Qn	Solution	Comments
1i	$u_n = S_n - S_{n-1}$	
	$=\ln(n+1)-\ln(n-1+1)$	
	$=\ln\frac{n+1}{n} = \ln\left(1+\frac{1}{n}\right)$	
1ii	Observe that as $n \to \infty$, $\frac{1}{n} \to 0$ $\therefore u_n \to \ln 1 = 0$.	
	The sequence decreases and converges to 0.	
2	$\frac{10}{3-x} \ge x$ $10-3x+x^2$	If we conclude that the numerator has no real roots, (i.e. $b^2 - 4ac < 0$, it is not
	$\frac{10-3x+x^2}{3-x} \ge 0$	sufficient to conclude
	$\frac{\left(x - \frac{3}{2}\right)^2 + \frac{31}{4}}{2} \ge 0$	$\frac{1}{3-x} \ge 0$). What else do we need?
	$\frac{1}{3-x} \ge 0$	$10-3x+x^2$ is an expression,
	Since $\left(x - \frac{3}{2}\right)^2 + \frac{31}{4} > 0$ for all real x values,	not an equation. There are no
	Since $\left(\frac{x-2}{2}\right) + \frac{4}{4} > 0$ for all real x values,	roots for an expression.
	$\frac{1}{3-x} \ge 0$	Is it correct to only state that
	3-x 3-x > 0	$\left(x-\frac{3}{2}\right)^2+\frac{31}{4}\ge 0$? Which
	x < 3	$\left(\frac{x-\frac{1}{2}}{4}\right) + \frac{1}{4} \ge 0$? which
		real number will be a solution
		to $\left(x - \frac{3}{2}\right)^2 + \frac{31}{4} = 0?$
3i	$f(x) = x^3 + ax^2 + bx + c$	Recall factor / remainder
	$f(1) = (1)^{3} + a(1)^{2} + b(1) + c = 8$	theorem from O-level Additional Math. This is an
	$a+b+c=7\tag{1}$	assumed knowledge that you
	$f(2) = (2)^{3} + a(2)^{2} + b(2) + c = 12$	should have.
	4a + 2b + c = 4 (2)	
	$f(3) = (3)^3 + a(3)^2 + b(3) + c = 25$	
	9a + 3b + c = -2 (1)	
3ii	By GC, $a = -1.5$, $b = 1.5$ and $c = 7$ f(x) = $x^3 - 1.5x^2 + 1.5x + 7$	"Show that the gradient of the
	$f'(x) = 3x^2 - 3x + 1.5$	curve is always positive. Hence, explain"
	$= 3(x-0.5)^2 - 0.75 + 1.5$	
	$= 3(x-0.5)^{2} + 0.75 > 0 \text{ since } (x-0.5)^{2} \ge 0$	Your explanation should make mention to the fact that
	Since $f'(x) > 0$, graph of f is a strictly increasing cubic	f'(x) > 0
	graph which will only cut the <i>x</i> -axis once. Hence, there	- (). •
	is only 1 real root for $f(x) = 0$. In fact since $f(1) = 8 > 0$ and $f(-2) = -10 < 0$ it	
	[In fact, since $f(1) = 8 > 0$ and $f(-2) = -10 < 0$, it suggests that there is a root between -2 and 1 .]	

4ai	$\frac{1}{4} = \frac{x}{4-h}$ $x = \frac{4-h}{4} = 1 - \frac{h}{4}$	h r x	4 This is a show question. Clear working has to be shown. A clearly labelled
	$r = 3 - x = 2 + \frac{h}{4}$	2 1	diagram will aid in our explanation.
	$\frac{\text{Alternative}}{\frac{2}{x} = \frac{3}{x+4} \Rightarrow x = 8$ $\frac{r}{h+8} = \frac{2}{8}$ $r = \frac{h+8}{4} = 2 + \frac{h}{4}$	$\begin{array}{c c} 3 \\ 4 \\ x \end{array} \begin{array}{c} 2 \\ h+8 \end{array}$	Extra Note: There are no similar trapeziums in the figure. Having the same corresponding angles does not mean that the figures are similar. If the above statement is
	$\frac{\text{Alternative}}{\frac{r-2}{h} = \frac{3-2}{4}}$ $r = 2 + \frac{h}{4}$	$\frac{3-2}{h}$	true, then all rectangles are similar to each other.
4aii	Volume of water, $V = \frac{1}{3}\pi \left(4 + V = \frac{1}{3}\pi \left(4 + \left(2 + \frac{h}{4}\right)^2 + 2\left(2 + \frac{h}{4}\right)^2\right)$	`	We can use the given formula for volume of frustum of right circular cone, with base radius 2 m, and radius <i>r</i> m.
	$= \frac{1}{3}\pi h \left(4 + 4 + h + \frac{h^2}{16} + 4 - \frac{h^2}{16} + 4 - \frac{h^2}{16} + 4 - \frac{h^2}{16} + 4 - \frac{h^2}{16} + \frac{h^2}{16} $	$\left(+\frac{h}{2}\right)$.	You can only substitute constant values before differentiation.
	$=\frac{1}{3}\pi\left(\frac{h^{3}}{16}+\frac{3h^{2}}{2}+12h\right)$		$V = \frac{1}{3}\pi \left(4 + r^2 + 2r\right)h$
	$\frac{\mathrm{d}V}{\mathrm{d}h} = \frac{1}{3}\pi \left(\frac{3h^2}{16} + 3h + 12\right)$		$\frac{\mathrm{d}V}{\mathrm{d}h} \neq \frac{1}{3}\pi \left(4+r^2+2r\right)$
	When $h = 1$, $\frac{dV}{dt} = \frac{dV}{dh} \times \frac{dh}{dt}$ $\frac{1}{dt} = \frac{1}{dt} \left(\frac{3}{dt} \right) + \frac{dh}{dt}$		r is a variable too. We have to use implicit differentiation and product rule if we want to differentiate it directly.
	$9 = \frac{1}{3}\pi \left(\frac{3}{16} + 3 + 12\right) \times \frac{\mathrm{d}h}{\mathrm{d}t}$ $81\pi_{\rm H} \mathrm{d}h$		(Refer to tutorial 9.2 Q5: $\frac{1}{u} + \frac{1}{v} = \frac{1}{f}$
	$= \frac{81\pi}{16} \times \frac{dh}{dt}$ $\frac{dh}{dt} = \frac{16}{9\pi}$		$-\frac{1}{u^{2}}\frac{du}{dt} - \frac{1}{v^{2}}\frac{dv}{dt} = 0$)
	The rate of increase of the dep $\frac{16}{9\pi}$ m min ⁻¹ .	th of water is	Write your answers properly. $\frac{16}{9\pi} \neq \frac{16}{9}\pi$

5i	$\begin{aligned} \frac{1-2x}{\sqrt{4-x}} \\ &= (1-2x)(4-x)^{-\frac{1}{2}} \\ &= \frac{1}{2}(1-2x)\left(1-\frac{x}{4}\right)^{-\frac{1}{2}} \\ &= \frac{1}{2}(1-2x)\left(1+\left(-\frac{1}{2}\right)\left(-\frac{x}{4}\right) + \frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)}{2!}\left(-\frac{x}{4}\right)^2 + \dots \\ &= \frac{1}{2}(1-2x)\left(1+\frac{x}{8}+\frac{3}{128}x^2+\dots\right) \\ &= \frac{1}{2}\left(1-\frac{15}{8}x-\frac{29}{128}x^2+\dots\right) \\ &= \frac{1}{2}-\frac{15}{8}x-\frac{29}{128}x^2+\dots \end{aligned}$	When applying formula in binomial expansion, we can replace x with $f(x)$, i.e. $(1+f(x))^n$ =1+nf(x) $+\frac{n(n-1)}{2!}(f(x))^2 +$
5ii	$= \frac{1}{2} - \frac{15}{16}x - \frac{29}{256}x^2 + \dots$ Let $x = \frac{3}{4}$.	When asked to substitute $x = \frac{3}{4}$, we are required to do
	$\frac{1-2\left(\frac{3}{4}\right)}{\sqrt{4-\frac{3}{4}}} \approx \frac{1}{2} - \frac{15}{16}\left(\frac{3}{4}\right) - \frac{29}{256}\left(\frac{3}{4}\right)^2$	4^{-4} , we are required to do the substitution on both sides of the equation.
	$\frac{-\frac{1}{2}}{\sqrt{\frac{13}{4}}} \approx -\frac{1093}{4096}$	
	$-\frac{1}{\sqrt{13}} \approx -\frac{1093}{4096}$ $\sqrt{13} \approx \frac{4096}{1093}$	
	<u>Alternative (if you rationalised the denominator)</u>	
	$-\frac{\sqrt{13}}{13} \approx -\frac{1093}{4096} \Rightarrow \sqrt{13} \approx \frac{14209}{4096}$	
6i	Since the narrowest part is at height 80m, the centre of the hyperbola is at $(0,80)$. $k = 80$.	This question can be solved as a system of linear equations
	At $(-50,0)$, $\frac{(-50)^2}{a^2} - \frac{(80)^2}{b^2} = 1$	with unknowns $\frac{1}{a^2}$ and $\frac{1}{b^2}$.
	At $(-37.5, 125)$, $\frac{(-37.5)^2}{a^2} - \frac{(45)^2}{b^2} = 1$	
	By GC, $\frac{1}{a^2} = \frac{1}{900}, \frac{1}{b^2} = \frac{1}{3600}$ $a^2 = 900, b^2 = 3600$	

6ii	y = -2x + 80 y = 2x + 80	Recall the main features that we expect to see in a
		hyperbola.
	(0,80)	
	(-30,80) (30,80)	
	$(-50,0) \xrightarrow{(50,0)} x$	
6111	r = 30	A diagram would be useful to
		visualize this question.
	$\left(\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \right)$	Observe that the centres of the hyperbola and circle are the
	XX	same. We should capitalise on the
		graph drawn to deduce the value of r .
7i	$dx = (x + 2) = dy = 2x^2 + 2x$	When a line is parallel to <i>x</i> -
	$\frac{\mathrm{d}x}{\mathrm{d}t} = 6t + 2, \qquad \frac{\mathrm{d}y}{\mathrm{d}t} = 3t^2 + 2t$	axis, $\frac{dy}{dx} = 0$. When the line
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{3t^2 + 2t}{6t + 2}$	
		is parallel to <i>y</i> -axis, $\frac{dy}{dx}$ is
	Since tangent is parallel to the y-axis, $\frac{dy}{dx}$ is	undefined.
	undefined.	A line that is parallel to <i>y</i> -
	$6t + 2 = 0 \Longrightarrow t = -\frac{1}{3}$	axis has equation of the form $x = k$.
	$x = 3\left(-\frac{1}{3}\right)^2 + 2\left(-\frac{1}{3}\right) - \frac{5}{3} = -2$	
	\therefore Equation of tangent is $x = -2$.	
7ii	$x = 3t^{2} + 2t - \frac{5}{3} = 3\left(t + \frac{1}{3}\right)^{2} - 2 \ge -2$	When we are considering $\frac{dy}{dx} = 0$, we are finding
	Least value of x is -2 .	dx stationary values of <i>y</i> .
		For those who considered
		$\frac{\mathrm{d}x}{\mathrm{d}t} = 0$, you would need to
		check that x is a minimum.

7iii	When $y = 0$, $t^{3} + t^{2} = 0$ t = 0 or $t = -1x = -\frac{5}{3} or x = -\frac{2}{3}(-2, \frac{2}{27})(-\frac{5}{3}, 0) (-\frac{2}{3}, 0)$	Read the question: There is no mention about the range of values of <i>t</i> that can be used, so on the GC, we have to adjust the T_{min} . We need to zoom in appropriately to see the shape of the graph. Although there is no mention of $x = -2$ in this part of the question, it is implied that we need this value from the earlier parts in the question.
8	$y = \tan\left(\frac{1}{2}x\right)$ $\frac{dy}{dx} = \frac{1}{2}\sec^{2}\left(\frac{1}{2}x\right)$ $\frac{d^{2}y}{dx^{2}} = \frac{1}{2}(2)\sec\left(\frac{1}{2}x\right)\left(\frac{1}{2}\sec\left(\frac{1}{2}x\right)\tan\left(\frac{1}{2}x\right)\right)$ $= \frac{1}{2}\sec^{2}\left(\frac{1}{2}x\right)\tan\left(\frac{1}{2}x\right) = y\frac{dy}{dx}$	
8i	$\frac{d^{3}y}{dx^{3}} = \left(\frac{dy}{dx}\right)^{2} + y\frac{d^{2}y}{dx^{2}}$ When $x = 0, y = 0, \frac{dy}{dx} = \frac{1}{2}, \frac{d^{2}y}{dx^{2}} = 0, \frac{d^{3}y}{dx^{3}} = \frac{1}{4}$ $y \approx \frac{1}{2}x + \frac{\frac{1}{4}}{3!}x^{3} = \frac{1}{2}x + \frac{1}{24}x^{3}$	We have to differentiate the given expression in the question. The formula for Maclaurin expansion is f(x) = f(0) + xf'(0) $+ \frac{x^2}{2!}f''(0) +$ There is no need to replace x with $\frac{1}{2}x$ here. (compare with Q5i)
8ii	$\int \tan\left(\frac{1}{2}x\right) dx = 2\ln\left \sec\left(\frac{1}{2}x\right)\right + C$ Since $-\pi < x < \pi, -\frac{\pi}{2} < \frac{x}{2} < \frac{\pi}{2}$. $\cos\left(\frac{1}{2}x\right) > 0 \Rightarrow \sec\left(\frac{1}{2}x\right) > 0$ Hence $\int \tan\left(\frac{1}{2}x\right) dx = 2\ln\left(\sec\left(\frac{1}{2}x\right)\right) + C$	Do not forget to divide by $\frac{d}{dx}\left(\frac{1}{2}x\right) = \frac{1}{2}, \text{ a constant.}$ We need to remove the modulus notation if it is possible to do so in the question. We do not integrate the result from (i) here, question did not ask for a maclurin series, or an approximation.

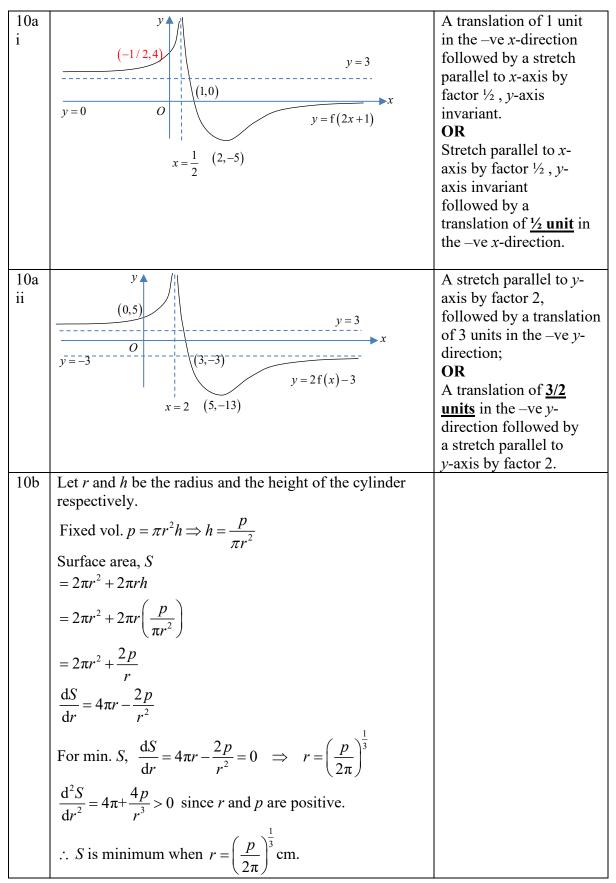
2023 PROMO PRACTICE PAPER A

Solutions

8iii	$2\ln\left(\sec\left(\frac{1}{2}x\right)\right) \approx \int \left(\frac{1}{2}x + \frac{1}{24}x^3\right) dx = \frac{1}{4}x^2 + \frac{1}{96}x^4 + C$	There are many methods to solve this question. However, if it is a
	$\ln\left(\sec\left(\frac{1}{2}x\right)\right) \approx \frac{1}{8}x^2 + \frac{1}{192}x^4 + \frac{C}{2}$	hence, or deduce question, this will be the only acceptable method.
	When $x = 0$, $\frac{C}{2} = 0 \Longrightarrow C = 0$ $\ln\left(\sec\left(\frac{1}{2}x\right)\right) = \frac{1}{8}x^2 + \frac{1}{192}x^4 + \dots$	We will need to find the value of the arbitrary constant as well. Note for those who used series from MF26, You
		have to check range of values of <i>x</i> for valid expansion.
9ai	Consider $(a+ib)^2 = 3-4i$	
	$a^2 - b^2 + 2abi = 3 - 4i$	
	Comparing the real and imaginary parts	
	$a^2 - b^2 = 3$ and $2ab = -4$	
	$\Rightarrow b = \frac{-2}{a}$	
	$a^2 - \frac{4}{a^2} = 3$	
	$a^4 - 3a^2 - 4 = 0$	
	$(a^2-4)(a^2+1)=0$	
	$a = \pm 2$ (Since <i>a</i> is a real number)	
	When $a = 2, b = -1,$	
	When $a = -2, b = 1,$	
0	Hence the 2 roots are $2-i$ or $-2+i$	
9aii	$z^2 - 4iz + 4i - 7 = 0$	
	$z = \frac{4i \pm \sqrt{(-4i)^2 - 4(4i - 7)}}{2}$	
	2	
	$z = \frac{4i \pm \sqrt{-16 + 28 - 16i}}{2}$	
	$z = 2i \pm \sqrt{3-4i}$	
	$z = 21 \pm \sqrt{3} - 41$ z = 2 + i or z = -2 + 3i	
9b	$\frac{(1+2z^{2n})^{*}=1+2(z^{*})^{2n}}{(1+2z^{2n})^{*}=1+2(z^{*})^{2n}}$	
	$\frac{2z^{n}}{1+2z^{2n}} = \frac{2z^{n}\left(1+2\left(z^{2n}\right)^{*}\right)}{\left(1+2z^{2n}\right)\left(1+2\left(z^{2n}\right)^{*}\right)} = \frac{2z^{n}\left(1+2\left(z^{*}\right)^{n}\left(z^{*}\right)^{n}\right)}{\left(1+2z^{2n}\right)\left(1+2\left(z^{2n}\right)^{*}\right)}$	
	$1 + 2z^{2n} (1 + 2z^{2n}) \left(1 + 2\left(z^{2n}\right)^* \right) (1 + 2z^{2n}) \left(1 + 2\left(z^{2n}\right)^* \right)$	
	$=\frac{2z^{n}+4 z ^{2n}(z^{*})^{n}}{\left 1+2z^{2n}\right ^{2}}=\frac{2z^{n}+2(z^{n})^{*}}{\left 1+2z^{2n}\right ^{2}}=\frac{4\operatorname{Re}(z^{n})}{\left 1+2z^{2n}\right ^{2}}=k \ , \ k\in\mathbb{R}$	R

2023 PROMO PRACTICE PAPER A

Solutions



11a	$\int \frac{\sin 3x}{2 - \cos 3x} \mathrm{d}x = \frac{1}{3} \int \frac{3\sin 3x}{2 - \cos 3x} \mathrm{d}x$	
	$=\frac{1}{3}\ln\left 2-\cos 3x\right +C$	
	$=\frac{1}{3}\ln\left(2-\cos 3x\right)+C$	
	since $-1 < \cos 3x < 1 \implies 2 - \cos 3x > 0$	
11b	$\int \frac{e^x}{(1+2e^x)^3} dx = \frac{1}{2} \int 2e^x \left(1+2e^x\right)^{-3} dx$	
	$= -\frac{1}{4} (1 + 2e^x)^{-2} + C$	
11c	$\int \frac{2-x}{4+x^2} \mathrm{d}x$	
	$= \int \frac{2}{4+x^2} \mathrm{d}x + \int \frac{-x}{4+x^2} \mathrm{d}x$	
	$= 2 \int \frac{1}{2^2 + x^2} dx + \left(-\frac{1}{2}\right) \int \frac{2x}{4 + x^2} dx$	
	$= 2\left(\frac{1}{2} \tan^{-1}\left(\frac{x}{2}\right)\right) - \frac{1}{2} \ln 4 + x^2 + C$	
	$= \tan^{-1}\left(\frac{x}{2}\right) - \frac{1}{2} \ln 4 + x^2 + C,$	
	$= \tan^{-1}\left(\frac{x}{2}\right) - \frac{1}{2} \ln(4+x^2) + C,$	
	since $4 + x^2 > 0$	
11d	$\int_0^1 \frac{1}{\sqrt{1+x^2}} \mathrm{d}x = \int_0^{\frac{\pi}{4}} \frac{1}{\sqrt{1+\tan^2 y}} \sec^2 y \mathrm{d}y$	
	$= \int_0^{\frac{\pi}{4}} \frac{1}{\sqrt{\sec^2 y}} \sec^2 y \mathrm{d}y$	
	$=\int_0^{\frac{\pi}{4}} \sec y \mathrm{d}y$	
	$= \left[\ln \left \sec y + \tan y \right \right]_{0}^{\frac{\pi}{4}}$	
	$= \ln \left \sec \frac{\pi}{4} + \tan \frac{\pi}{4} \right - \ln \left \sec 0 + \tan 0 \right $	
	$=\ln\left(\sqrt{2}+1\right)$	

11e	$\int x^2 e^{x^3} dx = \frac{1}{3} \int 3x^2 e^{x^3} dx = \frac{1}{3} e^{x^3} + C$ $\int x^5 e^{x^3} dx = \int x^3 \left(x^2 e^{x^3}\right) dx$ $= x^3 \left(\frac{e^{x^3}}{3}\right) - \int \left(x^2 e^{x^3}\right) dx$ $= \frac{1}{3} x^3 e^{x^3} - \frac{1}{3} e^{x^3} + C$	
12 ai	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Read question carefully to comprehend what is given. Mr Reech holds 200 units of the bond at the end of the 20 th year, <u>NOT</u> 2100 like what some of us thought. We are asked to calculate the <u>total</u> <u>interest</u> (or coupons) received over 20 years. Every year the interest increases by \$50 due to the extra 10 bonds that is purchased. So we should deal with an AP with first term 50 and common difference 50.
12a ii	nYear\$ beginning of Yr\$ end of Yr12016\$800 $soo(1, k)$	It is incorrect to write $1 + \frac{k}{100}$ as $1.01k$ as
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.01k = k + 0.01k.
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	This is a show question. We need to be very clear
	Amount of money in account at the end of <i>n</i> years	in our steps leading to the given answer.

	$= 800 \left(1 + \frac{k}{100}\right) + 800 \left(1 + \frac{k}{100}\right)^2 + \dots 800 \left(1 + \frac{k}{100}\right)^n$	
	$= \frac{800\left(1 + \frac{k}{100}\right)\left(1 - \left(1 + \frac{k}{100}\right)^{n}\right)}{\left(1 - \left(1 + \frac{k}{100}\right)^{n}\right)}$	
	$-\frac{1-\left(1+\frac{k}{100}\right)}{1-\left(1+\frac{k}{100}\right)}$	
	$=\frac{800\left(\frac{100+k}{100}\right)\left(\left(\frac{100+k}{100}\right)^{n}-1\right)}{k}$	
	$\frac{k}{100}$	
	$=\frac{800(100+k)}{k}\left(\left(\frac{100+k}{100}\right)^{n}-1\right)$	
12a iii	$10500 > \frac{800(100+k)}{k} \left(\left(\frac{100+k}{100}\right)^{20} - 1 \right) - 800(20)$	Read carefully. We want the <u>total</u>
	By GC y y = 10500 y = 4.59 $y = \frac{800(100+k)}{k} \left(\left(\frac{100+k}{100} \right)^{20} - 1 \right) - 16000$	<u>interest in (i)</u> to be <u>more than the total</u> <u>interest in (ii)</u> . Use all the given answers and n = 20 to form this simple inequality.
	0 < <i>k</i> < 4.59	Learn to recognise when an equation cannot be solved algebraically. Do
		not waste time trying to simplify it. Immediately use GC to sketch
		relevant graphs and look for point of intersection.

1.01		xx y1
12b	<i>n</i> Year Interest paid	What is the
	1 2016 100,000(0.02) =	maximum
	2000	theoretical interest
	2 2017 2000(0.5) = 1000	payable by the
	3 2018 2000 $(0.5)^2 = 500$	bank? Use the
		interest collected at
	Maximum theoretical interest in dolla	end of 2016 and a
	_ 2000 _ 1000	common ratio of $\frac{1}{2}$
	$=\frac{2000}{1-0.5}=4000$	to calculate.
	Total interest (in dollars) collected ov	Ver <i>n</i> years Next try to find an <i>n</i>
	$2000(1-0.5^n)$	that is large enough
	$=\frac{2000(1-0.5^n)}{1-0.5}=4000(1-0.5^n)$	for total interest
	1-0.5	collected over <i>n</i>
	$4000 - 4000(1 - 0.5^n) \le 20$	years to be reaching
		maximum
	$4000(0.5)^n \le 20$	theoretical interest
	$(0.5)^n < 1$	such that the
	$\left(0.5\right)^n \le \frac{1}{200}$	difference cannot
	1 (0.5) < 1 (1)	be more than \$20.
	$n\ln(0.5) \le \ln\left(\frac{1}{200}\right)$	Note that $\ln(0.5)$ is
	. (1)	negative and hence
	$n \ge \frac{\ln\left(\frac{1}{200}\right)}{\ln(0.5)}$	we need to switch
	$n \ge \frac{1}{\ln(0.5)}$	the sign of the
	$n \ge 7.64$	inequality when we
		divide both sides by
	Minimum number of years $= 8$	ln (0.5).
		This question can also
		be solved using either
		graph or table (Contrast
		with 12aiii, which
		cannot be solved using
		table method)
Gene	ral comments from Teachers	
•	There is a need for better time mana	gement during tests and exams. Many did

- There is a need for better time management during tests and exams. Many did not have time to attempt Q12. The ability to recognize when GC can be used to skip tedious algebraic working is an advantage during assessments.
- Need more attempts at long contextual questions to improve comprehension of question.
- Timed practice is a good exercise for training yourself to work under pressure.