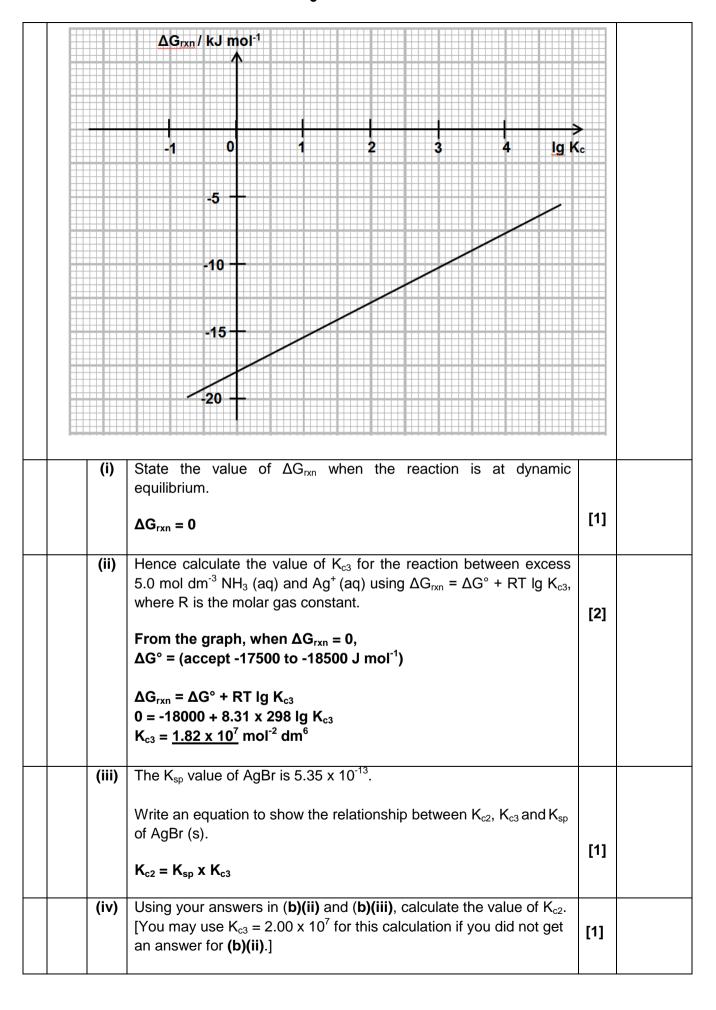
Planning


1	Distribution coefficient, K_D , is the ratio of equilibrium concentrations of a compound in a mixture of two immiscible solvents at a fixed temperature. Using two immiscible solvents, the distribution coefficient is a measure of the difference in solubility of a compound in these two solvents.		For Examiner's use
	This experiment aims to find out the distribution coefficient of acetylsalicylic acid (ASA) in two immiscible mixtures, water and trichloromethane as well as water and methylbenzene. The values of the distribution coefficient can be used to determine Which is a better organic solvent for extracting ASA from water. It is predicted that each of these organic solvents will extract about 80-90% of ASA dissolved in water.		
	Distribution coefficient, K _D (organic solvent / water) = [ASA] in organic solvent / [ASA] in water		
	Acetylsalicylic acid		
	To find $\mathbf{K}_{D \text{ (organic solvent /water)}}$ of ASA, a certain volume of the organic solvent is added to a measured volume of 0.01 mol dm ⁻³ ASA (aq). Vigorous shaking of the mixture enables ASA to dissolve in the mixture of solvents. The mixture will reach equilibrium when it is left to stand for an hour at a suitable temperature.		
	The concentration of ASA in each solvent is determined by extracting 10.0 cm ³ of the solution from the aqueous layer and titrating the aliquots against NaOH (aq). By assuming that the remaining amount of ASA is dissolved in the organic solvent, the concentration of ASA in organic solvent can be calculated.		
	You are provided with • 80 cm³ of 0.01 mol dm⁻³ ASA (aq) • 80 cm³ trichloromethane • 80 cm³ methylbenzene • 100 cm³ separating funnel for mixing and separating the two solutions • 0.010 mol dm⁻³ stock solution of NaOH (aq)		
	(a) In an experiment, the independent variable is a parameter that can be manipulated independently, whereas the dependent variable is the data to be collected that varies with the parameters that are manipulated. State the independent variable and dependent variable in this experiment.	[2]	

		Independent variable – Organic solvent Dependent variable – Concentration of ASA in water and the organic solvent		
((b)	A student who was conducting the experiment discovered that the NaOH stock solution should be diluted to 0.001 mol dm ⁻³ before it is suitable for titrating the aqueous sample. In light of the extraction efficiency of the organic solvents, suggest why the 0.010 mol dm ⁻³ NaOH stock solution is too concentrated for titrating the aqueous sample.	[1]	
		After extracting about 80-90% of ASA from the aqueous solution, the concentration of ASA (aq) is around 0.001 mol dm ⁻³ . The <u>volume of 0.010 mol dm⁻³ NaOH used in the titration would be too small resulting in a large percentage error</u> .		
((c)	Procedures Describe the procedure to determine K _{D (trichloromethane/water)} of ASA. Your plan should include		
		 necessary steps to set up the equilibrium of ASA in water and trichloromethane appropriate apparatus used suitable volumes of solutions and solvents details for titration of aqueous ASA solution, including the indicator and the end point colour. 		
		You should note that the same procedure should be suitable for repeating with a mixture of methylbenzene and ASA (aq).	[5]	
		 Using a measuring cylinder, measure 40 cm³ of 0.01 mol dm³ ASA (aq) and transfer it into the separating funnel. Measure 40 cm³ of trichloromethane and transfer it into the separating funnel. Shake the mixture vigorously. Leave the separating funnel to stand for one hour at constant room temperature. Using a 10 cm³ pipette, measure out 10.0 cm³ of the aqueous ASA solution. Transfer this solution into a conical flask. Titrate the solution against the diluted NaOH (aq) using phenolphthalein as the indicator. Titrate until permanent pink colour is seen. Repeat the titration to obtain consistent results. 		
((d)	Evaluation and analysis		
		A student used 40 cm ³ of 0.01 mol dm ⁻³ ASA (aq) and 40 cm ³ of trichloromethane in the experiment. From the titration, it was found that 10.0 cm ³ of ASA (aq) required n cm ³ of 0.0010 mol dm ⁻³ of NaOH (aq) for neutralisation.		

	Outline how you would use her results to determine K _D (trichloromethane/water) of ASA.	[3]				
	OF ASA.					
	Amount of ASA in aqueous solution = 4n / 1000 x 0.0010 = 4n x 10 ⁻⁶ mol					
	Concentration of ASA in aq solution = $(4n \times 10^{-6}) / 0.040$ = $n \times 10^{-4}$ mol dm ⁻³					
	Concentration of ASA in trichloromethane					
	$= [(\frac{40}{1000} \times 0.01) - (4n \times 10^{-6})] / \frac{40}{1000}$					
	= <u>0.01 – 0.0001n mol dm⁻³</u>					
	K _{D (trichloromethane /water)} of ASA = (0.01 - 0.0001n) / (n x 10 ⁻⁴)					
	=(100-n)/n					
(e)	The procedure and calculations above is repeated using methylbenzene and ASA (aq).					
	Suggest how the values of the distribution coefficient for the two solvent					
	mixtures can be used to identify which is the better organic solvent for extracting ASA from water.	[1]				
	oxidading /to/t from water.	[.,]				
	The larger the value of distribution coefficient the better the organic					
	solvent will be at extracting ASA from water.					
	[Total: 12 marks]					

2	Photo brom so the devel photo		For Examiner's use		
	Any e cause film to fixer				
	(a)	(i)	Thiosulfate ions act as monodentate ligands and bind to silver ions to form a complex. The silver(I) dithiosulfate ion has a linear shape about the silver ion. Write the formula of silver(I) dithiosulfate ion. $ [Ag(S_2O_3)_2]^{3-} $	[1]	

	(ii)	When the film is immersed in the aqueous solution, silver bromide granules dissolve to a small extent, according to Equation 1. $AgBr(s) \longrightarrow Ag^+(aq) + Br^-(aq) Equation 1$ With the help of another equation, explain why silver bromide is soluble in aqueous sodium thiosulfate solution. $Ag^+(aq) + 2S_2O_3^{2-}(aq) \rightarrow [Ag(S_2O_3)_2]^{3-}(aq)$ When the film is exposed to thiosulfate ions in the fixer solution, aqueous silver ions form $[Ag(S_2O_3)_2]^{3-}(aq)$ which lowers the concentration of Ag^+ . This causes the position of equilibrium 1 to shift to the right so that AgBr dissolves.	[3]		
(b)	(b) A student suggests that a 5.0 mol dm ⁻³ solution of aqueous ammonia can also be used as a fixer solution for photographic films. She suggests that the following reaction will occur. AgBr (s) + 2NH ₃ (aq) [Ag(NH ₃) ₂] ⁺ (aq) + Br ⁻ (aq) Equation 2 The student decides to calculate the equilibrium constant of Equation 2,				
In order to calculate K_{c2} , the student considers another equilibrium as shown by Equation 3. $Ag^{+} (aq) + 2NH_{3} (aq) \qquad \qquad [Ag(NH_{3})_{2}]^{+} (aq) Equation 3$ The graph of ΔG_{rxn} against $Ig K_{c3}$ is given for the reaction of excess 5.0 mol dm ⁻³ NH ₃ (aq) and Ag ⁺ (aq) where K_{c3} is the equilibrium constant of Equation 3.					
	The	graph shows the relationship ΔG_{rxn} = ΔG° + RT lg K_{c3} for Equation 3.			

		$K_{c2} = 5.35 \times 10^{-13} \times 1.82 \times 10^{7}$ $= 9.74 \times 10^{-6} \text{ mol dm}^{-3}$ Or $K_{c2} = 5.35 \times 10^{-13} \times 2.00 \times 10^{7}$ $= 1.07 \times 10^{-5} \text{ mol dm}^{-3}$	
	(v)	Use your calculated value from (b)(iv) to explain whether 5.0 mol dm ⁻³ NH ₃ (aq) can be used as fixer solution. 5.0 mol dm ⁻³ NH ₃ (aq) cannot be used as a fixer solution since the small value of K _{c2} shows that equilibrium 2 lies to the left	[1]
(c)	distin	and does not favour dissolving of AgBr (s). gest methods by which the following compounds could be requished from each other by chemical tests. State clearly how each cound behaves in each test. Preliminary breaking up of the bounds may be required.	[4]
	(i)	and	
		Test: Acidified KMnO ₄ , heat Observations: decolourises purple KMnO ₄ and produces effervescence of a gas that forms white ppt in limewater. decolourises purple KMnO ₄ but no effervescence seen.	
	(ii)	$\begin{array}{c c} O & O & O \\ \hline \\ O & C \\ \hline \end{array} \\ \begin{array}{c c} CH_2CH_3 & CH_2CH_2-O \\ \hline \end{array} \\ \begin{array}{c c} CH_2CH_2-O \\ \hline \end{array}$	-н
		Test: Acidified KMnO ₄ , heat Observations: does not decolourise the purple solution.	
		CH ₂ CH ₂ -O—C—H decolourises the purple solution	

Ilimewater. OR Test: HCl (aq), heat. Add Br₂ (aq). Observations: decolourises orange/reddish-brown Br₂ solution and forms a white ppt. Observations: does not decolourises orange/ reddish-brown Br₂ solution. Test: NaOH (aq), heat. Add AgNO₃ followed by NH₃ (aq), warm. Observations: forms a silver mirror while the other does not. Total: 14 marks] 3 Carbonyl compounds can react with halogens in acidic or alkaline medium to form different products. Kinetic studies are then done to investigate the orders and mechanism of these reactions. (a) In acidic medium, propanone reacts with iodine to form iodopropanone as shown in the equation below: CH₃COCH₃ + I₂			ı						
OR Test: HCl (aq), heat. Add Br₂ (aq). Observations: occ_CH₂CH₃ decolourises orange/reddish-brown Br₂ solution and forms a white ppt. Observations: does not decolourises orange/reddish-brown Br₂ solution. Test: NaOH (aq), heat. Add AgNO₃ followed by NH₃ (aq), warm. Observations: forms a silver mirror while the other does not. [Total: 14 marks] 3 Carbonyl compounds can react with halogens in acidic or alkaline medium to form different products. Kinetic studies are then done to investigate the orders and mechanism of these reactions. (a) In acidic medium, propanone reacts with iodine to form iodopropanone as shown in the equation below: CH₃COCH₃ + I₂ → CH₃COCH₂I + HI The kinetic studies of the above reaction suggest that a three-step mechanism is involved in this reaction. CH₃COCH₃ + H² ← CH₃COCH₂I + HI (fast) CH₃COCH₃ + I₂ → CH₃COCH₂I + HI (fast) (i) Explain the term, order of reaction. The order of reaction with respect to a reactant is the power to which that reactant's concentration is raised to in an experimentally determined rate equation. (ii) Based on the kinetic studies, state the rate equation for the above [1]				and produces effervescence of a gas that forms white ppt in					
Observations: Observations: Occupations Occupation Occu									
Observations: orange/reddish-brown Br ₂ solution and forms a white ppt. CH ₂ CH ₂ -O CH does not decolourises orange/ reddish-brown Br ₂ solution. Test: NaOH (aq), heat. Add AgNO ₃ followed by NH ₃ (aq), warm. Observations: forms a silver mirror while the other does not. [Total: 14 marks] 3 Carbonyl compounds can react with halogens in acidic or alkaline medium to form different products. Kinetic studies are then done to investigate the orders and mechanism of these reactions. (a) In acidic medium, propanone reacts with iodine to form iodopropanone as shown in the equation below: CH ₃ COCH ₃ + I ₂ CH ₃ COCH ₂ I + HI The kinetic studies of the above reaction suggest that a three-step mechanism is involved in this reaction. CH ₃ COCH ₃ + H ⁺ CH ₃ COCH ₂ I + HI (fast) (i) Explain the term, order of reaction. The order of reaction with respect to a reactant is the power to which that reactant's concentration is raised to in an experimentally determined rate equation. (ii) Based on the kinetic studies, state the rate equation for the above [1]				Test: HCl (aq), heat. Add Br ₂ (aq).					
does not decolourises orange/ reddish-brown Br₂ solution. Test: NaOH (aq), heat. Add AgNO₃ followed by NH₃ (aq), warm. Observations:									
Observations: Total: 14 marks			does not decolourises orange/						
Carbonyl compounds can react with halogens in acidic or alkaline medium to form different products. Kinetic studies are then done to investigate the orders and mechanism of these reactions. (a) In acidic medium, propanone reacts with iodine to form iodopropanone as shown in the equation below: H ⁺				Test: NaOH (aq), heat. Add AgNO ₃ followed by NH ₃ (aq), warm.					
3 Carbonyl compounds can react with halogens in acidic or alkaline medium to form different products. Kinetic studies are then done to investigate the orders and mechanism of these reactions. (a) In acidic medium, propanone reacts with iodine to form iodopropanone as shown in the equation below: CH₃COCH₃ + I₂ → CH₃COCH₂I + HI The kinetic studies of the above reaction suggest that a three-step mechanism is involved in this reaction. CH₃COCH₃ + H⁺ ← CH₃C(OH)CH₃ (fast) CH₃C(OH)CH₃ ← H₂C=C(OH)CH₃ + H⁺ (slow) H₂C=C(OH)CH₃ + I₂ → CH₃COCH₂I + HI (fast) (i) Explain the term, order of reaction. The order of reaction with respect to a reactant is the power to which that reactant's concentration is raised to in an experimentally determined rate equation. (ii) Based on the kinetic studies, state the rate equation for the above [1]			Observations: forms a silver						
3 Carbonyl compounds can react with halogens in acidic or alkaline medium to form different products. Kinetic studies are then done to investigate the orders and mechanism of these reactions. (a) In acidic medium, propanone reacts with iodine to form iodopropanone as shown in the equation below: CH₃COCH₃ + I₂ → CH₃COCH₂I + HI The kinetic studies of the above reaction suggest that a three-step mechanism is involved in this reaction. CH₃COCH₃ + H⁺ ← CH₃C(OH)CH₃ (fast) CH₃C(OH)CH₃ ← H₂C=C(OH)CH₃ + H⁺ (slow) H₂C=C(OH)CH₃ + I₂ → CH₃COCH₂I + HI (fast) (i) Explain the term, order of reaction. The order of reaction with respect to a reactant is the power to which that reactant's concentration is raised to in an experimentally determined rate equation. (ii) Based on the kinetic studies, state the rate equation for the above [1]				ГТо	tal: 14	marks1			
as shown in the equation below: $ \begin{array}{c} H^+\\ CH_3COCH_3 + I_2 \longrightarrow CH_3COCH_2I + HI \\ \text{The kinetic studies of the above reaction suggest that a three-step mechanism is involved in this reaction.} \\ CH_3COCH_3 + H^+ \longrightarrow CH_3C(OH)CH_3 \text{(fast)} \\ CH_3C(OH)CH_3 \longrightarrow H_2C=C(OH)CH_3 + H^+ \text{(slow)} \\ H_2C=C(OH)CH_3 + I_2 \longrightarrow CH_3COCH_2I + HI \text{(fast)} \end{array} $ (i) Explain the term, order of reaction. [1] The order of reaction with respect to a reactant is the power to which that reactant's concentration is raised to in an experimentally determined rate equation. [1]	3	form	orm different products. Kinetic studies are then done to investigate the orders						
CH ₃ COCH ₃ + I ₂ → CH ₃ COCH ₂ I + HI The kinetic studies of the above reaction suggest that a three-step mechanism is involved in this reaction. CH ₃ COCH ₃ + H ⁺ ← CH ₃ C(OH)CH ₃ (fast) CH ₃ C(OH)CH ₃ ← H ₂ C=C(OH)CH ₃ + H ⁺ (slow) H ₂ C=C(OH)CH ₃ + I ₂ → CH ₃ COCH ₂ I + HI (fast) (i) Explain the term, order of reaction. [1] The order of reaction with respect to a reactant is the <u>power</u> to which that <u>reactant's concentration</u> is raised to in an experimentally determined rate equation. [1]		(a)							
The kinetic studies of the above reaction suggest that a three-step mechanism is involved in this reaction. $CH_3COCH_3 + H^+ \rightleftharpoons CH_3C^+(OH)CH_3 \qquad \text{(fast)}$ $CH_3C^+(OH)CH_3 \qquad \rightleftharpoons H_2C=C(OH)CH_3 + H^+ \qquad \text{(slow)}$ $H_2C=C(OH)CH_3 + I_2 \qquad \Rightarrow CH_3COCH_2I + HI \qquad \text{(fast)}$ (i) Explain the term, order of reaction. [1] The order of reaction with respect to a reactant is the <u>power</u> to which that <u>reactant's concentration</u> is raised to in an experimentally determined rate equation. (ii) Based on the kinetic studies, state the rate equation for the above [1]									
mechanism is involved in this reaction. $CH_3COCH_3 + H^+ \iff CH_3C^\dagger(OH)CH_3 \qquad (fast)$ $CH_3C^\dagger(OH)CH_3 \iff H_2C=C(OH)CH_3 + H^+ \qquad (slow)$ $H_2C=C(OH)CH_3 + I_2 \implies CH_3COCH_2I + HI \qquad (fast)$ (i) Explain the term, order of reaction. [1] The order of reaction with respect to a reactant is the <u>power</u> to which that <u>reactant's concentration</u> is raised to in an experimentally determined rate equation. [1] (ii) Based on the kinetic studies, state the rate equation for the above [1]									
CH ₃ C(OH)CH ₃ ← H ₂ C=C(OH)CH ₃ + H ⁺ (slow) H ₂ C=C(OH)CH ₃ + I ₂ ← CH ₃ COCH ₂ I + HI (fast) (i) Explain the term, order of reaction. [1] The order of reaction with respect to a reactant is the <u>power</u> to which that <u>reactant's concentration</u> is raised to in an experimentally determined rate equation. (ii) Based on the kinetic studies, state the rate equation for the above [1]			· · · · · · · · · · · · · · · · · · ·						
H₂C=C(OH)CH₃ + I₂ → CH₃COCH₂I + HI (fast) (i) Explain the term, order of reaction. [1] The order of reaction with respect to a reactant is the power to which that reactant's concentration is raised to in an experimentally determined rate equation. (ii) Based on the kinetic studies, state the rate equation for the above [1]				$CH_3COCH_3 + H^+ \rightleftharpoons CH_3C(OH)CH_3$ (fast)					
(i) Explain the term, order of reaction. [1] The order of reaction with respect to a reactant is the power to which that reactant's concentration is raised to in an experimentally determined rate equation. [1] (ii) Based on the kinetic studies, state the rate equation for the above [1]									
The order of reaction with respect to a reactant is the <u>power</u> to which that <u>reactant's concentration</u> is raised to in an experimentally determined rate equation. (ii) Based on the kinetic studies, state the rate equation for the above [1]				$H_2C=C(OH)CH_3 + I_2 \longrightarrow CH_3COCH_2I + HI$ (fast)					
which that reactant's concentration is raised to in an experimentally determined rate equation. (ii) Based on the kinetic studies, state the rate equation for the above [1]			(i)	Explain the term, order of reaction.	[1]				
				which that <u>reactant's concentration</u> is raised to in an					
reaction.			(ii)	Based on the kinetic studies, state the rate equation for the above reaction.	[1]				
Rate = k [CH ₃ COCH ₃][H ⁺]				Rate = k [CH ₃ COCH ₃][H ⁺]					

	(iii)	Given that the initial [CH ₃ COCH ₃], [H ⁺], and [I ₂] are 0.200, 0.200 and 0.008 mol dm ⁻³ respectively and the initial rate of the reaction is 1.92×10^{-5} mol dm ⁻³ s ⁻¹ , calculate the rate constant, stating its units clearly.	[1]	
		$k = \frac{\text{Rate}}{[\text{CH}_3\text{COCH}_3][\text{H}^+]} = \frac{1.92 \times 10^{-5}}{0.20 \times 0.20} = \underline{\textbf{4.80} \times \textbf{10}^{-4} \text{ mol}^{-1} \text{ dm}^3 \text{ s}^{-1}}$		
	(iv)	Sketch a labelled graph of $[I_2]$ versus time. Your labels should include the information given in (a)(iii).	[1]	
	(v)	 initial concentration of I₂ Explain what will happen to the rate of reaction if chlorine is used in place of iodine, assuming that the mechanism remains unchanged? There will be no change to the rate of reaction as halogen is not involved in the rate determining step. 	[1]	
	(vi)	The above data was obtained based on a sampling method, which requires a sample of the chemical reaction to be extracted at various time intervals from a reaction mixture followed by titration. Suggest another method and briefly explain how it can be used to determine the rate of the reaction between acidified propanone solution and iodine. Colorimetry method can be used. As the concentration of iodine decreases and the brown/yellow colour intensity of the reacting solution also decreases. A graph of colour intensity/absorbance against time can be plotted. The rates at various times are obtained by drawing tangents to the curve and then calculating the gradients.	[2]	
(b)	and t	kaline medium, propanone reacts with iodine to form ethanoate ion riiodomethane as shown in the overall equation below: 3COCH ₃ + 3I ₂ + 4OH ⁻ → CH ₃ COO ⁻ + CHI ₃ + 3I ⁻ + 3H ₂ O		

This	is commonly known as the iodoform reaction.		
The mond	reaction in the alkaline medium cannot be limited to chalogenation since polyhalogenation can occur instead.		
Mone	ohalogenation:		
	$CH_3COCH_3 + I_2 + OH^2 \longrightarrow CH_3COCH_2I + I^2 + H_2O$		
Halo	genation continues:		
	$CH_3COCH_2I + I_2 + OH^- \longrightarrow CH_3COCHI_2 + I^- + H_2O$		
Form			
	CH₃COCI₃ + OH⁻ → CH₃COO⁻ + CHI₃		
(i)	Using the information below, propose a two-step mechanism that is involved in the monohalogenation reaction. Indicate the slow step clearly in your answer.	[2]	
	 Propanone reacts with hydroxide ion in the first step reversibly to form a carbanion, which is a negatively charged carbon based anion. The overall order of the reaction is 2. 		
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
	Step 1: $CH_3COCH_3 + OH \leftarrow [CH_3COCH_2] + H_2O$ (slow) Step 2: $[CH_3COCH_2] + I_2 \rightarrow CH_3COCH_2I + I^-$		
(ii)	In the last step of forming triiodomethane, one of the carbon-carbon bond breaks to form Cl ₃ when all the acidic protons have been replaced by iodine atoms. Suggest why this reaction takes place readily? Cl ₃ is a stable anion/good leaving group as it is stabilized by	[1]	
	Alternatively: That particular carbon-carbon bond is weakened due to the presence of electron-withdrawing groups.		
propa Craft elect	anone, the basis of reaction in 3(a) , and the knowledge of Friedels reaction can be used. It is known that Friedel-Crafts reaction is an rophilic substitution reaction, involving the alkylation or acylation of	[3]	
statir			
CH ₃ C	COCH ₃ \longrightarrow CH ₃ COCH ₂ C l [1] \longrightarrow CH ₃ COCH ₂ (C ₆ H ₅)		
	· _		
	Form (i) In a propa Craft elect an arr Hence statir interreceived. CH ₃ C First	Monohalogenation: CH₃COCH₃ + I₂ + OH → CH₃COCH₂I + I⁻ + H₂O Halogenation continues: CH₃COCH₂I + I₂ + OH → CH₃COCHI₂ + I⁻ + H₂O CH₃COCH₂I + I₂ + OH → CH₃COCHI₂ + I⁻ + H₂O CH₃COCHI₂ + I₂ + OH → CH₃COCI₃ + I⁻ + H₂O Formation of triiodomethane: CH₃COCI₃ + OH → CH₃COO + CHI₃ (i) Using the information below, propose a two-step mechanism that is involved in the monohalogenation reaction. Indicate the slow step clearly in your answer. • Propanone reacts with hydroxide ion in the first step reversibly to form a carbanion, which is a negatively charged carbon based anion. • The overall order of the reaction is 2. Step 1: CH₃COCH₃ + OH ← [CH₃COCH₂] + H₂O (slow) Step 2: [CH₃COCH₂] + I₂ → CH₃COCH₂I + I⁻ (ii) In the last step of forming triiodomethane, one of the carbon-carbon bond breaks to form Cl₃ when all the acidic protons have been replaced by iodine atoms. Suggest why this reaction takes place readily? Cl₃ is a stable anion/good leaving group as it is stabilized by three electron-withdrawing iodine atoms. Alternatively: That particular carbon-carbon bond is weakened due to the presence of electron-withdrawing groups. In a two-step synthesis of phenylacetone, C₀H₀CH₂COCH₃ from propanone, the basis of reaction in 3(a), and the knowledge of Friedel-Crafts reaction can be used. It is known that Friedel-Crafts reaction is an electrophilic substitution reaction, involving the alkylation or acylation of an aromatic ring in the presence of a Lewis acid catalyst. Hence or otherwise, propose the synthesis route for the conversion, stating the reagents and conditions clearly for each step and the intermediate which is formed.	The reaction in the alkaline medium cannot be limited to monohalogenation since polyhalogenation can occur instead. Monohalogenation: CH₃COCH₃ + I₂ + OH → CH₃COCH₂I + I + H₂O Halogenation continues: CH₃COCH₂I + I₂ + OH → CH₃COCH₂I + I + H₂O CH₃COCH₂I + I₂ + OH → CH₃COCI₃ + I + H₂O Formation of trilodomethane: CH₃COCI₃ + OH → CH₃COO + CHI₃ (i) Using the information below, propose a two-step mechanism that is involved in the monohalogenation reaction. Indicate the slow step clearly in your answer. Propanone reacts with hydroxide ion in the first step reversibly to form a carbanion, which is a negatively charged carbon based anion. The overall order of the reaction is 2. Step 1: CH₃COCH₃ + OH ← [CH₃COCH₂I + H₂O (slow) Step 2: [CH₃COCH₂] + I₂ → CH₃COCH₂I + I⁻ (ii) In the last step of forming trilodomethane, one of the carbon-carbon bond breaks to form Cl₃ when all the acidic protons have been replaced by iodine atoms. Suggest why this reaction takes place readily? CI₃ is a stable anion/good leaving group as it is stabilized by three electron-withdrawing iodine atoms. Alternatively: That particular carbon-carbon bond is weakened due to the presence of electron-withdrawing groups. In a two-step synthesis of phenylacetone, C₀H₂CH₂COCH₃ from propanone, the basis of reaction in 3(a), and the knowledge of Friedel-Crafts reaction can be used. It is known that Friedel-Crafts reaction is an electrophilic substitution reaction, involving the alkylation or acylation of an aromatic ring in the presence of a Lewis acid catalyst. Hence or otherwise, propose the synthesis route for the conversion, stating the reagents and conditions clearly for each step and the intermediate which is formed. CH₃COCH₃ → CH₃COCH₂CI [1] → CH₃COCH₂(C₀H₃) First step: CI₂ in acidic condition, e.g dilute H₂SO₄

			l l		
	(d)		hylacetone can then be used to synthesise methamphetamine as no below:		
		/			
			CH ₂ C=O Step 1 CH ₂ C=N-CH ₃		
			CH_3 CH_3		
			phenylacetone		
			Step 2		
			♦		
			CH_2C N CH_3		
			methamphetamine		
		(i)	Given that condensation reaction takes place in step 1, state the reagent needed for this step.	[1]	
			CH ₃ NH ₂		
		(ii)	Name the type of reaction taking place in step 2.	[1]	
			Reduction		
			[Total: 15 m	arks]	
4	(a)	solut	n propan-1-ol is heated with acidified potassium dichromate(VI) ion, it can be oxidised to form either propanal (Figure I) or propanoic (Figure II)		For Examiner's use
			Propan-1-ol water		
			water bath at 60° C water mixture water in wate		

	The boiling points of propan-1-ol, propanal and propanoic acid are given in the table below.						
		rabio bolow.					
			CH ₃ CH ₂ CH ₂ OH	CH ₃ CH ₂ CHO	CH ₃ CH ₂ CO ₂ H		
	Boi	ling point/°C	97	49	141		
	Use	this table of bo	oiling points to expla	ain			
	(i)	'	nic product is likely ure I is used.	to be propanal if	the apparatus		
		As water babe oxidised	th is at 60°C, prop further.	anal would disti	l off and will not	[1]	
	(ii)	'	nic product is likely own in Figure II is	• •	acid if the		
	In the cooler region of the condenser, propanal will condense back into mixture and further oxidation into propanoic acid can take place.						
	(iii) Suggest why the flask in which the product is collected is surrounded by iced water.						
		_	volatile (b.p. is 49 , it can reduce the		_	[1]	
(b)	Coffe	ee beans conta	ain chlorogenic acid	as shown below			
	ОН						
	Chlorogenic acid Draw the structural formula of the main product(s) when chlorogenic acid is reacted with each of the following reagents.						
	(i)	HBr(g)					
						[1]	

		HO Br Or Br Or Br		
	(ii)	An excess of Br ₂ (aq) OH Br OH Br Br OH HO HO OH HO HO OH HO HO HO H	[1]	
	(iii)	Hot NaOH(aq) OH OH OH OH Na-O O-Na+ O-Na+	[2]	
(c)	(i)	Arrange the following three compounds in order of increasing pK _a and explain the trend. OH OH OH NH ₃ ⁺ OH OH NO ₂ increasing pKa	[1]	

			o d	:-	NH ₂		
					NO ₂		
			Increas	sing stability of conjug			
			Alkyl group is	Lone pair of	Lone pair of e is		
			electron-	electrons is	delocalised into ring		
			donating, intensified the	<u>delocalised into</u> <u>ring</u> , dispersing the	and NO ₂ is a powerful electron-		
			negative charge	negative charge	withdrawing group		
		(ii)	Phenol reacts much	more readily with bromin	ne than benzene does.		
			Explain why electrop	hiles, such as bromine, i	react much more		
			readily with phenol th	nan with benzene.			
			Lone pair of electro	ns from O is delocalise	ed into the ring thus	[1]	
			electron density of the ring is increased so electrophiles are				
				e ring or dipole in elec	trophile is more		
			easily induced.				
		(iii)		r_2/CCl_4 to produce 2-bro e reaction between phen	•	[2]	
			You should include a	II charges and use curly	arrows to represent		
			the movement of elec	•	arrows to represent		
			OH	δ– Slow	ОН		
			+ Br—	—Br → Slow	.		
				4	+ Br		
			electro	phile	Br		
			OH Br				
			H	fast C	ΡΗ		
				1451	Br + HBr		
			Br				
			~		/		
	[Total: 14 mark				arks]		
5	Some	e data	about hydrogen fluorid	de and hydrogen iodide	are given below.		For Examiner's
				HF	HI		use
	Boil	ing poi	nt/°C	20	-35		

			nergy/kJ mol ⁻¹	562	299			
	Acid	d dis	sociation constant,K _a / mol dm ⁻³	5.6 x 10 ⁻⁴				
	(a)	 Hydrogen fluoride can be prepared by the action of concentrated sulfuric acid on sodium fluoride. Explain, with the aid of an equation, why hydrogen iodide cannot be prepared by the action of the same acid on sodium iodide. Conc H₂SO₄ will oxidise HI to I₂ 8HI+ H₂SO₄ → 4I₂ + H₂S + 4H₂O 				[2]		
	(b)	sug aqu Ne	art from the fact that H-F has a strongest, with the aid of a diagram, why ueous HI is a strong acid. ed to break intermolecular hydromatical edges and the strong acid. • • • • • • • • • • • • • • • • • • •	y aqueous H	F is a weak	acid while	[1]	
	(c)	Cal	Iculate the pH of 0.1 mol dm ⁻³ aque	ous HF solut	ion.			
		[H ⁺] = $\sqrt{(5.6 \times 10^{-4})(0.1)} = 7.48 \times 10^{-3}$ pH = -lg(7.48 x 10 ⁻³) = 2.13			[1]			
	(d)	Suggest why HF has a higher boiling point than HI.			[1]			
		More energy is needed to break hydrogen bonds between HF molecules than van der Waals forces (or permanent dipolespermanent dipoles forces) between HI molecules.						
	(e)	When boron triflouride, BF ₃ , is dissolved in liquid HF, the resulting solution can conduct electricity and is acidic. Explain, with the aid of an equation, why this is so. HF + BF ₃ → H ⁺ + BF ₄ ⁻ BF ₃ is electron deficient and accepts F ⁻ by dative bonding, thus forming mobile BF ₄ ⁻ and H ⁺ ions.		[2]				
		 [Total: 7 n					arks1	<u> </u>
6			experiment on the preparation of hy	ydrated zinc	sulfate invo		-,	For Examiner's use
	Step	1:	Warm 30 cm ³ of dilute sulfuric acid until in excess.	d in a beake	r. Add zinc d	oxide to the		400
	Step 2:		Filter the reaction mixture and coll	ect the filtrat	e.			
		- 1						

Step		Heat the filtrate until it becomes saturated at 50°C. Then allow it to cool to room temperature to crystallise out hydrated zinc sulfate.		
Cton	4.			
Step 4:		Filter off the crystals formed and then wash them with a little amount of cold distilled water.		
Step 5:		Dry the crystals.		
For (i)		(i) – (ii), refer to Step 1 :		
		Write the balanced equation, (including state symbols) for the reaction that occurs.		
		ZnO (s) + $H_2SO_4(aq) \rightarrow ZnSO_4(aq) + H_2O(l)$	[1]	
	(ii)	Explain why zinc oxide rather than sulfuric acid is used in excess.		
		The unreacted ZnO can be removed by filtration but it is difficult to remove the excess H_2SO_4 .	[1]	
	(iii)	Step 3 states "Heat the filtrate until it becomes saturated." Suggest one way to show that a saturated solution has been obtained.	[1]	
		Remove a drop of the solution and see if any solid is formed upon cooling.		
	(iv)	Step 4.	[1]	
		Washing with water removes the water soluble impurities and cold water is used to reduce the loss of the salt.		
	(v)	Suggest one method of drying the crystals in Step 5. Dry the crystals between filter paper/dry in an oven at 120°C/place under IR lamp	[1]	
	(vi)	Suggest one chemical that can be used in place of zinc oxide in this experiment.	[1]	
		Zn metal or ZnCO ₃ or Zn(OH) ₂		
(b)		c carbonate (ZnCO ₃), another insoluble zinc salt undergoes omposition upon strong heating.		
	(i)	Write an equation for the thermal decomposition of ZnCO ₃ .		
		ZnCO ₃ → ZnO + CO ₂	[1]	
	(ii)	Quoting relevant data from the <i>Data Booklet</i> , predict and explain how the thermal decomposition temperature of ZnCO ₃ would compare to that of CaCO ₃ .	[3]	
		Ionic radius Zn ²⁺ : 0.074 nm		

Ca ²⁺ : 0.099 nm
The ionic radius of Zn ²⁺ is smaller than Ca ²⁺ . Zn ²⁺ has higher power polarising power than Ca ²⁺ thus able to distort the electron cloud of the CO ₃ ²⁻ anion more and weaken the C-O bond to a larger extent.
Hence the thermal decomposition temperature of ZnCO ₃ would be <u>lower</u> than CaCO ₃ .
[Total: 10 marks]