
Section A

Answer **all** the questions in this section in the spaces provided.

1	and	oressu	ydrogen peroxide, H_2O_2 , slowly forms water and oxygen at room temperature ire, r.t.p. This rate of reaction is increased by the addition of a small amount of
	Solid	mang	anese(IV) oxide. $2H_2O_2(aq) \rightarrow 2H_2O(I) + O_2(g)$
	(a)	(i)	Define the term, rate of reaction. [1]
	<u>(</u> <u></u>		The rate of a reaction is defined as the change of amount or concentration of a reactant or product per unit time .
			key word: change of concentration & per unit time
		(ii)	State the role of manganese(IV) oxide and explain the reason. [2]
			It is a <u>heterogeneous catalyst</u> as it is a catalyst which is in <u>different phase</u> as the reactant, aq H_2O_2 .
			note: different phase ≠ different state (example: organic vs aqueous)
		(iii)	State the test for oxygen gas. [1]
			The test is to relight a glowing splint.
			rekindle = relight = reignite
			glowing splint ≠ burning splint
		(iv)	State the effect on the mass of oxygen gas produced if the mass of manganese(IV) oxide is increased. [1]
			No effect
			A catalyst only speeds up the rate of reaction of the oxygen produced but it does not increase the mass of oxygen gas produced.
	(b)	oxide The	udent investigates the rate of formation of oxygen gas when manganese(IV) e is added to aqueous hydrogen peroxide. volume of oxygen gas formed is measured at regular time intervals at r.t.p. results are plotted onto the graph in Fig. 1.1.
		(i)	State how the graph in Fig. 1.1 shows the rate of reaction at time t_2 , is lower than at time t_1 . [1]
			The gradient is gentler OR lower OR less steep at t_2 compared to t_1 .
		(ii)	Explain, using collision theory, why the rate of reaction at time t_2 is lower than at time t_1 . [2]
			• When concentration of the H_2O_2 decreases , the number of molecules
			per unit volume having energy $\geq E_a$ decreases.

	w • T	/hen temperature increases, there is an increase in the number of particles with kinetic energy εE_a (larger shaded area under the curve at T ₂ than T ₁). his leads to an increase in the frequency of effective collisions between executant particles. Hence the rate of reaction increases.
(d)		ganese(IV) oxide is added to 20 cm ³ of aqueous hydrogen peroxide. The total me of oxygen gas produced is 72 cm ³ at r.t.p. $2H_2O_2(aq) \rightarrow 2H_2O(I) + O_2(g)$
	(i)	Calculate the number of moles of hydrogen peroxide that reacted. [1]
		Amt of $O_2 = 72/24000 = 0.003$ Amt of $H_2O_2 = 0.003 \times 2 = 0.00600$ mol Some students wrongly assume that H_2O_2 is a gas. r.t.p. 1 mol of gas occupies 24,000 cm ³
	(ii)	Calculate the concentration of aqueous hydrogen peroxide in g/ dm ³ . [1]
		$ [H_2O_2] = 0.006 \times 1000 / 20 = 0.3 \text{ mol} / \text{dm}^3 [H_2O_2] = 34 \times 0.3 = \underline{10.2} \text{ g} / \text{dm}^3 $
		[Total: 14]

2	Met	Methane reacts with steam to produce hydrogen gas.			
	equa	ation 2	.1 $CH_4(g) + H_2O(g) \implies CO(g) + 3H_2(g)$ $\Delta H = + 200 \text{ kJ mol}^{-1}$		
	The	The reaction takes place at 1000 °C and 100 kPa pressure.			
	(a)	The r	eaction is reversible and reaches dynamic equilibrium in a closed system.		
		(i)	State two features of a dynamic equilibrium. [2]		
			The rate of forward reaction is equal to the rate of the backward reaction. The concentrations of reactants and products remain constant over time.		
			There is no net change in the concentration of reactants and products over time even though the forward and backward reaction is still ongoing.		
		(ii)	Sketch a labelled graph to show how the rates of the forward and reverse reactions change from the start of the reaction to the time the reaction reaches equilibrium. [2]		

		Rate/ mol dm ⁻³ s ⁻¹ R_{f} $R_{f} = R_{b}$ R_{b} R_{b} R_{b} $R_{f} = R_{b}$ $R_{f} = R_{b}$ R_{b}
		 the graphs meet at <i>t</i> when the reaction reaches dynamic equilibrium R_f decreases with time since [A] and [B] decreases
		• R _b increases with time since [C] and [D] increases
(b)	State	and explain, the effect on the amount of hydrogen when:
	(i)	the pressure is increased [2]
		 When the pressure is increased, POE will shift to the LHS as there are fewer gaseous molecules on the LHS. Amount of hydrogen decreases. Students are to explain why POE shift to the LHS. Key word: gaseous
	(ii)	the temperature is increased [2]
		 When the temperature is increased, POE shifts to the RHS to absorb the excess heat and favour the forward endothermic reaction. Amount of hydrogen increases. Students are to explain why favour endothermic reaction.
(c)	(i)	Write the expression for the equilibrium constant, K_{c} , for equation 2.1. [1]
		$K_{c} = \frac{[CO][H_{2}]^{3}}{[CH_{4}][H_{2}O]}$
	(ii)	State the effect of decreasing temperature on the equilibrium constant, K_c . [1]
		$K_{\rm c}$ value will decrease .
		When temperature decreases, POE will shift left and K_c will decrease. [Total: 10]

Perspex, a transparent thermoplastic, is commonly utilised in sheet form as a lightweight, shatter-resistant substitute for glass. It also finds application as a casting resin, inks, and coatings.
 Moreover, Perspex, poly(methyl 2-methylpropenoate), is formed by polymerising methyl 2-methylpropenoate, a single monomer.

		$H_{3}C$ C C C C C C C C C
		methyl 2-methylpropenoate
(a)	(i)	Identify all the functional groups in methyl 2-methylpropenoate. [1]
		ester and alkene note: ketone is NOT present Students should avoid drawing the functional group C=C but rather name the functional group as alkene.
	(ii)	State the functional group that reacts with bromine in CCl ₄ and the expected observation. [1]
		Alkene. Reddish brown bromine decolourises.
(b)	(i)	Describe the term <i>polymer</i> . [1]
		A polymer is a <u>macromolecule</u> built up from <u>monomers</u> , with <u>average molar</u> <u>mass of at least 1000</u> or <u>at least 100 repeat units</u> .
	(ii)	State the type of polymerisation the monomer undergoes to form Perspex. Draw the structural formula for Perspex, showing two monomer units. [2]
		addition polymerisation H CH_3 H CH_3 C C C H COOCH_3 H COOCH_3
	(iii)	Describe two characteristics of thermoplastics in terms of their structure and bonding. [2]
		 These are the polymers in which the monomer units are linked to one another to form <u>long linear chains with no cross-links</u>. These linear chains are <u>closely packed</u> in space. The close packing results in <u>high densities</u>. e.g. high density polyethene, nylon and polyesters are linear polymers. They have <u>weak instantaneous dipole-induced dipole interactions or permanent dipole- permanent dipole interactions between the various chains, easily broken by heating.</u>
	(iv)	State two different physical properties of thermoplastics and thermosets. [2]

Properti	es	Thermoplastics (linear polymers)	Thermosets/ Thermosetting plastic (cross-linked polymers)
Softening behaviour (response to heat) Rigidity		haviour sponse to at) breaking of weak intermolecular forces between chains. Can be reshaped and reused between chains. Cannot be reshaped or reused	
(v)	as stre exp Per poly per gro	nough Perspex is a thermoplastic, it has c its polymer chains do not slide over ea essed too far, it tends to crack in a brittle lain this. spex is brittle as the bulky side groups w (mer chains. Also, the C=O and C-O g manent dipole-permanent dipole inter ups of neighbouring polymer chains, restr	ch other effectively. When it e manner. State two reasons fill hinder the movement of the proups are polar, there will be reactions between the side ricting movement.
(vi)	Sta	te and explain whether Perspex is biodeg	adable.
		spex is an addition polymer/ polyalkene ar non-polar saturated C-C bonds.	nd it is <u>non-biodegradable</u> as

4	(a)	consi polyn	Nano tape, also called gecko tape, is a synthetic adhesive tape. This nanomaterial consists of arrays of carbon nanotubes transferred onto a backing material of flexible polymer tape. The structure of nano tape closely mimics that of gecko feet. It works on a variety of surfaces, including glass and sandpaper.		
		(i)	Define the term <i>nanomaterial</i> . [1]		
			A material with at least one dimension on the nanoscale (1-100 nm)		
		(ii)	Suggest the structure and interactions of nano tape that closely mimics that of gecko feet. [2]		
			Nanotape has <u>nano-structures (synthetic setae) that possess high</u> <u>surface area to volume ratio.</u> The adhesion is due to weak <u>instantaneous dipole- induced dipole</u> <u>interactions</u> which allows tape to be reused many times as it can be easily peeled off.		

(b)	brigh town' mang KMn0	arch 2017, residents in a small town northwest of Edmonton were surprised by t pink water flowing from their taps. Upon investigation, it was found that the 's water treatment plant was conducting a filter wash using potassium ganate(VII), KMnO ₄ , which can turn water pink when used in large quantities. O ₄ is used to remove Mn ²⁺ present in water. KMnO ₄ will oxidise Mn ²⁺ to form solid MnO ₂ under treatment conditions which can easily be filtered from the r.
	(i)	Suggest the appearance of solid MnO2. [1]
		Black solid
	(ii)	With reference to the Data Booklet, write down the oxidation and reduction half equations during the treatment of the water.[2]
		[O]: $Mn^{2+} + 2H_2O \square MnO_2 + 4H^+ + 2e^-$
		[R]: MnO₄ ⁻ + 4H ⁺ + 3e ⁻ □ MnO ₂ + 2H ₂ O
		Key phrase: KMnO ₄ will oxidise Mn ²⁺ to form only solid MnO ₂ Students should use \Box and NOT \blacksquare
	(iii)	Hence, give the overall equation that shows the removal of Mn ²⁺ during the treatment of water. [1]
		$3Mn^{2+} + 2H_2O + 2MnO_4^- \Box 5MnO_2 + 4H^+$
		[O]: $Mn^{2+} + 2H_2O \square MnO_2 + 4H^+ + 2e^-$ (x3 throughout) [R]: $MnO_4^- + 4H^+ + 3e^- \square MnO_2 + 2H_2O$ (x2 throughout) Combine [O] and [R] equation above to get the overall equation Concept: electron gain = electron lost
	(iv)	During the treatment of water, the concentration of KMnO ₄ used is 1 mg dm ⁻³ . Calculate the maximum mass of MnO ₂ that can be precipitated per cubic metre of water. [3]
		Concentration of KMnO ₄ = $\frac{1 \times 10^{-3}}{158}$ = 6.329 × 10 ⁻⁶ mol dm ⁻³
		Maximum amount of solid MnO ₂ that forms in 1 dm ³ = $\frac{5}{2} \times (6.329 \times 10^{-6})$
		= 1.582 x 10 ⁻⁵ mol
		Mass of MnO ₂ formed in 1 dm ³ = $(1.582 \times 10^{-5})(54.9 + 2(16.0))$ = 1.375×10^{-3} g
		$= 1.375 \times 10^{\circ} \text{g}$
		$1 \text{ m}^3 = 1000 \text{ dm}^3$
		Mass of MnO ₂ formed per cubic metre of water
		$= 1.375 \times 10^{-3} \times 1000 = \underline{1.38 \text{ g}}$
		[Total: 10]

5 Respiration within the human body generates carbon dioxide and water as byproducts, which can be combined to produce hydrogen ions. However, the blood contains a

		$H_2CO_3(aq) \rightleftharpoons H^+(aq) + HCO_3^-(aq)$		
(a)	(i)	Define an <i>acidic buffer</i> solution.		
		A buffer solution is a solution containing a <u>large reservoir of weak acid a</u> <u>its conjugate base salt</u> which resists pH change and <u>does not she</u> <u>significant changes in pH when small amount of strong acid or strong</u> <u>base are added to it</u> .		
	(ii)	Identify the acid-conjugate base components in the blood buffer and write expression for K_c for the blood buffer.		
		H₂CO₃(aq) and HCO₃⁻(aq)		
		$K_{C} = \frac{\left[H^{+}\right]\left[HCO_{3}^{-}\right]}{\left[H_{2}CO_{3}\right]}$		
	(iii)	Describe what happens when a small amount of strong alkali is added to the buffer solution. Write an equation to explain your answer.		
		When a small amount of alkali is added, it will be removed by H_2CO_3 . [OH ⁻] does not change significantly and thus pH of the buffer solution remain almost unchanged.		
		$OH^- + H_2CO_3 \square HCO_3^- + H_2O$		
(b)	requ fatig	Full arrow moglobin also forms oxyhaemoglobin when it reacts with oxygen. This proce ires iron, and individuals deficient in iron, known as anaemic, often experien ue and lethargy. Vitamin C facilitates the absorption of iron from the diet, aid incorporation into haemoglobin.		
	bloo have of 5	bone marrow produces around 10,000 million new blood cells daily, with r d cells having a lifespan of approximately 120 days. Healthy individuals sho e about 15 grams of haemoglobin per 100 cm ³ of blood and a red blood cell co million per cm ³ . Iron constitutes approximately 4% of the mass of t noglobin molecule.		
	cont	ombat anaemia, individuals often supplement their diet with iron tablets, typica aining iron(II) sulfate. Each tablet typically contains 200 mg of iron. These in can undergo reactions with potassium manganate(VII) ions, MnO4 ⁻ , for vario		
	purp	oses $5Fe^{2+} + MnO_4^- + 8H^+ \longrightarrow 5Fe^{3+} + Mn^{2+} + 4H_2O$		

			Mass of iron present in 100 cm ³ of healthy person's blood = $4/100 \times 15 \text{ g} = 0.600 \text{ g} [1]$
			In A and of blood, there are 5 million and blood calls
			In 1 cm ³ of blood, there are 5 million red blood cells Thus, in 100 cm ³ of blood, there will be 5 x 100 = 500 million red blood
			cells.[1] $\frac{1}{100}$ cm of blood, there will be 5 x 100 = $\frac{300 \text{ million}}{1000}$ red blood
		(ii)	Calculate the amount of iron, in mol, that needs to be available each day within
		. ,	the bone marrow for the production of new red blood cells. [2]
			Amt of Fe in 100 cm ³ blood = 0.6 / 55.8 = 0.010753
			0.010753 mol of Fe can produce 500 million red blood cells in 100 cm ³ blood
			Given that daily production of red blood cells is 10 000 million,
			Amount of Fe required daily = $0.0108 / 500 \times 10 000 = 0.215 \text{ mol}$
		(iii)	Suggest why a person does not need to consume the complete amount of iron
			each day that was calculated in part b(iii) . [1]
			This is because red blood cells that contain iron have a lifespan of 120 days.
			Students should make reference to the data information given in the question.
	(c)	Cal	ulate the number of iron tablets have been dissolved in a solution that will react
	(-)		135.80 cm ³ of 0.020 mol dm ⁻³ potassium manganate(VII) solution in a titration.
		witt	
			35.80 0.020
		A	×0.020
			of KMnO ₄ = 1000 = 7.16×10^{-4} mol
			$ce 5 Fe^{2+} \equiv MnO_4^{-}$
		Amt	of Fe^{2+} in titration = 7.16 x 10 ⁻⁴ x 5 = 3.58 x 10 ⁻³ mol
			0.200g
		Amo	bunt of Fe in 1 tablet = $55.8 = 3.58 \times 10^{-3}$ mol of Fe
			3.58×10^{-3}
		Thu	s, no. of Fe tablets dissolved = $\frac{3.58 \times 10^{-3}}{3.58 \times 10^{-3}} = \underline{1}$
<u> </u>		mu	S, NO. Of PE tablets dissolved = $3.38 \times 10^{\circ}$ = 1 [Total: 13]
			[10(a), 10]

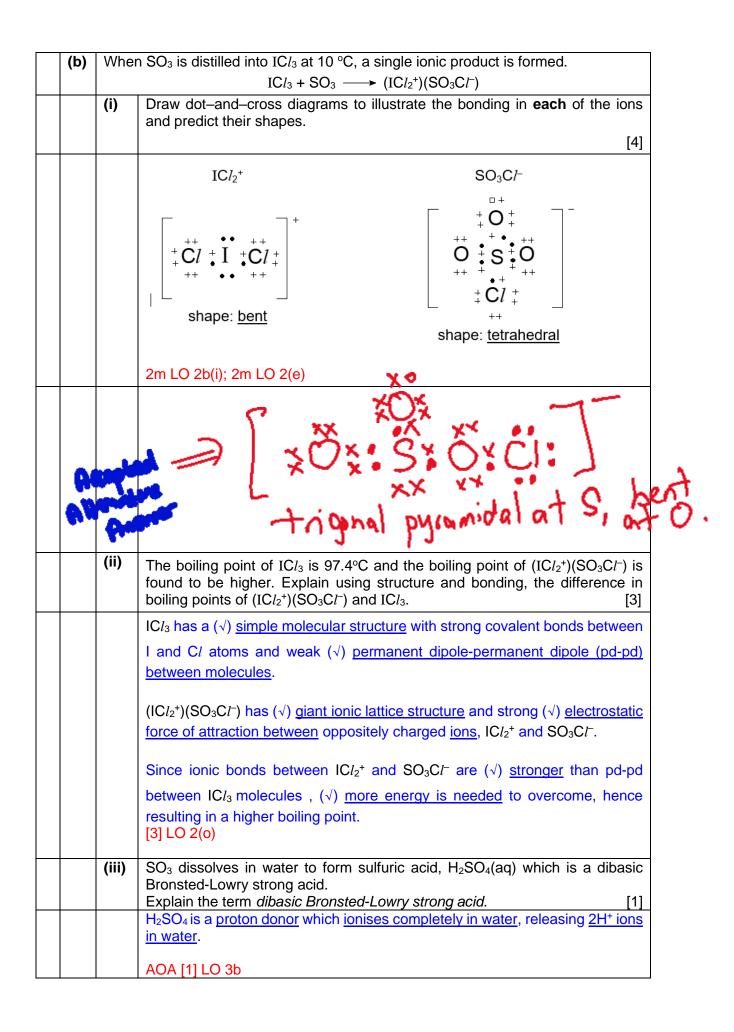
Section B

Answer **one** question from this section in the spaces provided.

6 Dimethylfuran, DMF, is a colourless volatile liquid with boiling point 92 °C, which is comparable to that of heptane (98 °C), a component of gasoline. It has a role as a human urinary metabolite, an antifungal agent, a bacterial metabolite, a fumigant and a fuel. It is obtained from glucose in a two-step reaction.

		OH
HO.	10-	OH Step 1 OHC CH ₂ OH
		cose, C ₆ H ₁₂ O ₆ hydroxymethylfurfural, HMF
		HMF step 2 H ₃ C CH ₃
		dimethylfuran, DMF
(a)	(i)	Suggest the molecular formula of the compounds HMF and DMF. [1]
		HMF: C ₆ H ₆ O ₃
	(ii)	Suggest the types of reaction for step 1 and 2.[2]
		step 1: elimination step 2: reduction
	(iii)	State and explain whether DMF is polar. [2]
		DMF is polar. It has a net dipole moment as it has two C-O polar bonds which do not cancel out each other's dipole moment.
		By stating that there is difference in electronegativity between C and O is not enough to explain why DMF is polar. Students have to recognise that the polar bonds present in the molecule results in dipole moments not able to be cancelled because of the bent shape around O.
	(iv)	Suggest a chemical test to identify between the compounds HMF and DMF. State the observations for both compounds. [2]
		Test: $K_2Cr_2O_7$ (aq), H_2SO_4 (aq), heat OR KMnO ₄ (aq), H_2SO_4 (aq), heat

		Observation for HMF: $K_2Cr_2O_7$ (aq) turns from orange $(Cr_2O_7^{2^-})$ to green (Cr^{3^+}) . OR KMnO ₄ solution turns from purple (MnO_4^-) to pale pink (Mn^{2^+}) OR the purple solution (MnO_4^-) is decolourised. Observation for DMF: $K_2Cr_2O_7$ (aq) remains orange OR KMnO ₄ solution remains purple (MnO_4^-) . NOTE: KMnO ₄ is accepted as H1 students do not learn that alkenes can be oxidised by KMnO ₄ . Cannot accept Br ₂ liquid as the chemical test because both HMF and DMF have alkene functional groups.
		Students are to state the colour change (before and after).
	(v)	Draw the product formed when DMF reacts with hydrogen gas and state the type of reaction formed. [2]
		H ₃ C CH ₃
(b)	(i)	Define the term standard enthalpy change of combustion of DMF. [1]
		Standard enthalpy change of combustion of DMF is the <u>energy evolved</u> when <u>one mole</u> of substance is <u>burnt completely in excess oxygen at 298 K and 1</u> <u>bar</u> .
	(ii)	Write a balanced equation for the complete combustion of DMF. Use bond energy data from the <i>Data Booklet</i> to calculate its enthalpy change of combustion. [3]
		H ₃ C CH ₃ (<i>I</i>) + $\frac{15}{2}$ O ₂ (g) \Box 6CO ₂ (g) + 4H ₂ O(<i>I</i>)
		ΔH_{c} = 3BE(C-C) + 8BE(C-H) + 2BE(C=C) + 2BE(C-O) + $\frac{15}{2}$ BE(O=O) - 12BE(C=O) - 8BE(O-H) = 3(350) + 8(410) + 2(610) + 2(360) + $\frac{15}{2}$ (496) - 12(805) - 8(460) = -3350 kJ mol ⁻¹
		identification of correct bond energy values from Data Booklet $\Delta H = BE$ (reactants) – BE (products)
	(iii)	Use of the Data Booklet is relevant to this question. A sample of DMF was burned under laboratory conditions in an apparatus that only 80% of the heat evolved is transferred to heating a container of water. The burning of 1.00g of DMF raised the temperature of 200 g of water by 32 K.


		Calculate the experimental enthalpy change of combustion, and comment on the difference between this value and that calculated in (b)(i) using bond energies.	
		[4] Heat absorbed by water = 200 × 4.18 × 32 = 26752 J	
		Theat absorbed by water = $200 \times 4.16 \times 32 = 20752.5$	
		Heat released by burning 1.00 g of DMF = 26752 J × $\frac{100}{80}$ = 33440 J	
		Amount of DMF = $1.00 \div [6(12.0) + 8(1.0) + 16.0] = 0.0142$ mol	
$\Delta H_c(DMF) = -33440 \div 0.01042 = -3210 \text{ kJ mol}^{-1} \text{ (correct to 3 s.f.)}$		$\Delta H_c(DMF) = -33440 \div 0.01042 = -3210 \text{ kJ mol}^{-1} \text{ (correct to 3 s.f.)}$	
		The answer in (b) (i) did not account for ΔH_{vap} of DMF as it was liquid DMF that combusted. OR	
		OR Data Booklet bond energies are average values.	
		Heat absorbed by the water is only 80% of the heat released by burning the 1.00 g of DMF.	
	(iv)	Draw an energy profile diagram showing the complete combustion of DMF. [3]	
		CHORD EN CHORD EN ECONOMIC EN ECONOMIC ECONOMIC EN ECONOMIC EN ECONOMIC	
		show correct axis – enthalpy for y-axis & reaction pathway/ progress for x-	
		axis	

 $6CO_2(g) + 4H_2O(l)$

7	The oxygen family, also called the chalcogens, consists of the openation of und in
	Group 16 of the Periodic Table and is considered among the main group elements. It consists of the elements oxygen, sulfur, selenium, tellurium and polonium.
	it consists of the elements oxygen, sulfur, selement, tellurium and polonium.

(1)	State and evoluin the trend in the first invication areas of the Oreas 40	
(i)	State and explain the trend in the first ionisation energy of the Group 16 elements down the group. [2]	
	The first ionisation energy of the Group 16 elements decreases down the group.	
	Nuclear charge increases (due to increase in number of protons). Shielding effect increases (due to the increase in number of inner shell electrons). Effective nuclear charge remains approximately constant.	
	In addition, the number of <u>electron shells</u> also <u>increases</u> and valence electrons are <u>further away</u> from the nucleus. <u>nuclear charge attraction</u> experienced by the valence electron <u>decreases</u> . <u>Less energy</u> is required to remove the valence electron.	
	trend explanation in terms of weaker attraction due to valence electron being furthe from nucleus / at a higher energy level LO 4(b)ii	
(ii)	Compare the first ionisation energy of ₃₄ Se to that of ₃₅ Br and explain your answer. [2]	
	The first ionisation energy of <u>Se is lower than of Br</u> . Se has <u>smaller nuclear charge</u> (due to one less proton) than Br but <u>relatively</u> <u>constant shielding effect</u> (due to additional electrons added to the same valence shell and provides negligible shielding effect) and <u>effective nuclear</u> <u>charge is smaller in Se</u> . Valence electrons in <u>Se experience a weaker nuclear</u> <u>attraction</u> and therefore <u>less energy</u> is required to remove the first electron from Se as compared to Br.	
	\checkmark I.E. of Se is lower than Br	
	\checkmark Se smaller nuclear charge	
	\checkmark relatively constant shielding effect	
	$\sqrt{\text{Se smaller effective nuclear charge}}$	
	\checkmark Se experience weaker nuclear attraction	
	$\sqrt{\text{less energy remove first electron from Se}}$ LO 4(b)i	
(iii)	Describe the structure of a ¹²⁸ Te atom, in terms of number and type of sub- atomic particles and give the valence electronic configuration for a tellurium(II) ion, Te^{2+} . [3]	
	no. of protons = $\frac{52}{=}$ = no. of electrons no. of neutrons = $128 - 52$ = $\frac{76}{=}$ Recognise that Te is in Period 5 and Group 16 electronic configuration of Te: $1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^6 4d^{10} 5s^2 5p^4$	
	electronic configuration of Te ²⁺ : 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ¹⁰ 4s ² 4p ⁶ 4d ¹⁰ 5s ² 5p ² valence electronic configuration of Te ²⁺ : 5s ² 5p ² 2m LO 1d , 1m LO 4a	

	(iv)	State the formula of the oxide of tellurium in its highest oxidation state. [1]	
		TeO ₃ 1m LO 4e(i)	
	(v)	State one physical property that you would expect this oxide of tellurium to possess. Explain, in terms of the structure and bonding present, why it possesses this property. [2]	
	TeO ₃ has a <u>simple molecular structure</u> with <u>weak instantaneous dipole-</u> induced dipole interactions between molecules.		
		Hence TeO₃ has <u>low boiling point / melting point</u> .	
		OR	
		TeO_3 has a simple molecular structure with strong covalent bonds between <u>Te and O atoms</u> and there are <u>no mobile or delocalised electrons</u> .	
		Hence TeO₃ has <u>does not conduct electricity in all states</u> .	
		Students should recognise that Te is in the same group as S (both in Group 16). SO_3 is a simple molecular structure and thus TeO_3 should similarly be a simple molecular structure. 2m LO 4h	
	(vi)	Write an equation to illustrate the behaviour of this oxide of tellurium in water and predict pH of the solution formed. [2]	
		Hydrolysis $TeO_3 + H_2O \longrightarrow H_2TeO_4$ Accept pH 1 OR 2 2m LO 4e(iii)	

	[Total: 20]
--	-------------