H2 Mathematics 9758 **Topic 10: DIFFERENTIATION TECHNIQUES Tutorial Worksheets**

By considering the derivative as a limit, show that the derivative of x^3 is $3x^2$.

[N00/I/4]

Differentiate each of the following with respect to x simplifying your answer.

(a)
$$\frac{x^2}{\sqrt{4-x^2}}$$

(b)
$$\sqrt{1+\sqrt{x}}$$

(b)
$$\sqrt{1+\sqrt{x}}$$
 (c) $\left(\frac{x^3-1}{2x^3+1}\right)^4$

[Ans: **(a)**
$$\frac{x(8-x^2)}{(4-x^2)^{\frac{3}{2}}}$$
 (b) $\frac{1}{4\sqrt{x(1+\sqrt{x})}}$ **(c)** $\frac{36x^2(x^3-1)^3}{(2x^3+1)^5}$]

Find the derivative with respect to x of

(a)
$$\cos x^{\circ}$$
,

(b)
$$\cot(1-2x^2)$$
,

(c)
$$\tan^3(5x)$$
,

(d)
$$\frac{\sec x}{1+\tan x}$$
.

[Ans: (a)
$$-\frac{\pi}{180}\sin x^{\circ}$$
 (b) $4x\csc^{2}(1-2x^{2})$ (c) $15\tan^{2}(5x)\sec^{2}(5x)$ (d) $\frac{\sec x(\tan x - 1)}{(1+\tan x)^{2}}$]

(c)
$$15 \tan^2(5x) \sec^2(5x)$$

(d)
$$\frac{\sec x \left(\tan x - 1\right)}{\left(1 + \tan x\right)^2}$$

Find the derivative with respect to x of

$$y = e^{1+\sin 3x}$$

(b)
$$y = x^2 e^{\frac{1}{x}}$$

(c)
$$y = \ln \left[\frac{1 - x}{\sqrt{1 + x^2}} \right]$$

$$(\mathbf{d}) \quad y = \frac{\ln(2x)}{x}$$

(e)
$$y = \log_2(3x^4 - e^x)$$

$$(f) y = 3^{\ln(\sin x)}$$

[Ans: (a)
$$3e^{1+\sin 3x}\cos 3x$$

(b)
$$e^{\frac{1}{x}}(2x-1)$$

[Ans: (a)
$$3e^{1+\sin 3x}\cos 3x$$
 (b) $e^{\frac{1}{x}}(2x-1)$ (c) $-\frac{1+x}{(1-x)(1+x^2)}$ (d) $\frac{1-\ln(2x)}{x^2}$

(e)
$$\frac{12x^3 - e^x}{(3x^4 - e^x)\ln 2}$$
 (f) $3^{\ln(\sin x)} \cot x \ln 3$]

- 5 Find $\frac{dy}{dx}$ in terms of x and y for each of the following:
 - (a) $y^3 3x^2y + 2x^3 = 1$

(b) $(yx)^2 = x^2 2^x$

(c) $e^{x+y} = e^{2x} + y$

- (d) $y^2 = x^2 + \sin xy$
- [Ans: (a) $\frac{2x}{y+x}$ (b) $\frac{y}{2} \ln 2$ (c) $\frac{2e^{2x} e^{x+y}}{e^{x+y} 1}$ (d) $\frac{2x + y \cos xy}{2y x \cos xy}$]
- 6 Differentiate each of the following with respect to x:
- (a) $\tan^{-1} \sqrt{x}$
- **(b)** $5\sin^{-1}\left(\frac{x}{10}\right)$
- (c) $e^{\cos^{-1}2x}$
- (d) $x \tan^{-1}(3x) \ln \frac{1+9x^2}{1-9x^2}$
- [Ans: (a) $\frac{1}{2\sqrt{x}(1+x)}$ (b) $\frac{5}{\sqrt{100-x^2}}$ (c) $-\frac{2e^{\cos^{-1}2x}}{\sqrt{1-4x^2}}$ (d) $\tan^{-1}3x \frac{15x}{1+9x^2} \frac{18x}{1-9x^2}$]
- 7 Find an expression for $\frac{dy}{dx}$ for the following in terms of x and/or y:
 - (a) $y^3 = x \sin^{-1}x$

(c) $y = (\ln x)^x$

(b) $v = a^{2\log_a x}$

- (d) $y = \sqrt[3]{\frac{e^x(x+1)}{x^2+1}}$, x > 0
- [Ans: (a) $\frac{1}{3y^2} \left(\sin^{-1} x + \frac{x}{\sqrt{1-x^2}} \right)$ (b) 2x (c) $y \ln(\ln x) + \frac{y}{\ln x}$
- 8 If $\ln y = \tan^{-1} t$, prove that $y \frac{d^2 y}{dt^2} + (2t 1) \left(\frac{dy}{dt}\right)^2 = 0$.
- 9 If $y^2 + ay + b = x$ where a and b are constants, show that $\frac{d^2y}{dx^2} + 2\left(\frac{dy}{dx}\right)^3 = 0$.

- 10 For each of the following curves, find the gradient at the specified point:
 - (a) $x^3 + y^3 + 3xy 1 = 0$ at the point (2, -1)
 - **(b)** $y^4 + x^2y^2 = 4a^3(x+4a)$, where *a* is a constant, at the point (a,2a)

[Ans: **(a)**
$$-1$$
 (b) $-\frac{1}{9}$]

11 N14/I/2

The curve C has equation $x^2y + xy^2 + 54 = 0$. Without using a calculator, find the coordinates of the point on C at which the gradient is -1, showing that there is only one such point.

[Ans:
$$(-3, -3)$$
]

- 12 It is given that x and y satisfy the equation $\tan^{-1} x + \tan^{-1} y + \tan^{-1} (xy) = \frac{7}{12} \pi$. Find the value of y when x = 1.
 - (i) Express $\frac{d}{dx} \tan^{-1}(xy)$ in terms of x, y and $\frac{dy}{dx}$.
 - (ii) Show that, when x = 1, $\frac{dy}{dx} = -\frac{1}{3} \frac{1}{2\sqrt{3}}$. [N00/I/11]

[Ans:
$$\frac{1}{\sqrt{3}}$$
 (i) $\frac{1}{1+(xy)^2} \left(x \frac{dy}{dx} + y \right)$]

- 13 Find an expression for $\frac{dy}{dx}$ in terms of t.
 - (a) $x = \frac{1}{1+t^2}, y = \frac{t}{1+t^2}$
- **(b)** $x = \frac{1}{2} (e^t e^{-t}), \ y = \frac{1}{2} (e^t + e^{-t})$
- (c) $x = a \sec t, y = a \tan t$
- (d) $x = e^{3t} \cos 3t, \ y = e^{3t} \sin 3t$
- [Ans: **(a)** $\frac{t^2-1}{2t}$ **(b)** $\frac{e^{2t}-1}{e^{2t}+1}$ **(c)** $\csc t$ **(d)** $\frac{\sin 3t + \cos 3t}{\cos 3t \sin 3t}$]

14 Differentiate the following with respect to *x*:

(a)
$$\ln(x + \sqrt{x^2 - 4})$$
 (b) $\sin^{-1}(\sqrt{1 - x^4})$ (c) $(x + x^2)^x$

(b)
$$\sin^{-1}\left(\sqrt{1-x^4}\right)$$

(c)
$$(x+x^2)^x$$

[Ans: **(a)**
$$\frac{1}{\sqrt{x^2-4}}$$

(b)
$$\frac{-2x}{\sqrt{1-x^4}}$$

(b)
$$\frac{-2x}{\sqrt{1-x^4}}$$
 (c) $(x+x^2)^x \left(\frac{1+2x}{1+x} + \ln(x+x^2)\right)$

15 Find $\frac{dy}{dx}$ in terms of x and y for the following equations:

$$(a) \sin y + x = xy$$

(b)
$$\ln(1+y) = \tan^{-1} x$$
 (c) $y = \sin(x+y)^2$

(c)
$$y = \sin(x + y)^2$$

[Ans: (a)
$$\frac{y-1}{\cos y - x}$$

(b)
$$\frac{1+y}{1+x^2}$$

[Ans: (a)
$$\frac{y-1}{\cos y - x}$$
 (b) $\frac{1+y}{1+x^2}$ (c) $\frac{2(x+y)\cos(x+y)^2}{1-2(x+y)\cos(x+y)^2}$]

16 If
$$x^2 + 3xy - y^2 = 3$$
, find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ at the point (1, 1).

[Ans:
$$-5, 78$$
]

17 If
$$y = e^{kt} \cos pt$$
, prove that $\frac{d^2y}{dt^2} - 2k\frac{dy}{dt} + (k^2 + p^2)y = 0$. If $\frac{dy}{dt} = 2p$ and $\frac{d^2y}{dt^2} = 3p$ when $t = \frac{3\pi}{2p}$, calculate k and prove that $p = \frac{9\pi}{8\ln 2}$.

[Ans:
$$k = \frac{3}{4}$$
]

18 Find, by the first principles, the first derivative of $f(x) = \cos x$, given that $\lim_{x\to 0} \frac{\sin x}{x} = 1$.