1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
С	Α	С	С	D	В	Α	В	В	D	В	Α	С	Α	Α
16	17	18	19	20	21	22	23	24	25	26	27	28	29	30

Paper 2

(ii) $\Delta H = 180 - 282 = -102 \text{ kJ mol}^{-1}$

(iii) The activation energy will decrease.

(iv)
$$\Delta H = 150 - \frac{1}{2} (496) = -98 \text{ kJ mol}^{-1}$$

(v) Bond energy is an estimated value / average value only.

(b) (i) Amount of unreacted iodine
$$=\frac{23.60}{1000} \times 0.02 \times \frac{1}{2}$$

= 2.36 x 10⁻⁴ mol

(ii) Amount of iodine reacted with sulfur dioxide = $\frac{40}{1000} \times 0.01 - 2.36 \times 10^{-4}$ = 1.64 x 10⁻⁴ mol

(iii) $I_2 + 2e \rightarrow 2I^-$ SO₂ + 2H₂O \rightarrow SO₄²⁻ + 4H⁺ + 2e Balanced equation: SO₂ + I₂ + 2H₂O \rightarrow 2I⁻ + SO₄²⁻ + 4H⁺ Amount of SO₂ present in wine = 1.64 x 10⁻⁴ mol

(iv) Concentration of SO₂ = $\frac{1.64 \times 10^{-4}}{\frac{50}{1000}}$ = 3.28 x 10⁻³ mol dm⁻³

[Total: 12]

- 2(a) (i) The first ionisation energy of an element is defined as the amount of energy required to remove one electron from each atom in <u>a mole of gaseous atoms</u> producing one mole of gaseous ions with one positive charge.
 - (ii) $Be(g) \rightarrow Be^+(g) + e$
 - **(b)** N $1s^2 2s^2 2p_x^{1} 2p_y^{1} 2p_z^{1}$ O $1s^2 2s^2 2p_x^{2} 2p_y^{1} 2p_z^{1}$

Less energy is required to remove a paired 2p electron in O since **repulsion** is experienced between the paired electrons.

(d) (i) SiO₂ is <u>giant</u> covalent that requires a lot of energy to break the <u>strong covalent</u> <u>bonds</u> between atoms during melting.

SiCl₄ is <u>simple</u> covalent that requires little energy to break the <u>weak Van der</u> <u>Waals' forces</u> between molecules during melting.

(ii) SiCl₄ + 2H₂O \rightarrow SiO₂ + 4HCl pH = 2 (3 is also accepted)

[Total: 10]

8872 / CJC JC 2 CHEMISTRY Promotional Exam 09 ANSWERS

E: HCN, trace amount of NaOH, (10 – 20 °C)

F: HCl (aq), reflux

 (b) Test: Add Tollen's reagent to J, K and L and warm. Observation: Only Y gives silver precipitate, the others will not.
 OR Add 2,4-DNPH and warm, only Y gives orange precipitate, the others will not.

Test: Add Br_2 in CCl_4 or aqueous to **J** and **L**. Observation: Only **J** decolourises the reddish-brown Br_2 . **L** will not.

Test: Add I_2 , NaOH (aq) and warm L. Observation: L gives yellow precipitate Add PCI₅ to L, white fumes (HCI) is evolved.

OR Add PCI₅ to L, white fumes (HCI) is evolved. Answers of the correct logic or sequence will be given marks.

(c)

[Total: 12]

4(a) The sailors ate fruits / vegetables.

(c) Starch

(d) Amt of triiodide solution = Amt of vit C in 25.0 cm³ sample = $\frac{22.60}{1000} \times 0.031 = 7.006 \times 10^{-4}$ Amt of vit C in 100 cm³ sample = $\frac{100}{25.0} \times 7.006 \times 10^{-4} = 2.80 \times 10^{-3}$ Mass of vit C in tablet = $2.80 \times 10^{-3} \times 176 = 0.493g = 493mg$

OR

Common dose of vitamin C is likely to be 500 mg.

[Total: 6]

5(a) (i) It is the enthalpy change when <u>one mole of water</u> is formed in the neutralisation of an acid and alkali, the reaction being carried out in aqueous solution under standard conditions, at <u>25 °C, 1 atm</u>.

(ii) Amt of
$$CH_3CO_2H = \frac{40}{1000} \times 3 = 0.012 \text{ mol}$$

Amt of $KOH = \frac{60}{1000} \times 1.4 = 0.084 \text{ mol} \text{ (limiting)} = \text{Amt of } H_2O \text{ formed} = 0.084 \text{ mol}$
Heat absorbed by water = $(40 + 60) \times 4.2 \times 10.5 = 4410 \text{ J}$
 $\Delta H_n = -\frac{4410}{0.084} = -52500 \text{ J mol}^{-1} = -52.5 \text{ kJ mol}^{-1}$

- (iii) The value in a(ii) is less exothermic/ less negative/ differs from that of the reaction between a strong acid and alkali because the enthalpy change due to the conversion of CH_3CO_2H into ions has to be considered.
- (b) (i) Le Chatelier's Principle states that if a change is made to a <u>system in equilibrium</u>, the system reacts in such a way as to tend to <u>oppose the change</u>, and a *new equilibrium* is formed.
 - (ii) <u>Low temperature</u>, so that equilibrium will lie to the left which is the backward <u>exothermic reaction</u>.
 <u>Good air flow</u>, so that equilibrium will lie to the left to <u>decrease the amount of</u> <u>oxygen gas</u>.
 - (iii) There will be an <u>increase</u> in the production of SO₃. Equilibrium will lie to the right to decrease the amount of oxygen gas when there is good air flow and the low temperature favours the forward exothermic reaction.

(iv)
$$K_{c} = \frac{[SO_{3}]^{2}}{[SO_{2}]^{2}[O_{2}]}$$

(v) I C

F

2SO ₂ (g)	+ O ₂ (g) ≓	2SO ₃ (g)
2	1	0
-1.9	-0.95	+1.9
0.1	0.05	1.9

Equilibrium concentration of SO₂ = $\frac{0.1}{2}$ = 0.05 mol dm⁻³ (Recall vol is 2 dm³.) Equilibrium concentration of O₂ = $\frac{0.05}{2}$ = 0.025 mol dm⁻³

$$K_{c} = \frac{\left[SO_{3}\right]^{2}}{\left[SO_{2}\right]^{2}\left[O_{2}\right]} = \frac{0.95^{2}}{0.05^{2}\left(0.025\right)} = 14440 \text{ mol}^{-1} \text{ dm}^{3}$$

- (c) (i) Substitution.
 - (ii) Compound Y has a high boiling point because it is <u>giant</u>
 <u>ionic</u> and requires a lot of energy to break the <u>strong</u> electrostatic forces of attraction between the oppositely charged ion.
 Compound Y is soluble in water because it can form <u>ion-dipole interaction</u> with the molecules of water.

[Total: 20]

Equation:

- A has a benzene ring as C:H ratio is almost 1:1.
- A neutral liquid **A**, $C_{10}H_{12}O_2$ when heated with aqueous hydrochloric acid gave two products, **B** and **C**.

 \rightarrow A undergoes <u>acid hydrolysis</u> to form **B** and **C**.

- B gave a yellow precipitate when warmed with aqueous alkaline iodine.
 → B has <u>-CH₃CH(OH)</u> structure.
- When heated with acidified sodium dichoromate (VI), B gave D, C₈H₈O.
 → B undergoes <u>oxidation</u> to form a ketone, D.
- D reacts with 2,4-dinitrophenylhydrazine to give orange crystals, E.
 - \rightarrow **D** is a <u>ketone</u>.
- (b) (i) $S_2O_8^{2-}$ and I⁻ will repel each other/ No catalyst is added.
 - (ii) Using experiments 1 and 3, When the concentration of I^{-} increased by 1.5 times, the rate increased by 1.5 times. 1^{st} order with respect to I^{-} .

Using experiments 2 and 3, When concentration of $S_2O_8^{2-}$ is halved, the rate is halved. 1st order with respect to $S_2O_8^{2-}$.

(iii) Rate $k[I^{-}][S_2O_8^{2^-}]$

(c) Al³⁺ has a high charge density, hence when AlCl₃ dissolves in water, the surrounding water molecules in the hydrated Al³⁺ ion is polarised. <u>The O-H bond in water is polarised</u> and H⁺ is easily liberated.

 $AICI_{3}(s) + 6H_{2}O \rightarrow [AI(H_{2}O)_{5}(OH)]^{2+}(aq) + H^{+}(aq) + 3CI^{-}(aq)$

(Equation without Cl⁻ is accepted.)

PCI₃ is covalent and it **dissolves vigorously** in water to give an acidic solution with the **evolution of HCI gas**.

 $PCI_3 + 3H_2O \rightarrow H_3PO_3 + 3HCI$

- (d) (i) Acidic. (Se is below S in the periodic table so SeO₂ is expected to behave similarly to SO₂, which is acidic.)
 - (ii) $SeO_2 + 2OH^- \rightarrow SeO_3^{2-} + H_2O$
 - (iii) Bent / V-shaped / non-linear

[Total: 20]

(ii)
$$\bigcirc$$
 CH=CHC $_$ O $_$ CH₃

- (iii) sp³
- (iv) $C_6H_5CH_2CH_2CH_2OH < C_6H_5CH_2CH_2CO_2H < X$ (or $C_6H_5CH_2CHCICO_2H$

X is more acidic due to the presence of <u>electron-withdrawing Cl</u> in **X** [1]. This caused the O-H bond in **X** to be more <u>polarised</u>. The O-H bond is <u>weakened</u>, hence the <u>H+</u> is <u>lost</u> easier.

(v) Test: Add NaOH(aq) to **X** and **Y** and heat. Then cool the products. Acidify the products with $HNO_3(aq)$. Add $AgNO_3(aq)$.

Observation: **X** will give a white precipitate (AgCI) and **Y** will give a yellow precipitate (or **Y** will not give a white precipitate).

- **(b)** (i) $K_w = [H^+ (aq)] [OH^- (aq)] mol^2 dm^{-6}$
 - (ii) Neutralisation
 - (iii) **Exothermic** because **bonds are formed** when water is formed.
 - (iv) Because $[H^+]$ and $[OH^-]$ are still equal.
 - (v) pH at 62°C = 6.54. So, $[H^+] = 10^{-6.54} = 2.88 \times 10^{-7} \text{ mol dm}^{-3}$. $K_w = [H^+ (aq)] [OH^- (aq)] = (2.88 \times 10^{-7})^2 = 8.32 \times 10^{-14}$
 - (vi) Total $[H^+] = 2.88 \times 10^{-7} + 1 \times 10^{-8} = 2.98 \times 10^{-7}$ pH = -lg (2.98 x 10⁻⁷) = 6.53
- (c) "Free" H^+ ions in an aqueous environment form H_3O^+ with water molecules.

[Total: 20]