

Raffles Institution Raffles Programme Year Four Chemistry

Name: _____ (

) Class: _____ Date: _____

2022 FE Revision – Acids, Bases and Salts; Ionic Equations

nitric acid	HNO ₃	calcium hydroxide	Ca(OH) ₂
sulfuric acid	H ₂ SO ₄	ammonia	NH ₃
ethanoic acid	CH₃COOH	copper(II) oxide	CuO

Rea	actions of Acids	Rea	actions of Bases
1	HCI + NaOH → NaCI + H₂O	1	CaO + 2HCI → CaCl₂ + H₂O
2	$2HNO_3$ + CaCO ₃ → Ca(NO ₃) ₂ + H ₂ O + CO ₂	2	NaOH + NH₄CI → NaCI + H₂O + NH₃
3	$H_2SO_4 + Mg \rightarrow MgSO_4 + H_2$	3	$2NaOH + Fe(NO_3)_2 \rightarrow 2NaNO_3 + Fe(OH)_2$
			green ppt
			2 NaOH + CuSO ₄ \rightarrow Na ₂ SO ₄ + Cu(OH) ₂
			blue ppt

Strength of Acids and Bases

1 A strong acid is one that completely ionises/dissociates in water while a weak acid is one that

partially ionises/dissociates in water

2(a) (i)

- (ii)
- strong acid 2(b) strong base
- + H⁺(aq) weak acid + OH⁻(aq) weak base (iii)
- (iv)

CH ₃ COOH + KO	H → CF	l₃COOK + H	2 O
2CH ₃ COOH + Na	$a_2CO_3 \rightarrow$	2NaCH ₃ CC	$OO + H_2O + CO_2$
2CH ₃ COOH + Mg	g → (CH	l₃COO)₂Mg [·]	+ H ₂
	Ö	O II	

$$\Rightarrow 2H^{+} + -0 - C - CH_2 - C - 0^{-}$$

A 10 mol dm⁻³ solution of hydrochloric acid is a concentrated solution of a strong acid while a 3 0.1 mol dm⁻³ solution of hydrochloric acid is a <u>dilute</u> solution of a <u>strong</u> acid.

4

(strong) acid, concentration	[H ⁺] / mol dm ⁻³	рН
$\begin{array}{llllllllllllllllllllllllllllllllllll$	0.0200	−lg (0.0200) = 1.70

Acid-Base titrations

ACIU-DASE III AUDIS		Types of Oxides
Titration	pH of equivalence point circle your choice	$Na_2O + 2HC/ \rightarrow 2NaCl + H_2O$
strong alkali - strong acid	<7 / =7 / >7	$CuO + H_2SO_4 \rightarrow CuSO_4 + H_2O$
strong alkali - weak acid	<7 / =7 >7)*	$\begin{array}{rcl} \textbf{2nO} \\ \textbf{CO}_2 + \textbf{2NaOH} \rightarrow \textbf{Na}_2\textbf{CO}_3 + \textbf{H}_2\textbf{O} \end{array}$
weak alkali - strong acid	<7) =7 / >7 *	$SiO_2 + CaO \rightarrow CaSiO_3$

Solubility rules and Precipitation reactions

sulfate	most, except	BaSO ₄ , calcium sulfate and PbSO ₄	
chloride	most, except	silver chloride and PbCl ₂	
iodide	most, except	AgI and Lead(II) iodide	

Answers

ſ	aqueous silver nitrate and aqueous sodium iodide / potassium iodide	silver iodide
ſ	aqueous zinc nitrate and aqueous sodium carbonate	zinc carbonate
ſ	aqueous iron(III) nitrate and aqueous sodium hydroxide	iron(III) hydroxide
ſ	aqueous lead(II) nitrate and aqueous sodium chloride	lead(II) chloride

(a) $3OH^{-}(aq) + Fe^{3+}(aq) \rightarrow Fe(OH)_{3}(s)$ (b) $Ag^{+}(aq) + CI^{-}(aq) \rightarrow AgCI(s)$ red-brown precipitate: **iron(III) hydroxide** white precipitate: **silver chloride**

Practice Questions

1 D 2 D 3 A 4 D 5 C

6	method	compound
(a)	<u>precipitation</u> reactants: aqueous magnesium nitrate and aqueous sodium ca equation: $Mg(NO_3)_2$ (aq) + Na_2CO_3 (aq) $\rightarrow MgCO_3$ (s) + $2NaNO_3$	magnesium carbonate arbonate (aq)
(b)	<u>titration</u> reactants: aqueous sodium hydroxide and dilute nitric acid equation: NaOH (aq) + HNO ₃ (aq) → NaNO ₃ (aq) + H ₂ O (I)	sodium nitrate
(c)	reaction between excess metal oxide and dilute acid reactants: copper(II) oxide and dilute hydrochloric acid equation: CuO (s) + 2HCI (aq) \rightarrow CuCl ₂ (aq) + H ₂ O (I)	copper(II) chloride
(d)	reaction between excess metal and dilute acid reactants: zinc and dilute sulfuric acid equation: Zn (s) + H ₂ SO ₄ (aq) \rightarrow ZnSO ₄ (aq) + H ₂ (g)	zinc sulfate

- 7(a) Lead(II) chloride is an <u>insoluble</u> compound. When dilute hydrochloric acid reacts with lead(II) oxide, which is also <u>not soluble</u> in water, a solid coating of <u>lead(II) chloride</u> forms around lead(II) oxide, preventing lead(II) oxide from further reacting with <u>hydrochloric acid</u>, which means the reaction will stop.
- 7(b) reactants: aqueous lead(II) nitrate and aqueous sodium chloride (or dilute hydrochloric acid) procedure: step 1: mix aqueous lead(II) nitrate and aqueous sodium chloride in a beaker step 2: filter the mixture, collect the residue, which is lead(II) chloride step 3: wash the residue with distilled water and air-dry the solid or dry between sheets of filter paper

8(b) Hydrochloric acid is a strong acid while ethanoic acid is a weak acid.

The two acids have the same concentration. Since hydrochloric acid is **fully dissociated**, it will have a **higher concentration of aqueous hydrogen ions** and hence, **a lower pH** (of 1).

Ethanoic acid **dissociates partially** and will produce a **lower concentration of aqueous hydrogen ions**. The **pH will be higher** (at 3).