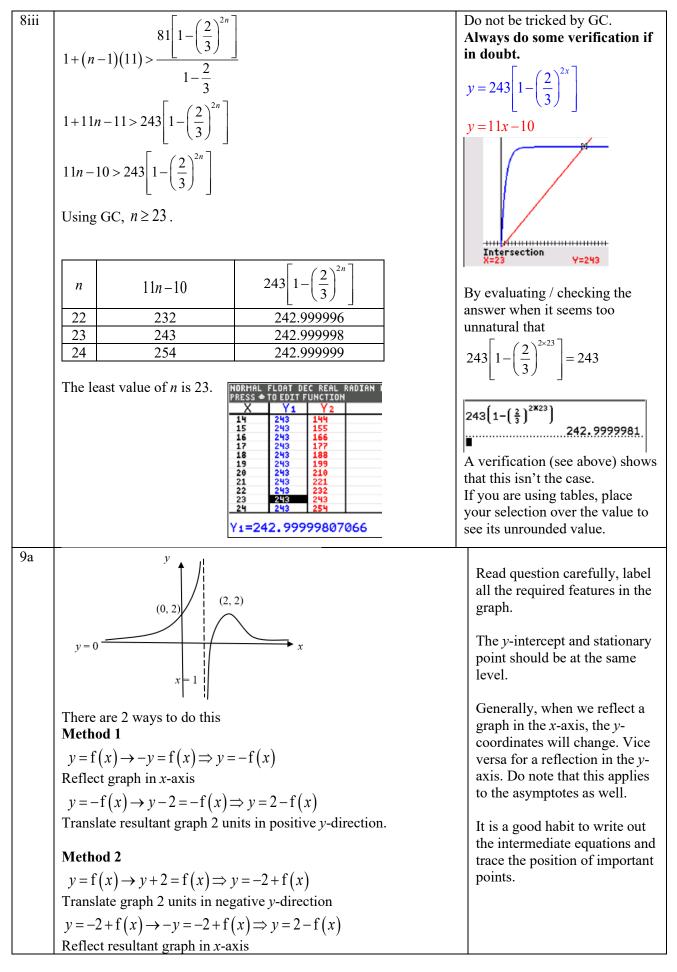
Qn	Suggested solution	Comments
1	Method 1	
	As $x^2 + x + 3 = \left(x + \frac{1}{2}\right)^2 + \frac{11}{4} \ge \frac{11}{4} > 0$ for all real values of x.	
	OR	
	Method 2	
	As (coefficient of x^2) = 1 > 0 and	
	discriminant = $(1)^2 - 4(1)(3) = -11 < 0$,	
	we have that $x^2 + x + 3 > 0$ all real values of x.	
	$\frac{x^2 + 2x + 6}{x^2 - x - 12} \ge \frac{1}{x - 4}$ $\frac{x^2 + 2x + 6}{(x - 4)(x + 3)} - \frac{1}{x - 4} \ge 0, \qquad x \ne 4 \text{ and } x \ne -3$	
	$\frac{x^2 + 2x + 6 - (x+3)}{(x-4)(x+3)} \ge 0$	
	$\frac{x^2 + x + 3}{(x - 4)(x + 3)} \ge 0$	
	This implies	
	$\frac{1}{(x-4)(x+3)} \ge 0 \text{ since } x^2 + x + 3 > 0 \text{ all real values of } x.$ (x-4)(x+3) > 0	
	$\xrightarrow{+} \ominus \xrightarrow{-} \ominus \xrightarrow{+} x$	
	-3 4	
	x < -3 or $x > 4$	
2	$z = \frac{\lambda - 4i}{1 - \lambda i} \times \frac{1 + \lambda i}{1 + \lambda i}$ $= \frac{\left(\lambda + \lambda^2 i\right) - 4i + 4\lambda}{1 + \lambda^2}$	
	$=\frac{(5\lambda)+(\lambda^2-4)i}{1+\lambda^2}$	
	$\arg(z) = \pi \implies z \in \mathbb{R}, z < 0 \text{ and } \operatorname{Im}(z) = 0$	
	$\lambda^2 - 4 = 0 \implies \lambda = \pm 2$ When $\lambda = 2$, $z = \frac{10}{5} = 2$ (Rejected since $z < 0$)	
	When $\lambda = -2$, $z = \frac{-10}{5} = -2$ (Rejected since $2 < 0$) When $\lambda = -2$, $z = \frac{-10}{5} = -2$	
	5	

	Alternatively,	
	$A(1, -\lambda)$ $A(1, -\lambda)$ RE $B(\lambda, -4)$	
	Sketch indicates that $\lambda < 0$.	
	$OA / /OB \implies \frac{-\lambda}{1} = \frac{-4}{\lambda}$	
	$-\lambda^2 = -4$	
	$\lambda = -2 \text{ (since } \lambda < 0)$	
	Hence, $z = \frac{-2 - 4i}{1 + 2i} = \frac{-2(1 + 2i)}{1 + 2i} = -2$	
3i	$PQ^2 = PR^2 + QR^2 - 2PR \cdot QR \cos \angle PRQ$	
	$= 5^{2} + 6^{2} - 2(5)(6)\cos(\angle PRS + \theta)$	
	$= 25 + 36 - 60 \Big[\cos \big(\angle PRS \big) \cos \theta - \sin \big(\angle PRS \big) \sin \theta \Big]$	
	$= 61 - 60 \left(\frac{3}{5}\cos\theta - \frac{4}{5}\sin\theta\right)$	
	$= 61 - 36\cos\theta + 48\sin\theta$	
	$\therefore PQ = (61 - 36\cos\theta + 48\sin\theta)^{\frac{1}{2}} \text{ (shown)}$	

3ii	$PQ = \left(61 - 36\cos\theta + 48\sin\theta\right)^{\frac{1}{2}}$	
	$\approx \left(61 - 36\left(1 - \frac{\theta^2}{2}\right) + 48\theta\right)^{\frac{1}{2}}$	
	$= \left(25 + 48\theta + 18\theta^2\right)^{\frac{1}{2}}$	
	$=5\left(1+\frac{48}{25}\theta+\frac{18}{25}\theta^{2}\right)^{\frac{1}{2}}$	
	$\approx 5 \left(1 + \frac{1}{2} \left(\frac{48}{25} \theta + \frac{18}{25} \theta^2 \right) + \frac{\left(\frac{1}{2}\right) \left(-\frac{1}{2}\right)}{2!} \left(\frac{48}{25} \theta\right)^2 \right)$	
	$=5\left(1+\frac{24}{25}\theta+\frac{9}{25}\theta^{2}-\frac{288}{625}\theta^{2}\right)$	
	$=5\left(1+\frac{24}{25}\theta-\frac{63}{625}\theta^{2}\right)$	
	$=5+\frac{24}{5}\theta-\frac{63}{125}\theta^2, \ p=\frac{24}{5}, \ q=-\frac{63}{125}$	
4i	$\frac{\mathrm{d}y}{\mathrm{d}x} + xy = \mathrm{e}^{-x}$	
	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + x\frac{\mathrm{d}y}{\mathrm{d}x} + y = -\mathrm{e}^{-x}$	
	$\frac{\mathrm{d}^3 y}{\mathrm{d}x^3} + x\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + \frac{\mathrm{d}y}{\mathrm{d}x} + \frac{\mathrm{d}y}{\mathrm{d}x} = \mathrm{e}^{-x}$	
	When $x=0$, $y=1$,	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 1 \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = -2 \frac{\mathrm{d}^3 y}{\mathrm{d}x^3} = -1$	
	Let $y = f(x)$. The Maclaurin series for y is:	
	$y = f(0) + xf'(0) + \frac{x^2}{2!}f''(0) + \frac{x^3}{3!}f'''(0) + \dots$	f(0) = 1 (:: y = 1 when x = 0)
	$y = 1 + x - x^2 - \frac{1}{6}x^3 + \dots$	
4ii	Since $y = 1 + x - x^2 - \frac{1}{6}x^3 + \dots$, differentiating y w.r.t. x,	
	$\frac{dy}{dx} = 1 - 2x - \frac{1}{2}x^2 + \dots$	
5ai	$\int \frac{1}{x^2 + 2x + 5} \mathrm{d}x$	
	$= \int \frac{1}{(x+1)^2 + 2^2} \mathrm{d}x$	
	$=\frac{1}{2}\tan^{-1}\left(\frac{x+1}{2}\right)+C$	

```
Solutions
```

-		
5aii	$\int \frac{(\ln x)^3}{x} dx$	$f(x) = \ln x, f'(x) = \frac{1}{x}$
	$=\frac{\left(\ln x\right)^4}{4}+C$	$\int f'(x) (f(x))^3 dx$
	4	$=\frac{\left(\mathbf{f}(x)\right)^4}{4}+C$
		Note that $(\ln x)^3 \neq 3 \ln x$
5b	$\int_0^{\frac{\pi}{2}} x \cos x \mathrm{d}x$	$\int v \frac{\mathrm{d}u}{\mathrm{d}x} \mathrm{d}x = uv - \int u \frac{\mathrm{d}v}{\mathrm{d}x} \mathrm{d}x$
	$= \left[x(\sin x) \right]_{0}^{\frac{\pi}{2}} - \int_{0}^{\frac{\pi}{2}} \sin x dx$	Take note the correct choices of function to be
	$=\frac{\pi}{2}+\int_{0}^{\frac{\pi}{2}}-\sin x\mathrm{d}x$	$\frac{\mathrm{d}u}{\mathrm{d}x}$ (integrated) and
	$=\frac{\pi}{2} + \left[\cos x\right]_{0}^{\frac{\pi}{2}}$	v (to be differentiated)
	$=\frac{\pi}{2}+(0-1)$	choose $\frac{\mathrm{d}u}{\mathrm{d}x} = \sin x$ and
	$=\frac{\pi}{2}-1$	v = x
6a	$x^2 + ay^2 + bx + cy = 0 \tag{1}$	Note that $\left(\frac{1}{2}, -\frac{3}{2}\right)$ is also a
	Since <i>C</i> passes through $(5, -3)$ and $(\frac{1}{2}, -\frac{3}{2})$,	point on the curve and needs
	$5^{2} + a(-3)^{2} + 5b + (-3)c = 0$	to be substituted to get another equation
	$\Rightarrow 9a + 5b - 3c = -25 -(1)$	
	$\left(\frac{1}{2}\right)^{2} + a\left(-\frac{3}{2}\right)^{2} + \frac{1}{2}b + \left(-\frac{3}{2}\right)c = 0$	
	$\frac{1}{4} + \frac{9}{4}a + \frac{1}{2}b - \frac{3}{2}c = 0$	
	$\Rightarrow 9a + 2b - 6c = -1 -(2)$	↑
	At $\left(\frac{1}{2}, -\frac{3}{2}\right)$, tangent is parallel to the <i>y</i> -axis.	
	$2x + 2ay\frac{dy}{dx} + b + c\frac{dy}{dx} = 0$	
	$(2ay+c)\frac{\mathrm{d}y}{\mathrm{d}x} = -2x - b$	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-2\left(\frac{1}{2}\right) - b}{2a\left(-\frac{3}{2}\right) + c}$	Tangent parallel to the y-axis $\frac{dy}{dt} = \frac{-1-b}{b}$
	(2)	is vertical, so $\overline{dx} = \overline{-3a+c}$ is undefined, meaning that
	$=\frac{-1-b}{-3a+c}$	denominator is zero and NOT
	Since tangent is parallel to the <i>y</i> -axis. $-3a + c = 0$ -(3)	numerator. (See diagram)
	By GC, $a = -1$, $b = -5$ and $c = -3$.	


6b	$x^2 - y^2 - 10x - 6y = 0$	Use brackets when completing the square.
	$(x-5)^{2} - (5)^{2} - \left[(y+3)^{2} - (3)^{2}\right] = 0$	
	$(x-5)^2 - (y+3)^2 = 4^2$	This is hyperbola. Refer to conics App on GC to see the
		various forms for various
	$\frac{(x-5)^2}{4^2} - \frac{(y+3)^2}{4^2} = 1$	conic sections.
	Asymptote: y+3 = x-5, $y+3 = -x+5\Rightarrow y = x-8, y = -x+2$	Always draw asymptotes first before the curve in order for your curve to approach the asymptotes.
	y = -x + 2 $y = x - 8$	Watch for "tail-end behaviour". Curve should not "steer away" from asymptote.
	$\frac{(x-5)^2}{4^2} - \frac{(y+3)^2}{4^2} = 1$	We want a relatively
	$(0,0) \tag{10,0}$	proportional curve here with correct labels – centre,
	(1,-3) (9,-3) (9,-3)	vertices, asymptotes, passing through the origin.
	(0,-6)	A rather common mistake is that many students drew a circle instead. Question:
		What is the key difference between a hyperbola and ellipse (and circles)?
7i	Let <i>x</i> be the length as denoted in the diagram: By similar triangles,	Be clear about the usage of similar triangles as this is a
	15m	"show" question – provide
	$\frac{x}{h} = \frac{1.5}{2}$	clear justification.
	$x = \frac{3}{4}h$	
	$V = \frac{1}{2} \left(h \right) \left(\frac{3}{4} h \right) (8)$	
	$=3h^2$	
7ii	$\frac{\mathrm{d}V}{\mathrm{d}h} = 6h$	
	When volume of water in the drain = 7.2 m^3 , the water level is $7.2 = 3h^2$	
	$h^2 = 2.4$	
	$h = \sqrt{2.4}$ $h = \sqrt{2.4} (\because h > 0)$	

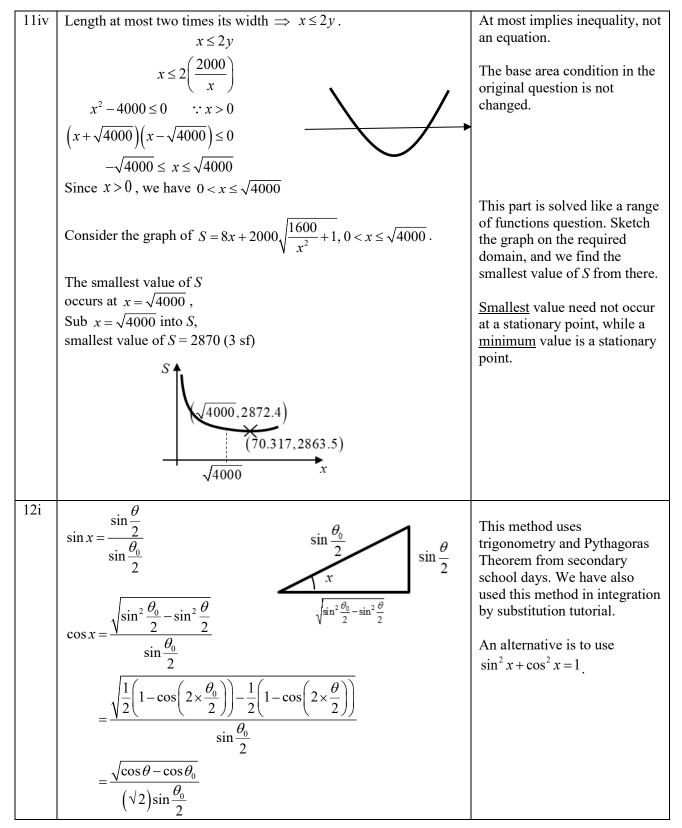
2023 PROMO PRACTICE PAPER C

Solutions

$\frac{\mathrm{d}h}{\mathrm{d}t} = \frac{\mathrm{d}h}{\mathrm{d}V} \times \frac{\mathrm{d}V}{\mathrm{d}t}$	No need to make <i>h</i> the subject
	to find $\frac{dh}{dV}$. Recall that
$=\frac{1}{6(\sqrt{2.4})} \times (0.03 - 0.02)$	
	$\frac{\mathrm{d}h}{\mathrm{d}V} = \frac{1}{\frac{\mathrm{d}V}{\mathrm{d}V}} = \frac{1}{6h}.$
= 0.0010759	dh
= 0.00108	
m_{1} , r_{1} , r_{1} , r_{1} , r_{2}	
The rate at which the water level is rising is 0.00108 m s^{-1} .	771 1 11 . 4 1 .
⁸ⁱ Let u_n be the n^{th} term of the geometric series.	The deadly mistake in question 7 was the incorrect
$u_n = ar^{n-1}$	usage of formulas.
$u_3 = 36$	Compating for with town
$ar^2 = 36 $	Correct formula for <i>n</i> th term of geometric series is
	$u_n = ar^{n-1}$
$S_{\infty} = 243$	$m_n = \omega$
$\frac{a}{1-r} = 243$	Correct formula for sum to
1 /	infinity is $S_{\infty} = \frac{a}{1-r}$.
a = 243(1-r) (2)	1-r
Substitute (2) into (1),	
$243(1-r)r^2 = 36$	
$243r^2 - 243r^3 - 36 = 0$	
Using GC to solve for the roots of the cubic equation,	No need to solve this equation
$r = -\frac{1}{3}$ (reject $\because r > 0$) or $\frac{2}{3}$	by algebraic means – just use
	GC!
\therefore Common ratio, $r = \frac{2}{3}$.	Always read question to see
	if GC can/should be used.
Substitute $r = \frac{2}{3}$ into (2),	
$a = 243 \left(1 - \frac{2}{3}\right)$	
=81	
\therefore First term, $a = 81$.	
8ii $\frac{6}{2} \left[2(1) + (6-1)d \right] = \frac{81 \left[1 - \left(\frac{2}{3}\right)^3 \right]}{1 - \frac{2}{3}}$	Correct formula for sum of n
$\begin{bmatrix} 6 \\ 2(1) + (6 - 1)d \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ - (\overline{3}) \end{bmatrix}$	terms of a geometric series is $a(1-r^n)$
$\left[\frac{1}{2}\right]^{2}\left[\frac{2(1)+(0-1)a}{1-\frac{2}{1-\frac$	$\frac{a(1-r^n)}{1-r}.$
	Correct formula for sum of n
$3(2+5d) = 243 \left 1 - \left(\frac{2}{3}\right)^3 \right $	terms of a arithmetic series is
	$\frac{n}{2} \left[2a + (n-1)d \right].$
$6 + 15d = 243 - 243 \left(\frac{2}{3}\right)^3$	2 ¹ Make sure you know what the
$0 + 15u = 245 - 245(\frac{1}{3})$	"letters" in the formula mean.
6 + 15d = 171	
15d = 165	
d = 11	

2023 PROMO PRACTICE PAPER C


```
Solutions
```


01 1		
9bi	$\frac{dy}{dx} = \frac{(x+2)(4x+k) - (2x^2 + kx - 2)}{(x+2)^2}$	We need to find $\frac{dy}{dr} = 0$
	$dx \qquad (x+2)^2$	uл
	$4x^2 + kx + 8x + 2k - 2x^2 - kx + 2$	(stationary points) before applying $b^2 - 4ac > 0$ (2)
	$=\frac{4x^{2}+kx+8x+2k-2x^{2}-kx+2}{(x+2)^{2}}$	stationary points)
	$2x^2 + 8x + 2k + 2$	
	$=\frac{2x^2+8x+2k+2}{(x+2)^2}$	
	dy o	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 0$	
	Discriminant > 0	
	$8^2 - 4(2)(2k+2) > 0$	
	64 - 16k - 16 > 0	
	16 <i>k</i> < 48	
	<i>k</i> < 3	
	Alternatively,	
	$2\left(x^2+4x\right)+2k+2$	
	$= 2\left[\left(x+2 \right)^{2} - 2^{2} \right] + 2k + 2$	
	$=2(x+2)^{2}-6+2k$	
	-6 + 2k < 0	
	<i>k</i> < 3	
	Set of values of $k = \{k \in \mathbb{R} : k < 3\}$.	
9bii	2x-7	When in the form
	$\frac{2x-7}{x+2)2x^2-3x-2}$	$y = ax + b + \frac{c}{x+d}$,
	$-(2x^2+4x)$	
	-7x-2	y = ax + b will be an
	-(-7x-14) 12	asymptote as $x \to \pm \infty$
	$\frac{-(-7x-14)}{12} \qquad \therefore y = 2x-7 + \frac{12}{x+2}$	because $\frac{c}{x+d} \to 0$
	Alternatively,	x = -d will be the other
	$2x^2 - 3x - 2 = (ax + b)(x + 2) + c$	asymptote as $y \to \pm \infty$.
	Comparing coefficients,	
	<i>a</i> = 2	Equations of asymptotes
	$2a + b = -3 \Longrightarrow b = -3 - 4 = -7$	MUST start with " $x =$ " or " $y =$ "
	$2b + c = -2 \Longrightarrow c = -2 + 2(-7) = -12$	
	$\therefore y = 2x - 7 + \frac{12}{x+2}$	
	x+2	
	Equation of asymptotes are $y = 2x - 7$, $x = -2$	

9b iii	x = -2 $(-0.5, 0)$ $(-0.449, -1.20)$ $(-4.45, -20.8)$	Read question carefully, for all the required features in the graph. There is no need to give exact coordinates for the stationary points. Asymptotes are like the "skeleton" of our graphs, they will guide the shape and position of the graph. We should draw them in first. We will need to adjust the window settings to see the left half of the graph. We can either look at the table of values (ys) or use the trace function (r) to see what are the <i>y</i> -values we are working with.
9b iv	Hence $y = x + \frac{6}{x+2}$ First, stretch parallel to y-axis by factor 2, with x-axis invariant $\frac{y}{2} = x + \frac{6}{x+2}$ $y = 2x + \frac{12}{x+2}$ Next, translate 7 units in the negative y-direction $y + 7 = 2x + \frac{12}{x+2}$ Next, translate 7 units in the negative y-direction $y + 7 = 2x + \frac{12}{x+2}$ $y = 2x - 7 + \frac{12}{x+2}$ $ w = \sqrt{(\sqrt{3})^2 + 1^2} = 2$	Read question carefully, we want to transform $y = x + \frac{6}{x+2}$ to <i>C</i> , not the other way round. It is a good habit to write out the intermediate equations. Pay attention to the words used to describe the transformation. "Scale" and "move" are not accepted.
10a	$ w = \sqrt{\left(\sqrt{3}\right)^2 + 1^2} = 2$	
10b	$ w+ai = (-\sqrt{3}) + (a-1)i $ = $\sqrt{(-\sqrt{3})^2 + (a-1)^2}$ = $\sqrt{3+a^2 - 2a + 1}$ = $\sqrt{a^2 - 2a + 4}$	In general, $ a+b \neq a + b $. Also, $ p+qi = \sqrt{p^2 + q^2}$ only when p and q are both real numbers. w is not a real number in this case.

10c	$w + \frac{bi}{w} = -\sqrt{3} - i + \frac{bi}{-\sqrt{3} - i}$	
	$= -\sqrt{3} - i + \frac{bi(-\sqrt{3} + i)}{(-\sqrt{3} - i)(-\sqrt{3} + i)}$	
	$=-\sqrt{3}-i+\frac{bi}{4}\left(-\sqrt{3}+i\right)$	
	$=-\sqrt{3}-\frac{b}{4}-i-\frac{\sqrt{3}bi}{4}$	
	$\therefore \operatorname{Im}\left(w + \frac{b}{w}\right) = -1 - \frac{\sqrt{3}b}{4}$	
10d	Since the cubic equation has real coefficients, then the roots are 4, w, w^* .	For expansion of factors in complex numbers, it is usual
	Hence a cubic equation is $(z-w)(z-w^*)(z-4) = 0$	to expand $(z-w)(z-w^*)$ first.
	$\begin{bmatrix} z - (-\sqrt{3} - \mathbf{i}) \end{bmatrix} \begin{bmatrix} z - (-\sqrt{3} + \mathbf{i}) \end{bmatrix} (z - 4) = 0$ $\begin{bmatrix} (z + \sqrt{3}) + \mathbf{i} \end{bmatrix} \begin{bmatrix} (z + \sqrt{3}) - \mathbf{i} \end{bmatrix} (z - 4) = 0$	$z^{3} + (2\sqrt{3} - 4)z^{2} +$
	$\left[\left(2^{2} + \sqrt{3} \right)^{-1} \right] \left[\left(2^{2} + \sqrt{3} \right)^{-1} \right] \left(2^{-4} \right)^{-1} = 0$ $\left(z^{2} + 2\sqrt{3}z + 3 - (-1) \right) (z - 4) = 0$	$\left(4-8\sqrt{3}\right)z-16$
	$(z^2 + 2\sqrt{3}z + 4)(z - 4) = 0$	is an expression. There is no "=", so it is not an equation.
	$z^{3} + \left(2\sqrt{3} - 4\right)z^{2} + \left(4 - 8\sqrt{3}\right)z - 16 = 0$	
10ei	$\arg w = -\frac{5\pi}{6}$	Good habit to sketch an Argand diagram and find out which quadrant the point representing w is in
	ang (w) Re	representing with in
10e ii	$\arg(w^{n}w^{*}) = n \arg w + \arg w^{*} = -\frac{5\pi}{6}n + \frac{5\pi}{6}$	Read question carefully, <i>"without using a calculator"</i>
	$w^n w^*$ is real $\Rightarrow \arg(w^n w^*) = k\pi$, where $k \in \mathbb{Z}$	means trial and error methods will not be credited.
	$\implies -\frac{5\pi}{6}n + \frac{5\pi}{6} = k\pi$	Remember that the polar form
	$\Rightarrow \qquad (-n+1) = \frac{6k}{5}$	of complex numbers is very useful for raising to high powers and multiplication.
	$\implies \qquad n = 1 - \frac{6k}{5}$	powers and multiplication.
	For the three smallest positive whole number values of n ,	
	we take $k = 0, -5, -10, \implies n = 1, 7, 13$	

2023 PROMO PRACTICE PAPER C

11i	Floor area $xy = 2000 \Rightarrow y = \frac{2000}{r}$			In general, $\sqrt{a+b} \neq \sqrt{a} + \sqrt{b}$
	х			$\sqrt{u} + b \neq \sqrt{u} + \sqrt{b}$
	Area $S = 2(4x) + 2x(0.01y^2)^2 + ($	$\left(\frac{y}{2}\right)^2$		
	$= 8x + 2x\sqrt{\frac{y^2}{4}} \Big(4\big(0.01y\big)^2 + $	1)		
	$= 8x + 2x\left(\frac{y}{2}\right)\sqrt{4\left(0.01\left(\frac{20}{x}\right)\right)}$	$\left(\frac{00}{c}\right)^2 + 1$		
	$=8x+x\left(\frac{2000}{x}\right)\sqrt{4\left(0.01\left(\frac{2}{x}\right)^{2}\right)^{2}}$	$\left(\frac{2000}{x}\right)^2 + 1$		
	$=8x+2000\sqrt{\frac{1600}{x^2}}+1$			
11ii	$\frac{\mathrm{d}S}{\mathrm{d}x} = 8 + 2000 \left(\frac{1}{2}\right) \left(\frac{1600}{x^2} + 1\right)^{-1/2} \left(\frac{1}{x^2}\right)^{-1/2} \left(\frac$	$-\frac{3200}{x^3}$		Be very careful with the number of zeroes in your working. This is a show
	$\frac{dS}{dx} = 0 \Longrightarrow 8 - 1000 \left(\frac{1600}{x^2} + 1\right)^{-1/2} \left(\frac{3}{x^2}\right)^{-1/2} \left(\frac{3}{x^2} + 1\right)^{-1/2} \left(\frac{3}{x^2} + 1\right)^{-$	$\left(\frac{3200}{x^3}\right) = 0$		question.
	$1000\left(\frac{1600}{x^2} + 1\right)^{-1/2}\left(\frac{3200}{x^3}\right) = 8$	For $\sqrt{a} - b = 0$, to express <i>a</i> in terms of <i>b</i> , we write $\sqrt{a} = b$ before squaring both		
	$\frac{400000}{x^3} = \sqrt{\frac{160}{x^2}}$	sides to get $a = b2$.		
	1.6×10^{11} 1600			
	$\frac{1.6 \times 10^{11}}{x^6} = \frac{1600}{x^2}$			
	$x^6 + 1600x^4 - 1.6 \times 10^{11} = 0$			
11	By GC, $x = 70.317$ (since $x > 0$).			$x^{6} + 1600x^{4} - 1.6 \times 10^{11} = 0$ is
iii	From GC,			an equation satisfied by the stationary point. But,
	$\frac{d^2S}{dx^2} = 0.31350 > 0 \text{ when } x = 70.31$	7		
	OR			$x^{6} + 1600x^{4} - 1.6 \times 10^{11} \neq \frac{\mathrm{d}S}{\mathrm{d}x}$
	x 70.2 70.317	70.4		Show values for the minimum
	$\frac{\mathrm{d}S}{\mathrm{Value of } \mathrm{d}x}$ -0.03680	0.0259		point testing.
	$\frac{\mathrm{d}S}{\mathrm{Sign of } \mathrm{d}x} - 0$	+		Read the question carefully. We need to find the minimum value of <i>S</i> , not just the value of
	Hence <i>S</i> is minimum when $x = 70.317$.			<i>x</i> that gives minimum <i>S</i> .
	Minimum $S = \begin{bmatrix} 8(70.317) + 2000 \end{bmatrix}$	$\left[\frac{1600}{70.317^2} + 1\right]$		
	= 2863.486 = 2860 (to 3 s.f.)			

	$\frac{d}{d\theta}(\sin x) = \frac{d}{d\theta} \left(\frac{\sin \frac{\theta}{2}}{\sin \frac{\theta_0}{2}} \right)$ $(\cos x) \left(\frac{dx}{d\theta} \right) = \frac{\frac{1}{2} \left(\cos \frac{\theta}{2} \right)}{\sin \frac{\theta_0}{2}}$ $\left(\frac{\sqrt{\cos \theta - \cos \theta_0}}{(\sqrt{2}) \sin \frac{\theta_0}{2}} \right) \left(\frac{dx}{d\theta} \right) = \frac{\left(\cos \frac{\theta}{2} \right)}{2 \sin \frac{\theta_0}{2}}$	We need to understand that x and θ are variables, while θ_0 is a constant. It is easier to discuss this question in terms of $\frac{d}{d\theta}(\sin x)$, rather than $\frac{d}{d\theta}(\cos x)$.
	$\frac{dx}{d\theta} = \frac{\left(\cos\frac{\theta}{2}\right)}{2\sin\frac{\theta}{2}} \times \frac{\left(\sqrt{2}\right)\sin\frac{\theta}{2}}{\sqrt{\cos\theta - \cos\theta_{0}}}$ $\frac{dx}{d\theta} = \frac{\cos\frac{\theta}{2}}{\left(\sqrt{2}\right)\sqrt{\cos\theta - \cos\theta_{0}}}$	
12ii	$\frac{d\theta}{(\sqrt{2})}\sqrt{\cos\theta - \cos\theta_0}$ When $\theta = \theta_0$, $\sin x = 1 \implies x = \frac{\pi}{2}$. $\theta = 0$, $\sin x = 0 \implies x = 0$. $\frac{dx}{d\theta} = \frac{\cos\frac{\theta}{2}}{(\sqrt{2})\sqrt{\cos\theta - \cos\theta_0}} \implies \frac{d\theta}{dx} = \frac{\sqrt{2}}{\cos\frac{\theta}{2}} \cdot \sqrt{\cos\theta - \cos\theta_0}$ Hence, $T = 4\sqrt{\frac{L}{2g}} \int_{0}^{\theta_0} \frac{1}{\sqrt{\cos\theta - \cos\theta_0}} d\theta$	This is an integration by substitution question. Hence, we need to show clearly how we obtained the new limits (answer is given) and how we substituted the integrand. You need to use the given results in (i) in this part.
	$\sqrt{2g} \int_{0}^{\pi} \sqrt{\cos\theta} - \cos\theta_{0}$ $= 4\sqrt{\frac{L}{2g}} \int_{0}^{\frac{\pi}{2}} \frac{\sqrt{2}}{\cos\frac{\theta}{2}} dx$ $= 4\sqrt{\frac{L}{g}} \int_{0}^{\frac{\pi}{2}} \frac{1}{\cos\frac{\theta}{2}} dx$ $= 4\sqrt{\frac{L}{g}} \int_{0}^{\frac{\pi}{2}} \frac{1}{\sqrt{1-\sin^{2}\frac{\theta}{2}}} dx$	
	$=4\sqrt{\frac{L}{g}}\int_{0}^{\frac{\pi}{2}}\frac{1}{\sqrt{1-\sin^2\frac{\theta_0}{2}\sin^2 x}}\mathrm{d}x$ $=4\sqrt{\frac{L}{g}}\int_{0}^{\frac{\pi}{2}}\frac{1}{\sqrt{1-k^2\sin^2 x}}\mathrm{d}x \text{where} k=\sin\left(\frac{\theta_0}{2}\right)$	

12 iii	$\frac{1}{\sqrt{1-y}} = (1-y)^{-\frac{1}{2}}$	This portion is unlinked to the previous parts. Do not give up
111	V J	on free marks like this.
	$=1+\left(-\frac{1}{2}\right)(-y)+$	
	(2)	
	$=1+\frac{1}{2}y+$	
12iv	When k is small, $k \sin x$ is small $(:-1 \le \sin x \le 1)$. This implies	This part is linked to (iii).
	$k^2 \sin^2 x$ is small, and $k^n \sin^n x$ for $n \ge 4$ can be ignored.	
	Replace y with $k^2 \sin^2 x$ in (iii), we have	
	$T = 4\sqrt{\frac{L}{g}} \int_{0}^{\frac{\pi}{2}} \frac{1}{\sqrt{1 - k^2 \sin^2 x}} \mathrm{d}x$	
	$\approx 4\sqrt{\frac{L}{g}} \int_{0}^{\frac{\pi}{2}} \left(1 + \frac{1}{2}k^{2}\sin^{2}x\right) dx$	
	$\therefore a = 2$	
12v	$T \approx 4\sqrt{\frac{L}{g}} \int_{0}^{\frac{\pi}{2}} \left(1 + \frac{1}{2}k^{2}\sin^{2}x\right) dx$	This part is linked to (iv). The key ideas are how to solve
	$=4\sqrt{\frac{L}{g}}\left(\int_{0}^{\frac{\pi}{2}}1\mathrm{d}x+\frac{1}{2}k^{2}\int_{0}^{\frac{\pi}{2}}\sin^{2}x\mathrm{d}x\right)$	$\int_{0}^{\frac{\pi}{2}} 1 dx \text{ and } \int_{0}^{\frac{\pi}{2}} \sin^2 x dx .$
	$= \sqrt{g} \left(J_0 + \frac{1}{2} \kappa J_0 + \frac{1}{2} \kappa J_0 \right)$	
	$=4\sqrt{\frac{L}{g}}\left(\frac{\pi}{2}+\frac{1}{2}k^{2}\int_{0}^{\frac{\pi}{2}}\frac{1-\cos 2x}{2}\mathrm{d}x\right)$	This question is not about applying small angle approximation as x is not necessarily small. x can take
	$=2\pi\sqrt{\frac{L}{g}}+k^2\sqrt{\frac{L}{g}}\left[x-\frac{\sin 2x}{2}\right]_0^{\frac{\pi}{2}}$	values as large as $\frac{\pi}{2}$.
	$=2\pi\sqrt{\frac{L}{g}}+k^2\sqrt{\frac{L}{g}}\left[\frac{\pi}{2}-0\right]$	
	$=2\pi\sqrt{\frac{L}{g}}\left(1+\frac{k^2}{4}\right)$	

Overall comments:

1. Algebraic skills needs to be improved by more practices and positive reinforcement by deliberately taking note of mistakes and to not repeat them, *rather than brushing them off as careless*. Poor knowledge of laws of logarithm were common. Take note that $(\ln x)^3 \neq 3 \ln x$ (see Q2a(ii))! Manipulation of modulus function was also done badly. Take note that $|3e^{-x} - 8| \neq |3e^{-x}| + 8$ (see Q6(ii)), $|w + ai| \neq |w| + |ai|$ (see Q10 b). Similar issue with square roots is also observed. $\sqrt{a+b} \neq \sqrt{a} + \sqrt{b}$.

2. Question needs to be read thoroughly. Misreads were rather common (e.g. in Q7(iii), "*n*th term" was misread into "sum of first *n* terms", 9iii find the minimum value of *S*, but significant number of you stopped at *x* that gave minimum value of *S* instead)

3. Understand command words in the question. "Show" requires very clear and thorough workings, "exact" refers to non-calculator usage (see Q6(i)).

4. Be aware of what the GC can or cannot do as well as how to use its function. GC can be used to solve system of linear equations (Q4a), inequalities (Q7(iii)), obtain the general shape of curve (Q4(b), etc). More

practice needed on adjusting window settings to see required portions of the graph (see Q8biii). We can actually use the GC to help find the nature of a stationary point. (see Q9iii). Examples can be found here: <u>https://youtu.be/FQs22CcANsM</u>