2017 C2 H1 Prelim

	Solutions
1	Let x , y and z be the original selling price per pack of organic quinoa, organic
	feed eggs and chia seeds in dollars.
	3x + 0.85y + 2z = 72.28 - (1)
	2x + 2(0.85)y + 5z = 93.85 (2)
	6x + 3(0.85)y + 3z = 145.43 (3)
	x = \$14.90, y = \$11.49, z = \$8.90
2(a)	$\frac{\mathrm{d}}{\mathrm{d}x}(x+\ln x)^2 = 2(x+\ln x)\left(1+\frac{1}{x}\right)$
	$=\frac{2}{x}(x+\ln x)(x+1)$
2(b)	$\frac{\mathrm{d}}{\mathrm{d}x}\mathrm{e}^{\left(\frac{1}{\sqrt{2-x}}\right)} = \frac{1}{3}\mathrm{e}^{\left(\frac{1}{\sqrt{2-x}}\right)}$
	$2(2-x)^{\overline{2}}$
3	
	$x = -\frac{3}{2}$
	v = 0.5
	(-2.5, 0.85)
	(1.41, 0.414)
	$-2.5 \le r \le -1.41$ or $-1.41 \le r \le 1.41$
4(i)	Using long division
	$2x^2 + 1$ 2 33
	$\frac{1}{x-4} = 2x+8+\frac{1}{x-4}$
	$2x^2 + 1 (Ax + B)(x - 4) + C$
	OR $\frac{1}{x-4} = \frac{1}{x-4}$
	$2x^{2} + 1 = (Ax + B)(x - 4) + C$
	Compare coefficient: $2 = A, B = 8, C = 33$
4(ii)	$\int_{0}^{6} 2x^{2} + 1 dx = \int_{0}^{6} 2x + 8 + \frac{33}{2} dx$
	$\int_{5} \frac{1}{x-4} dx = \int_{5} 2x + 8 + \frac{1}{x-4} dx$
	$=\left[x^{2}+8x+33\ln x-4 \right]_{5}^{6}$
	$= 84 + 33 \ln 2 - 65$
	$=19+33 \ln 2$

5(i)	у
	(-1,4)
	(0,3)
	y = (x+3)(1-x)
	(-3,0) $(1,0)$ x
5(jij)	(n+2)(1-n)
J(II)	y = (x+3)(1-x)
	=x+3-x-3x
	= -x - 2x + 5 $x + k = -x^2 - 2x + 3$
	$x^{2} + 3x + k - 3 = 0$
	$b^2 - 4ac > 0$
	$3^2 - 4(k-3) > 0$
	9 - 4k + 12 > 0
	4 <i>k</i> < 21
	k < 5.25
	$\{k \in \square : k < 5.25\}$
5(iii)	y = (x+3)(1-x) = x+5
	$-x^2 - 2x + 3 = x + 5$
	$x^2 + 3x + 2 = 0$
	(x+2)(x+1) = 0
	x = -2, x = -1
	area = $\int_{-2}^{-1} (-x^2 - 2x + 3 - x - 5) dx$
	$= \int_{-2}^{-1} (-x^2 - 3x - 2) dx$
	$= \left[-\frac{x^3}{3} - \frac{3x^2}{2} - 2x \right]_{-2}^{-1}$
	$= \left(\frac{1}{3} - \frac{3}{2} + 2\right) - \left(\frac{8}{3} - \frac{12}{2} + 4\right)$
	$=\frac{1}{6}$ units ²
	Or

area =
$$\int_{-2}^{-1} (-x^2 - 2x + 3)dx - \frac{1}{2} \times (3 + 4) \times 1$$

= $\left[-\frac{x^3}{3} - \frac{2x^2}{2} + 3x \right]_{-2}^{-1} - \frac{7}{2}$
= $\frac{1}{6}$ units²

⁶⁽ⁱ⁾ Area = $3\left(\frac{1}{2}\right)x^3 \sin\left(\frac{\pi}{3}\right) + 2xy = \frac{3\sqrt{3}}{4}x^2 + 2xy$
 $\frac{3\sqrt{3}}{4}x^2 + 2xy = 15$
 $2xy = 15 - \frac{3\sqrt{3}}{4}x^2$
 $2y = \frac{15}{x} - \frac{3\sqrt{3}}{4}x^2$
 $2y = \frac{15}{x} - \frac{3\sqrt{3}}{4}x$
Let *P* be the perimeter.
 $P = 5x + 2y$
= $5x + \frac{15}{x} - \frac{3\sqrt{3}}{4}x$
 $\frac{dP}{dx} = 5 - \frac{3\sqrt{3}}{4} - \frac{15}{x^2}$
For cost to be minimum, perimeter has to be minimum.
 $\frac{dP}{dx} = 0 \Rightarrow 5 - \frac{3\sqrt{3}}{4} - \frac{15}{x^2} = 0$
 $\frac{15}{x^2} = 3.700962 \Rightarrow x^2 = 4.053$
 $x = 2.0132$
 $\therefore x = 2.01, y = 2.42$
 $\frac{d^2P}{dx^2} = \frac{30}{x^3} > 0$
Therefore *P* is a minimum.

6(ii)	Let <i>N</i> be the perimeter of the fence in integral value
	Cost from Company $A = 90N$
	Cost from Company $B = 10(95) + 84(N-10)$
	=110+84N
	110 + 84N < 90N
	6 <i>N</i> >110
	$N > 18.3 \Longrightarrow N > 18$
6(iii)	When $x = 2.0132$, $y = 2.4177$
	P = 14.902
7(-)	Since $14.902 < 18$, therefore it is cheaper to choose Company A.
/(a)	No. of words that can be formed = $7! - 1$
	= 5039
(b)	No. of words if 3 vowels are altogether = $3! \times 5!$
	= 720
	No. of words = $5040 - 720$
	= 4320
(c)	No. of words = ${}^{4}C_{2} \times 2! \times 5!$
	= 1440
8(i)	Let <i>B</i> be the event that the lunch box is produced by production line <i>B</i> .
	Let F be the event that the lunch box is faulty.
	$P(F \cap B) = P(B) \times P(F B)$
	$= \mathbf{P}(F) \times \mathbf{P}(B F) (*)$
	P(B)(0.03) = 0.05(0.4)
	P(R) = 2
	$\Gamma(D) = \frac{1}{3}$
8(ii)	Let <i>A</i> be the event that the lunch box is produced by production line <i>A</i> .
	$P(A \cap F) = 0.05 \times 0.6 = 0.03$
	P(E A) = 0.03 = 0.00
	$P(P A) = \frac{1}{1} = 0.09$
	$\overline{3}$
8(iii)	$P(B \cap F') = \frac{2}{-} - 0.02 = 0.64667$
	0.64667.20.02.2
	$P(B only 1 faulty) = \frac{0.64667 \times 0.02 \times 2}{0.05 \times 0.05 \times 2}$
	$0.95 \times 0.05 \times 2$
9(i)	= 0.272 Let X denote the number of diners out of 20 who choose a burger
	$X \sim B(20, 0.05)$
	$P(X > 3) = 1 - P(X \le 3) = 0.0159$

9(ii)	P(X < n) > 0.9 (1)
	$P(X \le n-1) > 0.9 (2)$
	Using GC,
	$P(X \le 1) > 0.736$
	$P(X \le 2) > 0.925$
	\therefore smallest value of <i>n</i> is 3.
9(iii)	Let Y denote the number of diners, out of 20, buying a drink in the cafe. $Y \sim B(20, p)$
	20p(1-p) = 4.55 (1)
	$p^2 - p + 0.2275 = 0$
	p = 0.35 or 0.65
	Since $p > 0.5$, $p = 0.65$
10(i)	Production cost
	102 $($1000)$ $($1000)$ $($1000)$ $($1000)$ $No.of items$ 12 $81 x$ $(1000s)$
10(ii)	Product moment correlation coefficient $r = 0.998$ which indicates a strong
	positive linear correlation between the number of items produced per month by the company together with the total cost of production
10(iii)	$\overline{x} = 45, \overline{y} = 65$

11(ii)	At 1% level of significance,
	under H ₀ , since $n = 100$ is large, by Central limit theorem, $\overline{X} \square N\left(84, \frac{5^2}{100}\right)$
	approximately
	Test statistic $Z = \frac{X - \mu}{\sqrt{\sigma^2}} \square N(0, 1)$
	$\sqrt{\frac{n}{n}}$
	p = 0.0139 > 0.01, we do not reject H ₀ and conclude that at the 1% level of
	significance, there is insufficient evidence to say that the average weight of a
11(iii)	packet of potato chips is less than 84 grams
	wrongly conclude the mean weight of a packet of potato chips is less than 84 grams when in fact the mean weight of a packet of potato chips is at least 84 grams.
11(iv)	Since the sample size $n = 100$ is sufficiently large, the sample mean weight of
11(10)	the packets of potato chips will be normally distributed by the Central Limit
	Theorem. Therefore it is not necessary to assume the weight of packets of
11()	potato chips follow a normal distribution.
11(V)	$H_0: \mu = 84$
	$H_1: \mu \neq 84$
	Level of significance: 5%
	Under H ₀ , since <i>n</i> =100 is large, by Central limit theorem, $\overline{X} \square N\left(84, \frac{5^2}{100}\right)$
	approximatery.
	Test statistic $ Z = \frac{\overline{X} - \mu}{\frac{\sigma}{\sqrt{n}}} \square N(0,1)$
	N//
	Rejection region: Reject H ₀ if $z \le -1.95996$ or $z \ge 1.95996$ Since there is sufficient evidence, at 5% level significance to conclude that the average weight of the potato chip has changed,
	$\frac{t-84}{\frac{5}{\sqrt{100}}} \le -1.95996 \text{or} \frac{t-84}{\frac{5}{\sqrt{100}}} \ge 1.95996$
	$\Rightarrow 2t - 84 \le -1.95996$ or $2t - 84 \ge 1.95996$
	$t \le 83.020$ or $t \ge 84.979$
	Range of $t: t \le 83.0$ or $t \ge 85.0$

12(a)	$P(X < 15) = 0.841 \Longrightarrow P\left(Z < \frac{15 - \mu}{\sigma}\right) = 0.841 - (1)$
	$\Rightarrow \frac{15 - \mu}{100} = 0.99858$
	$\sigma = p(0 - \mu + \pi + 15) = 0.002 \Rightarrow p(9 - \mu + \pi + 15 - \mu) = 0.002$
	$P(9 < X < 15) = 0.682 \Rightarrow P\left(\frac{1}{\sigma} < Z < \frac{1}{\sigma}\right) = 0.682$
	$\Rightarrow P\left(Z < \frac{9-\mu}{\sigma}\right) = 0.841 - 0.682 = 0.159(2)$
	$\Rightarrow \frac{9-\mu}{\sigma} = -0.99858 \dots (2)$
	Solving (1) & (2), $\mu = 12$ and $\sigma = 3.00$
	Alternatively
	By observation, $\mu = 12$.
	P(X < 15) = 0.841
12(bi)	Using GC, $\sigma = 3.00$
12(01)	$S \sqcup N(\mu, S)$
	$P(S - \mu > 2.5) (1)$
	$= P\left(\left \frac{S-\mu}{3}\right > \frac{2.5}{3}\right) = P\left(\left Z\right > \frac{2.5}{3}\right) = 2 \times P\left(Z > \frac{2.5}{3}\right) (2)$
	= 0.405
b(ii)	P(S>11) = 0.75 (1)
	$P\left(Z \le \frac{11-\mu}{3}\right) = 0.25$
	$\frac{11-\mu}{3} = -0.67449 , \qquad \mu = 13.0 \text{ °C}$
b(iii)	P(17.5 < T < 23) = 0.786
b(iv)	Find $P\left(0 < T - \frac{S_1 + S_2}{S_2} < 10\right)$
	Let $W = T - \frac{S_1 + S_2}{2}$
	$\mathrm{E}(W) = 8$
	$\operatorname{Var}(W) = 9.34$
	$W \square N(8,9.34)$
	$P\left(0 \le T - \frac{S_1 + S_2}{2} < 10\right) = 0.73915 = 0.739(3s.f)$
(v)	Assume that the minimum and maximum temperatures are independent of
	each other. It is unrealistic because the weather e.g. wind direction rainy weather etc.
	will affect both the minimum and maximum temperature of the city.