ or $\underline{neutrality}$ of a solution.

• pH of a substance can be measured using Universal Indicator paper or

<u>solution</u> • A ρ H scale ranges from <u>1</u> to <u>14</u>.

Indicator

Reducing Acidity of Soil

• Most plants grow well in neutral soil of pH around 6.5.

• Excess acidity in soil is neutralised by bases such as quicklime (calcium oxide) / slaked lime (calcium hydroxide). Sometimes limestone (calcium carbonate) is used.

• This process is known as 'liming the soil'.

Types of Oxides			
Acidic Oxides	Basic Oxides	Amphoteric Oxides	Neutral Oxides
Non-metal oxides Eg CO ₂ , SO ₂ Dissolves in water to form an <u>acid</u> . Reacts with <u>alkalis/bases</u> to form salt and water only.	<u>Metal</u> oxides Eg CaO, Na2O, MgO Reacts with <u>acid</u> to form salt and water only.	Three specific examples: <u>Lead</u> (ll) oxide [PbO] <u>Aluminium</u> oxide [Al2O3] <u>Zinc</u> oxide [ZnO] Reacts with BOTH <u>acid</u> and <u>bases</u> to form salt and water.	 → Three specific examples: CO (carbon monoxide), NO (nitrogen monoxide), H₂O (dihydrogen monoxide) Reacts with NEITHER <u>acid</u> NOR <u>bases</u>

Salt preparation

Memorize the salt solubility table

salt	soluble	Insoluble
chloride	All except	Lead(II) chloride <u>PbCl2</u> Silver chloride <mark>AgCl</mark>
sulfate	All except	Calcium sulfate <u>CaSO4</u> Lead(II) sulfate <u>PbSO4</u> Barium sulfate <u>BaSO4</u>
carbonate	Sodium carbonate Potassium carbonate Ammonium carbonate	All except
nitrate	All	

<u>Note</u>:

All Group I metal salts, Ammonium salts and Nitrate salts are soluble in water.

Steps to determine the method to prepare the given salt. Question1: Is the salt soluble or insoluble in water? Answer 1:Insoluble → Precipitation Answer 2:Soluble → Titration or Excess MCB with acid

Question 2 : If the salt is soluble, is it a SPA salt? Answer 1:No → Excess insoluble MCB with acid Answer 2:Yes → Titration Summary

Insoluble Is	I SOLUDIR
[precipitation]	(U) IT DE AGE OTI (U)
	Exross insoluble MCB

Can i use the insoluble MCB + Acid method to make Nacl from NaOH and Hcl?

-Because the substance will dissolve like NaOH and Hcl

- □ If any starting material is in excess, it cannot be removed from the solutions by filtration
 - → Salt produced will be impure
 - → Therefore volumes of each material used must be exact

SALT PRECIPITATION

Excess insoluble MCB

- 1. Add excess insoluble MCB into a beaker containing a fixed volume of acid.
- 2. Filter the mixture and collect the filtrate.
- 3. Heat the filtrate till saturated and allow it to cool for crystals to form.
- 4. Wash the crystals formed with cold distilled water and tap dry.

Precipitation

- 1. Add two salt solution in a beaker and stir.
- 2. Filter the mixture and collect the residue.
- 3. Wash the residue with distilled water and tap dry.

<u>Titration</u>

- 1. Pipette 25.0cm3 of acid into a conical flask.
- 2. Add a few drops of suitable indicator into the acid.
- 3. Fill a burette with alkali and record the initial reading (V1cm3).
- Introduce the alkali into the acid until a permanent colour change is observed and record the final reading (V2cm3)
- 5. Repeat the experiment with V2-V1 cm3 of alkali and without indicator.
- 6. Heat the filtrate till saturated and allow it to cool for crystals to form.
- 7. Wash the crystals formed with cold distilled water and tap dry.