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Mathematical Formulae 

 

   

1. ALGEBRA 
Quadratic Equation  

For the equation 02 =++ cbxax ,   
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 where n is a positive integer and 
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2.    TRIGONOMETRY 

 

Identities 
1cossin 22 =+ AA  

AA 22 tan1sec +=  

AAec 22 cot1cos +=  

 

Formulae for ∆ABC 
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Answer all the questions.  

1 Solve the following pair of simultaneous equations 
2 24 3 1x xy y+ + =  

1x y+ =  

[4] 
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2 Given that 12tan
5

θ = and that θ  is acute, find the exact value of  

 (i) cos( ),θ−  [1] 

 

 

 

 (ii) cos(90 ),θ° −  [1] 

 

 

 

 (iii)  tan(180 ).θ° −  [1] 
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3 (a) The graph of log ( 1)ay kx= −  passes through the points with coordinates (1,0)  and  

(5,2).  
 

 (i) Determine the value of each of the constants a  and .k  [4] 

 

 

 

 (ii) Write down the range of values of x  such that y  is defined.  [1] 

 

 

 

 

 

 

 

 

 

(b)    Sketch the graph of 4logy x= . [2] 
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4 It is given that 3 2( ) 4 16 21 9f x x x x= − + − .  

 (a)   Find the quotient when ( )f x  is divided by 2 1x + . [2] 

 

  

 (b)   Prove that 1x −  is a factor of ( )f x . [1] 

 

  

 (c)   Hence, factorise ( )f x  completely. [3] 
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 (d)   Express 
( )
x

f x
 in partial fractions. [5] 
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5 The equation of a graph is 2sin 2 1y x= +  for 0 x π≤ ≤ .  

 (i)  State the period and amplitude of .y  [2] 

 

 

 

 

(ii) Solve 0y =  for 0 ,x π≤ ≤  giving your answer in exact form. [3] 
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 (iii)    Sketch the graph of 2sin 2 1y x= +  for 0 x π≤ ≤ . [3] 

 

 

 

 
(iv)   By drawing a suitable straight line on the same axis in (iii), find the number of solutions                 

  to the equation 2sin 2 1x = .  
 

[3] 
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6 (i) Given that 3lg( ) 2 2lg lgxy x y= + − , express x  in terms of .y  [4] 

 

 

 

 (ii) Solve the equation 4 16log ( 2) 4 log ( 1) 1x x+ − − = . [4] 
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7 ( )f x  is a cubic polynomial such that ( ) ( 1)( )( 3 ),f x x x m x m= + − −  where m is an integer. 
It is given that ( )f x  has a remainder of 10 when divided by ( 1).x −  

 

 (i) Find the value of m. [3] 

 

 

 

 
(ii) With the value of m found in (i), write down the expression for ( )f x  in descending  
         powers of x. 

 
[2] 

 

 

 

 (iii) Hence, solve the equation 3 2( 1) 7( 1) 4 16 0y y y+ − + + + = . [2] 
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8 (a) A circle 1C  has an equation given by 2 2 2 6 8 0.x y x y+ − − − =   

 (i) Find the centre and radius of circle 1C . [2] 

 

 

 

 
(ii)   Given that the equation of the tangent to 1C  at point P  is 4y x= − , find the  

  coordinates of P . 

 
[4] 
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(b) A circle 2C  has a radius of 6  units and its centre is at (2,4).  The lowest point on circle 

2C  is .T  Another circle 3C  has its highest point and lowest point at the centre of 2C  and 

T respectively. Find the equation of 3.C  

 
 
 

[3] 
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Answers 

1. 0x = , 1y =     or    1
2

x = − , 3
2

y =  

2. (i) 
5

13
    (ii) 

12
13

    (iii) 
12
5

−  

3. (a)(i) 3a =  (rej 3a = − ), 2k =     (a)(ii) 1
2

x >      

(b)   

4. (a) 4 16x −     (c) 2( ) ( 1)(2 3)f x x x= − −     (d) 2 2

1 2 3
( 1)(2 3) 1 2 3 (2 3)

x
x x x x x

= − +
− − − − −

 

5. (i) period π= , amplitude 2=     (ii) 
7 11,
12 12

x π π
=      

(iii)   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
              (iv) 2 solutions  

6. (i) 4
100x
y

=  or 
42 lg10 yx −=  or 2 4lg10 yx −=     (ii) 2x =  

7. (i) 2m =     (ii) 3 2( ) 7 4 12f x x x x= − + +     (iii) 2y = − , 1y = , 5y =  

8. (a)(i) ( )1,3C , radius 3 2= units    (ii) (4,0)P     (b) ( ) ( )2 2 22 1 3x y− + − =   
 

x

y

4logy x=

1

1

3

x

y

0

2sin 2 1y x= +

1−
π

2
π

4
π

3
4
π

2y =


	Identities

