	NANYANG JUNIOR COLLEGE Science Department	
	JC 2 PRELIMINARY EXAMINATION	
	Higher 2	
Candidate Name		
Class	Tutor Name	
PHYSICS		9646/03

Paper 3 Longer Structured Questions

2 hours

18 September 2013

Candidates answer on the Question Paper. No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your name, class and tutor name on all the work you hand in. Write in dark blue or black pen on both sides of the paper.

You may use a soft pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

Section A

Г

Answer all questions.

Section B

Answer any two questions.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

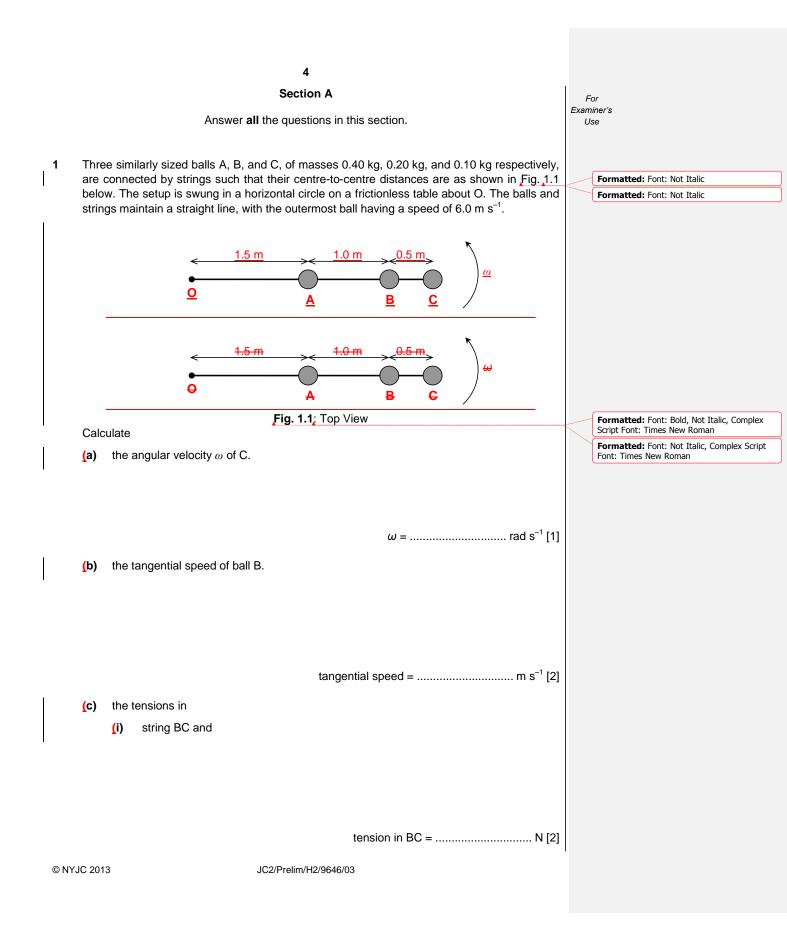
For examiner's use									
Section A									
1									
2									
3									
4									
5									
Section B									
6									
7									
8									
Total									

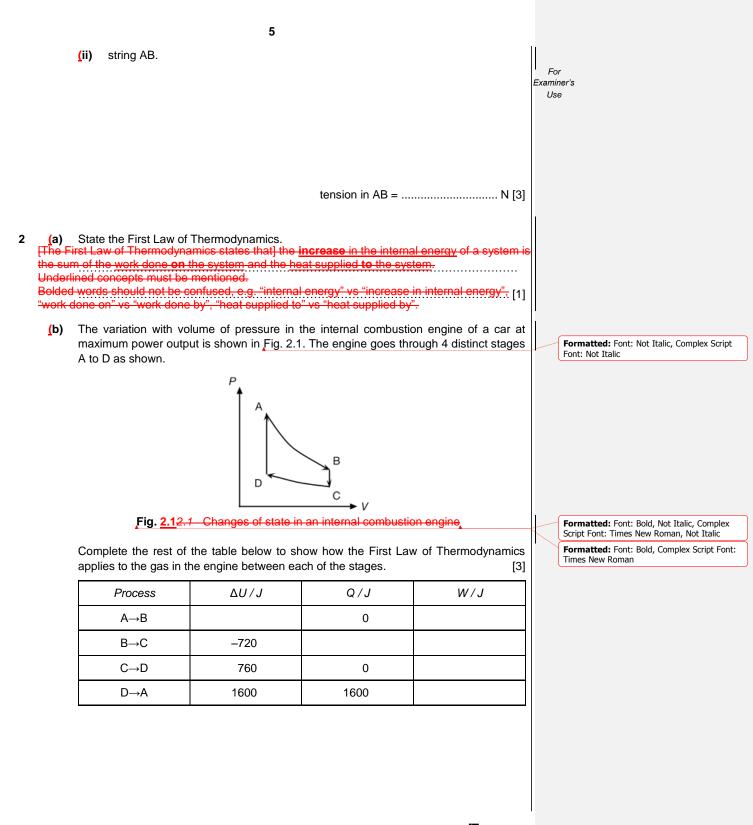
This document consists of 29 printed pages

Nanyang Junior College

JC2/Prelim/H2/9646/03

[Turn over

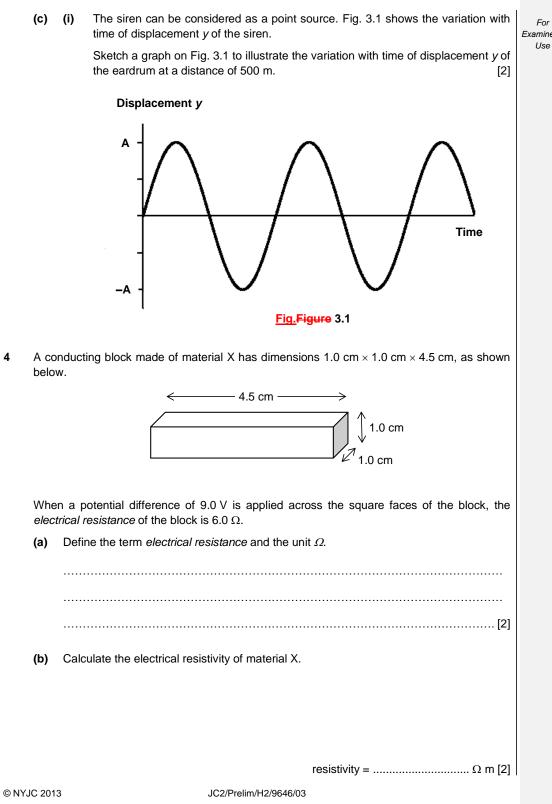

Data		
speed of light in free space,	$c = 3.00 \times 10^8 \mathrm{m s^{-1}}$	Formatted: Space After: 5 pt
permeability of free space,	$\underline{\mu_0} = 4\pi \times 10^{-7} \text{ H m}^{-1}$	
permittivity of free space,	$\underline{c_0} \in \Theta = 8.85 \times - \times - 10^{-12} - Fm^{-1}$	Formatted
	<u>(1 / (36 π)) × / (36 π)) ×</u>	
10 ⁹ -Fm ¹		Formatted
elementary charge,	e = 1.60 <u>×</u> +10 ^{=_19} _C	Formatted
the Planck constant,	$h = 6.63 \times10^{-34} - Js$	Formatted
unified atomic mass constant,	$\mu = 1.66 \times -10^{-27}$ -kg	Formatted
rest mass of electron,		Formatted
rest mass of proton,	$m_{\rm p} = 1.67 \times -10^{-27} - \text{kg}$	Formatted
molar gas constant,	$R = 8.31 - J - K^{-1} - mol^{-1}$	Formatted
the Avogadro constant,	N _A = 6.02 <u>×</u> -×-10 ²³ -mo⊢-1	Formatted
the Boltzmann constant,	$k = 1.38 \times -10^{-23} J - K^{-1}$	Formatted
gravitational constant, ¹¹ -N-m ² -kg ⁼⁻²	<u>_</u> G = 6.67 <u>×</u> × 10 ⁻ -	Formatted
acceleration of free fall,	g = 9.81ms ^{=_2}	Formatted
Formulae		
uniformly accelerated motion,	$s = ut + \frac{1}{2}at^2$	Formatted: Space After: 5 pt
	$v^2 = u^2 + 2as$	
work done on/by a gas,	$W = p\Delta V$	Formatted
hydrostatic pressure,	p = <u>pgh</u> Pgh	Formatted: Font: Italic
gravitational potential,	$\phi = -Gm/r - =$	
displacement of particle in s.h.m.	$\chi = \chi_0 \times \Theta$ -sin- ωt	Formatted
velocity of particle in s.h.m.	$v = v_0 - \cos\omega t$	Formatted
	$\pm \omega \sqrt{\left(x_o^2 - x^2\right)}$	
mean kinetic energy of a molecule of an ideal gas	$E = \frac{3}{2}kT$	Field Code Changed
mean kindle energy of a molecule of an ideal gas	$L = \frac{-\kappa}{2}$	

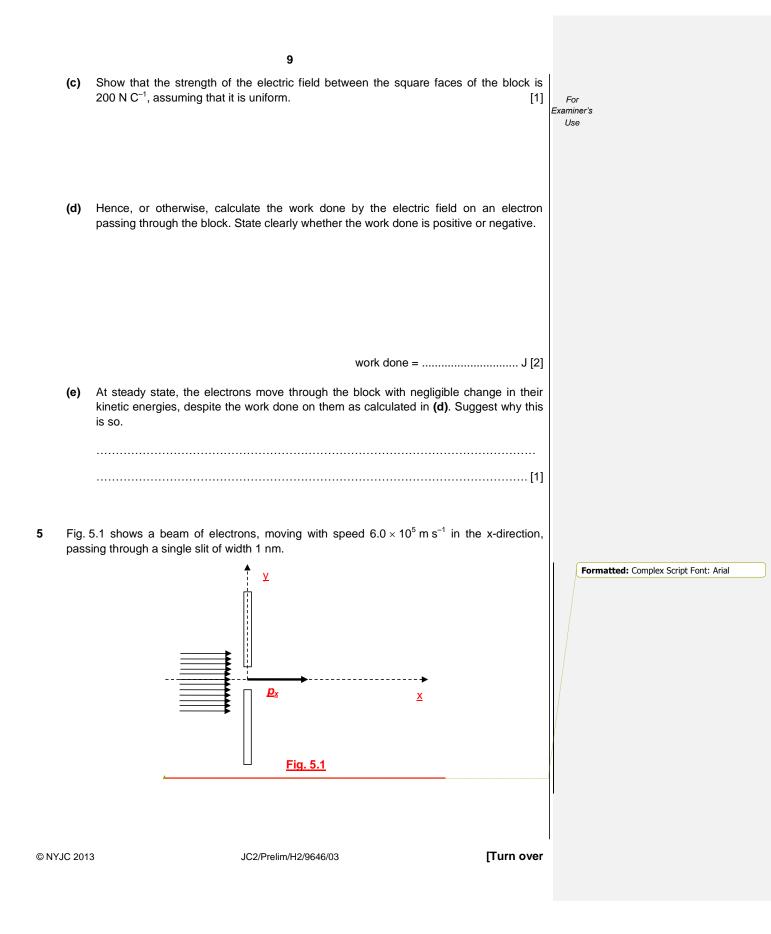

resistors in series, resistors in parallel, electric potential, alternating current/voltage, transmission coefficient, $R = R_1 + R_2 + \dots$ $1/R = 1/R_1 + 1/R_2 + \dots$ $V = Q/4\pi\varepsilon_0 r/4\pi\varepsilon_0 r$ $x = x_0 \times \Theta \sin -\omega t$ $T \propto \Theta \exp(-(-2kd))$ where $k = \frac{0.693}{t_{\frac{1}{2}}} \sqrt{\frac{8\pi^2 m(U-E)}{h^2}}$

Formatted	
Formatted	
Formatted: Font: Italic	
Formatted	
Formatted: Font: Italic	
Formatted: Font: Italic	

NYJC

radioactive decay,	X	(=	= <u>x₀</u> xo-exp_((-∕\ <i>t</i>)	-	Formatted: Font: Italic
docov constant	λ	=	0.693		Formatted: Font: Italic
decay constant	Λ	. =	$t_{\frac{1}{2}}$		Formatted: Font: Italic
	ا				
	₩	-	u² + 2as	ļ	
work done on/by a gas,	₩	-	₽∆¥		
hydrostatic pressure,	Þ	=	Pgh		
gravitational potential,	\$	-	– Gm/ r		
displacement of particle in s.h.m.	¥	-	_{×₀} -sin ωt	1	
velocity of particle in s.h.m.	¥	=	ν _e cos ωt		
		-	$\pm \omega \sqrt{\left(\mathbf{x}_{o}^{2}-\mathbf{x}^{2}\right)}$		
mean kinetic energy of a molecule of an ideal gas	Æ	-	$\frac{3}{2}kT$		
resistors in series,	R	-	$R_{4} + R_{2} + \dots$		
resistors in parallel,	1/R	=	$\frac{1}{R_1} + \frac{1}{R_2} + \dots$		
electric potential,	¥	-	Q / 4πε_or		
alternating current/voltage,	¥	=	_{×₀} -sin ωt	1	
transmission coefficient,	Ŧ	æ	exp(-2kd)	1	
	where k	-	$\frac{8\pi^2 m(U-E)}{\sqrt{h^2}}$		
radioactive decay,	×	-	х_о өхр (-<i>Аt</i>)		
decay constant	¥	-	$\frac{0.693}{t_{1/2}}$		




[Turn over

			6	
	<mark>(</mark> c)	<mark>(</mark> i)	Calculate the net work done by the gas per cycle when the engine goes through stages A to D.	For Examiner's Use
		(ii)	work done =	
		7,	 resistive force of 1.0 kN. The engine operates at a rate of 50cycles per second. Calculate the rate of net work done by the engine. 	
			rate of work done =	
			coefficient <i>P</i> =[2]	
3	(a)	(i)	Explain what is meant by a <i>longitudinal</i> wave.	

		7	
	(ii)	With the aid of a diagram, explain the formation of compression and rarefraction points along a longitudinal wave.	For Examiner's Use
		[2]	
(b)	A co	nstant_frequency siren vibrates with displacement y, where $y = A\sin200 \pi t$.	Formatted: Font: Not Italic, Complex Script
	This	sound causes vibrations of the diaphragm of an ear drum in an observer 500 m γ . The speed of sound is 335 m s ⁻¹ .	Font: Not Italic
	(i)	Calculate the frequency of the sound.	
	(ii)	f = Hz [1] Show that the phase difference between the motion of the siren and the eardrum is $\pi/2$. [2]	
© NYJC 2013	3	JC2/Prelim/H2/9646/03 [Turn over	

Examiner's

	10	
(a) (b)	$fig. 5.1$ $fig. 5.1$ $fig. 5.1$ Calculate the momentum of one of these electrons in the x-direction. $momentum = \dots kg m s^{-1} [1]$ Determine the de Broglie wavelength of the electron.	F. Formatted: Font: Bold Examiner's Use
	wavelength = m [1]	
(c)	In terms of classical wave theory, explain why the electron diffraction will be prominent in this situation.	
	[1]	
(d)	In Fig. 5.1, an electron can go through anywhere within the slit, hence the uncertainty Δy of the y-position can be as big as the width of the slit,	
	Calculate the uncertainty of the momentum in the y-direction (Δp_y) of one electron that is passing through the slit.	

uncertainty =	N s [2]
---------------	---------

For Examiner's Use

(e) On Fig. 5.1, add in two more vectors to show the relation between p_{x} , Δp_y and the resultant momentum p of the electron. [1]

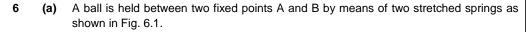
(f) Fig. 5.2 shows the diffraction pattern on a screen formed by a beam of laser after passing through a small slit. The width of the centre maximum is found to be increasing when the slit width is being reduced. Such a phenomenon in light optics is called single slit diffraction.

Fig. 5.2

For

Examiner's

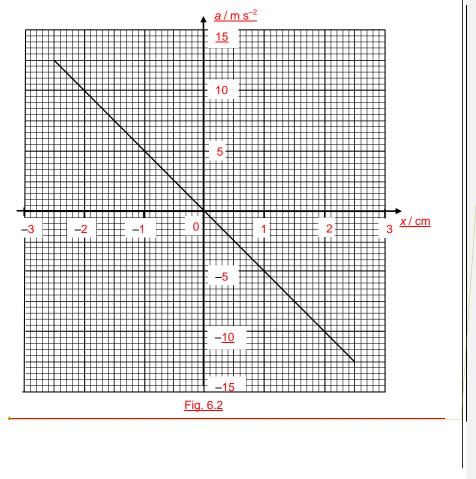
Use


Discuss the consistency between the electron diffraction and light diffraction from your working in (d), (e), and the description in (f).


 •••	••••	 	 	•••	•••	 •••	 		 •••	•••	•••	•••	 ••	 	•••	•••	 •••	•••	 •••	•••	•••	 	•••	 	 	•••	•••	•••	•••	 •••		
 	••••	 	 			 	 	•••	 				 	 		•••	 		 			 		 	 		• • •			 		
 		 	 			 	 		 				 	 			 		 			 		 	 					 	. [:	21

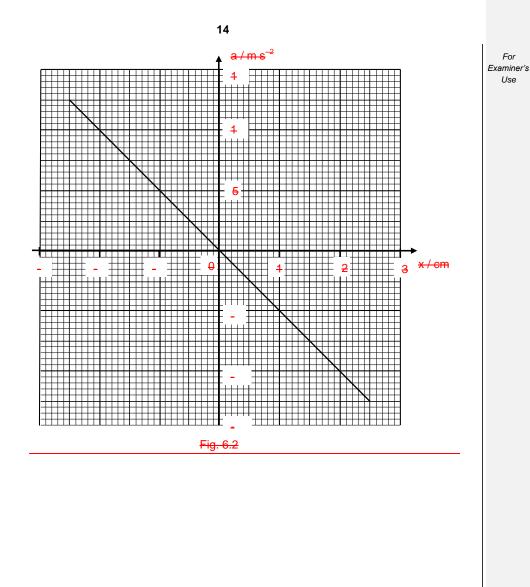
12

Section B

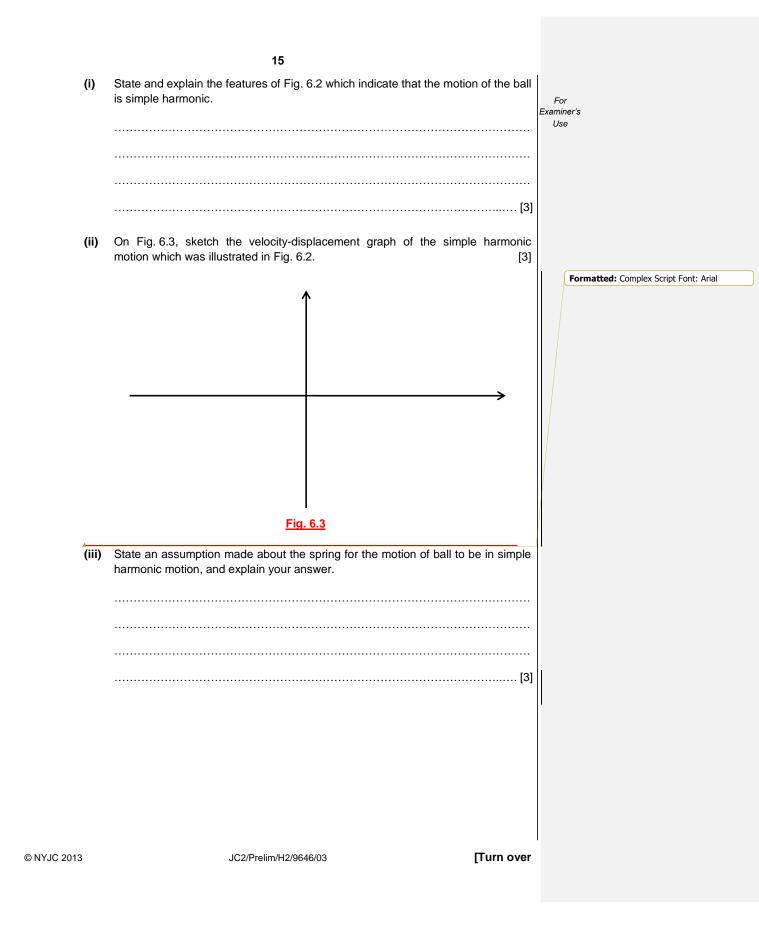

Answer two questions in this section.

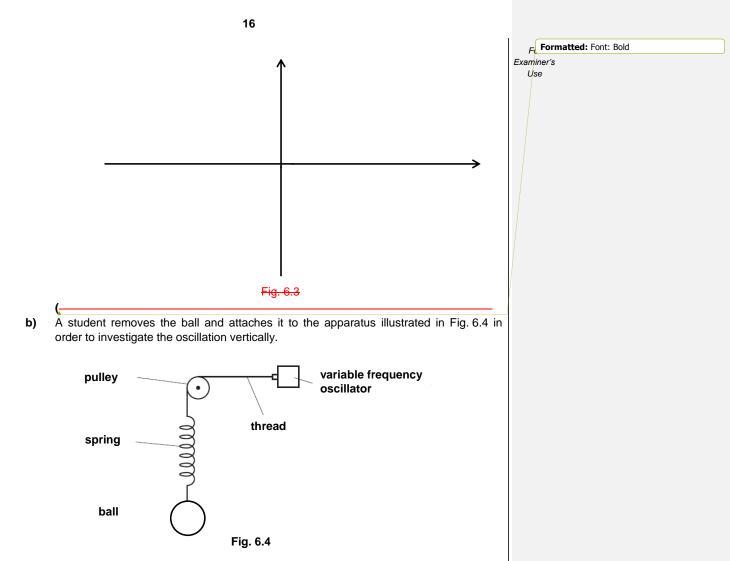
The ball is free to oscillate horizontally along the line AB on the smooth plane.

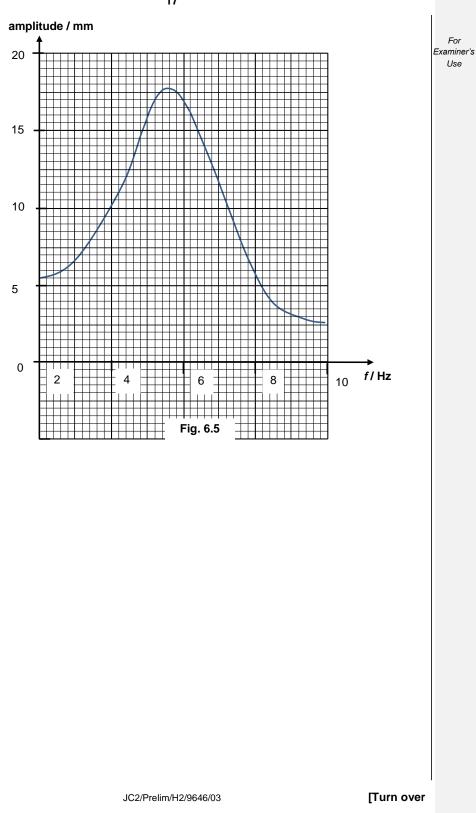
The variation of the acceleration a of the ball with its displacement x from its equilibrium position is shown in Fig. 6.2.

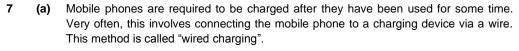

Formatted: Font: (Default) Arial, Complex Script Font: Arial

For

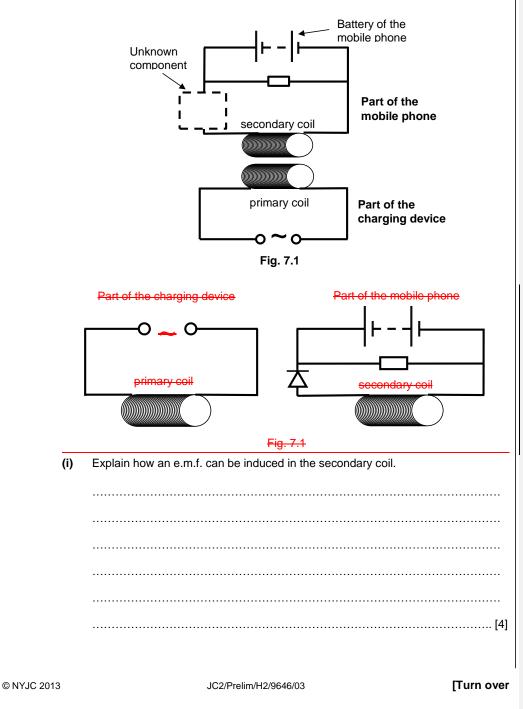

Examiner's Use


© NYJC 2013


© NYJC 2013

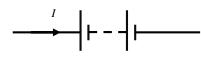


The amplitude of the vibrations produced by the oscillator is constant. The variation with frequency of the amplitude of the oscillations of the ball is shown in Fig. 6.5. The mass of the ball is given to be 150 g, and its oscillations may be assumed to be simple harmonic.


© NYJC 2013

	18	
(i)	State the phenomenon illustrated in Fig. 6.5.	For Examiner [*] Use
	[1]	
(ii)	For the maximum amplitude of vibration, state the magnitudes of the amplitude and the frequency.	
	amplitude = mm	
	frequency = Hz [2]	
Dete	ermine	
(iii)	the maximum acceleration of the ball.	
	acceleration = m s ⁻² [2]	
(iv)	the maximum tension in the spring.	
	tension = N [3]	
(v)	the maximum kinetic energy of the ball.	
	maximum kinetic energy = J [1]	
	ne very light feathers are attached to the surface of the ball so that the feathers nd outwards. The investigation is now repeated.	
(vi)	On Fig. 6.5, draw a line to show the new variation with frequency of the amplitude of variation for frequencies between 2 Hz and 10 Hz. [2]	
013	JC2/Prelim/H2/9646/03	

Recently, a new way of charging called inductive charging (or "wireless charging") is being used. The mobile phone is placed on top of the charging device during charging. A simplified setup is shown in Fig. 7.1.


For Examiner's Use (ii) The charging device is connected to a 240 V power source. The number of turns in the primary coil is 100. If the number of turns in the secondary coil is 5, calculate the e.m.f. induced in the secondary coil.

20

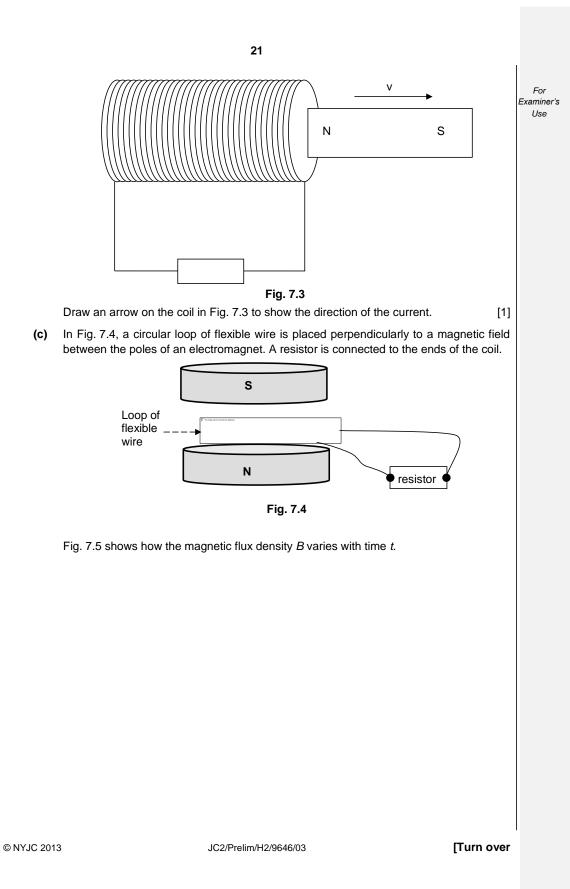
Assume that the transformer is ideal.

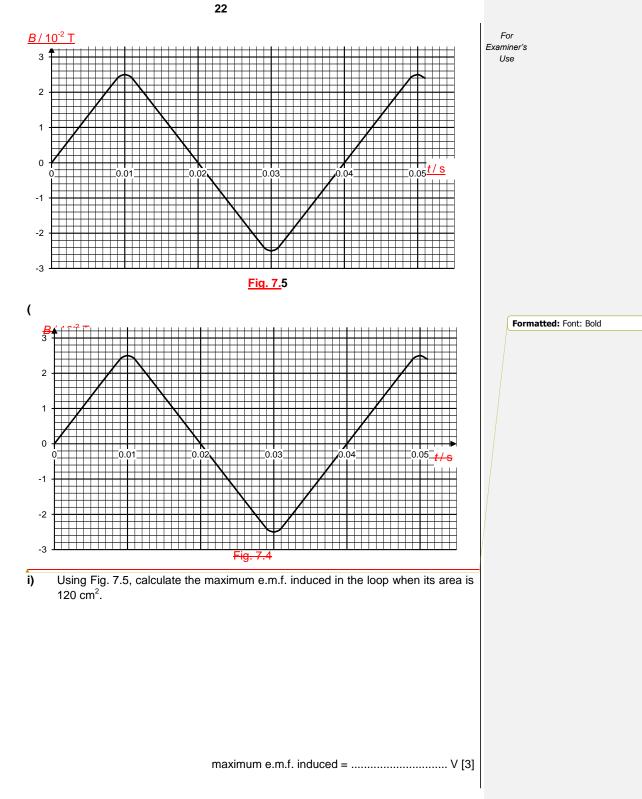
e.m.f. induced in secondary coil = V [1]

- (iii) In order to charge the mobile phone, several conditions need to be met. Some of the conditions are:
 - 1. The e.m.f. induced in the secondary coil must be larger than 9 V.
 - 2. Mobile phones can only be charged using direct current.
 - **3.** The current through the battery of the mobile phone must be in the direction shown in Fig. 7.2.

Draw an appropriate component in the dotted box in Fig. 7.1 which satisfies the above conditions. [2]

(iv) Describe and explain one possible disadvantage of inductive charging over wired charging.

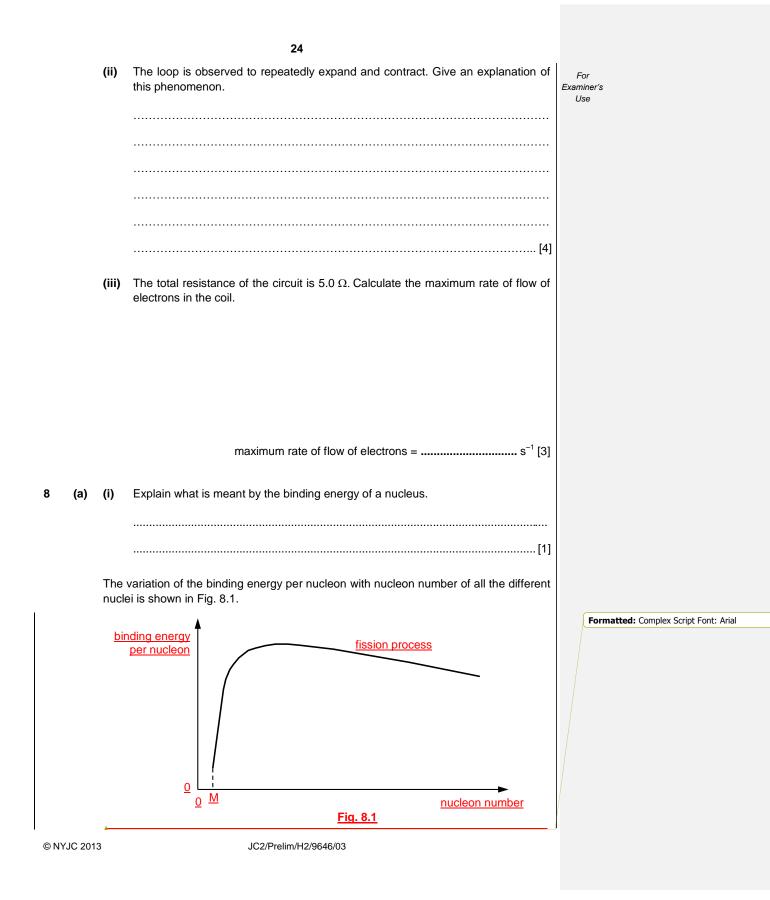

	 	 	 [2]

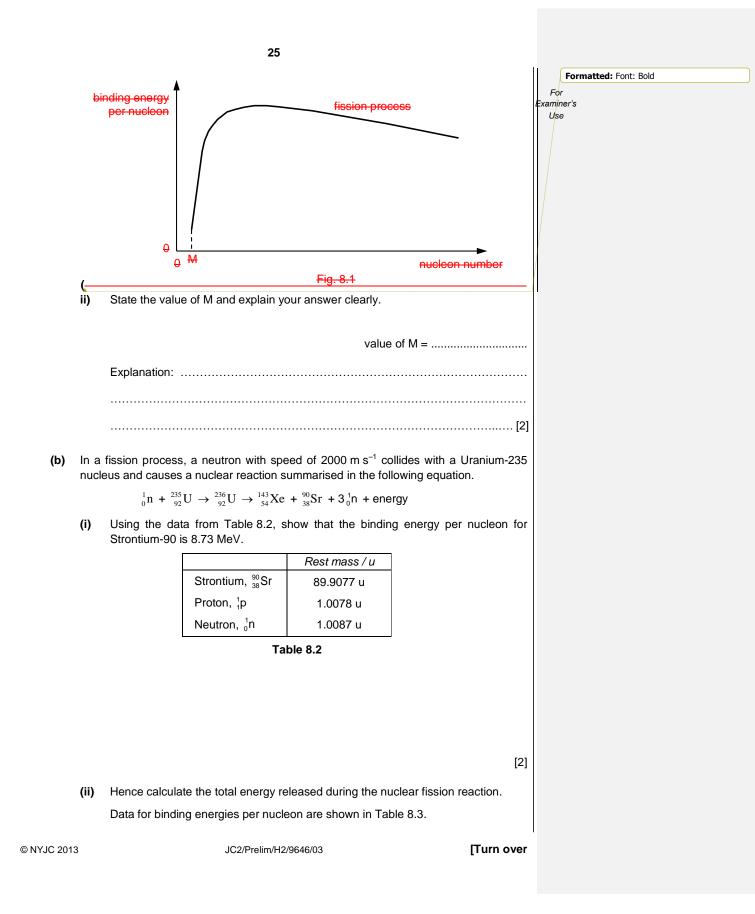

(b) A bar magnet is removed from the centre of a coil in the direction shown in Fig. 7.3.

© NYJC 2013

JC2/Prelim/H2/9646/03

For Examiner's Use

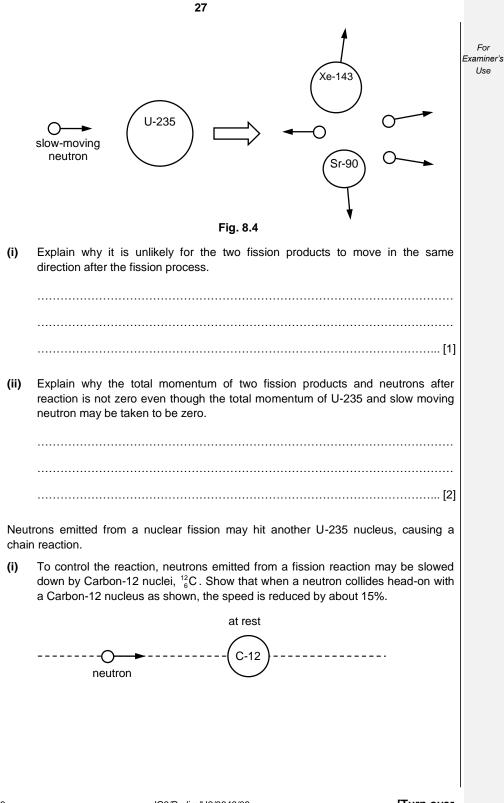




For Examiner's Use

© NYJC 2013

JC2/Prelim/H2/9646/03



		26	
	Isotope	Binding energy per nucleon/MeV	For
	Uranium-235	7.59	Examiner's Use
	Xenon-143	8.41	
		Table 8.3	
		energy released =	J [2]
	and a first second s		
	cplain quantitatively why glected.	the kinetic energy of the neutron directed at U-23	5 15
			[1]
۰ C:		al kinetic analysis of the fission products and position	
	ss than the value calcula	al kinetic energy of the fission products and neutron tted in (b)(ii) .	SIS
			·· [1]
		ections of Sr-90, Xe-143, and neutrons when nuc	lear
ssion ta	akes place. Assume that	this is an isolated system.	

© NYJC 2013

(c)

JC2/Prelim/H2/9646/03

© NYJC 2013

(d)

JC2/Prelim/H2/9646/03

[Turn over

For Examiner's Use

[3]

(ii) On average, the neutron speed after each collision is 0.93 of its speed before the collision.

Suggest why this speed reduction is different from what is stated in (ii) for a nuclear reactor.

(iii) Suggest why a slow neutron has a higher chance of being captured by U-235 to cause a fission reaction compared to a fast neutron.

.....[1]

(e) The fission products are usually radioactive and give rise to a series of radioactive decay products. Each decay product has its own half life, but eventually a stable nuclide is reached.

One such fission product with its decay products and half life is shown below.

$$\overset{^{143}}{_{54}} Xe \xrightarrow{} \overset{^{143}}{_{55}} Cs \xrightarrow{} \overset{^{143}}{_{56}} Ba$$

(i) Suggest how the number of Cs-143 nuclei inside the nuclear reactor may remain constant even when it decays to form Ba-143.

......[1]

(ii) Explain why the Xenon-143 produced in the later part of the chain reaction may not necessarily decay at a later time than those produced in the earlier part of the chain reaction.

© NYJC 2013

JC2/Prelim/H2/9646/03

