2014 H1 A Level Mathematics Solution

Q1. $\int_{1}^{6} \frac{1}{\sqrt{1-x^{2}}} dx$	
$\int_{1}^{6} \frac{1}{\sqrt{(1+4x)}} dx$ $= \int_{1}^{6} (1+4x)^{-\frac{1}{2}} dx$	
$= \left[\frac{(1+4x)^{\frac{1}{2}}}{2} \right]_{1}^{6}$	
$=\frac{1}{2}\left[5-\sqrt{5}\right]$	
Q2. (i) $\frac{d}{dx} \ln(x^2 + 4) = \frac{2x}{x^2 + 4}$	
(ii) Gradient of C = K 2x	
$\Rightarrow \frac{2x}{x^2 + 4} = k$	
$\Rightarrow 2x = k(x^{2} + 4)$ $\Rightarrow kx^{2} - 2x + 4k = 0 \text{ (shown)}$	
$ x^{2} - 2x + 4k = 0 \text{ (shown)} $ $ kx^{2} - 2x + 4k = 0 $	
(iii) For equal roots,	
$b^2 - 4ac = 0$	
4 - 4k(4k) = 0	
$16k^2 = 4$	
$k^2 = \frac{1}{4}$	
$k = \frac{1}{2}$ or $k = -\frac{1}{2}$	
Q3. (i) Normal float auto real radian i	12 0
Į	
·····	

$$\frac{1}{2} = \frac{1}{e} = \frac{1}{e}$$

$$\frac{1}{e} = \frac{1}{e} = \frac{1}{e} = \frac{1}{e}$$

$$\frac{1}{e} = \frac{1}{e} = \frac{1}{e} = \frac{1}{e} = \frac{1}{e}$$

$$\frac{1}{e} = \frac{1}{e} = \frac{1}$$

$$\begin{array}{c}
2y+6x=60\\y+3x=30\\y=30-3x\\Using 5x^{2}+y^{2}-2xy=260\\5x^{2}+(30-3x)^{2}-2x(30-3x)=260\\x=4, y=18\\x=8, y=6\end{array}$$
Q5. (i)

$$y=x^{3}+kx^{2}+7x+c$$

$$\frac{dy}{dx}=3x^{2}+2kx+7$$
For stationary point,

$$\frac{dy}{dx}=0$$

$$3x^{2}+2kx+7=0$$
For x=1,

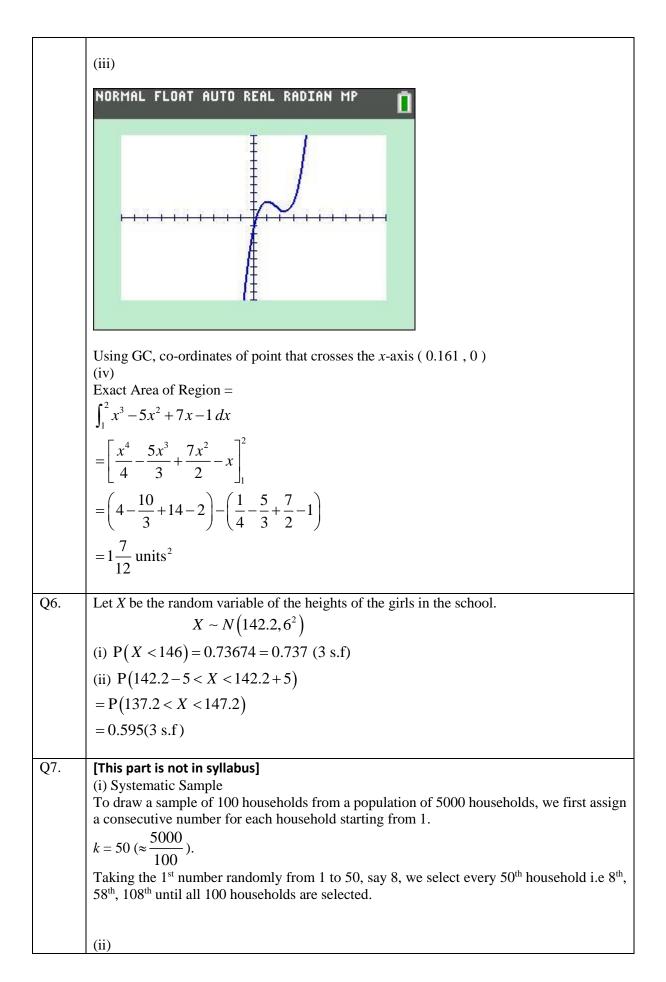
$$3+2k+7=0$$

$$k=-5(shown)$$
Given that A has coordinates (1, 2),

$$y=x^{3}-5x^{2}+7x+c$$

$$2=1-5+7+c$$

$$c=-1$$


$$y=x^{3}-5x^{2}+7x-1$$
(ii)

$$\frac{dy}{dx}=3x^{2}-10x+7=0$$

$$x=1 \text{ or } x=2\frac{1}{3}$$
For $x=2\frac{1}{3}$,

$$y=\left(2\frac{1}{3}\right)^{3}-5\left(2\frac{1}{3}\right)^{2}+7\left(2\frac{1}{3}\right)-1$$

$$=\frac{22}{27}$$
Co-ordinates of $B\left(2\frac{1}{3},\frac{22}{27}\right)$

	To obtain a sample of 100 househo	lds we draw random samn	les from the age-groups with		
	sample size in the same proportion				
		Supermarket	Online		
	Under 25 years	10	20		
	25-60 years	18	32		
	Over 60 years	16	4		
	(iii) Stratified Sampling will be preferre	d over systematic sampling	due to the following reasons:		
	1. When there are clear strata present, this method can provide more accurate estimates				
			ore likely <u>to give a good</u>		
	representative sample of th				
	2. Each of the strata can be tr more accurate.	reated separately, and so the	e sampling is convenient and		
8(i)	[This part is not in syllabus for 202	20]			
		_			
	NORMAL FLOAT AUTO REAL RA	IDIAN MP 👖			
	Y A				
	14.8				
	4.5				
	2.2	12.8 x			
(ii)	r = -0.92582				
、 <i>/</i>	The value of r shows a strong nega	tive linear correlation betw	een the number of hours		
	spent travelling to and from work,				
(iii)	y = -0.9021x + 16.15		0		
(iv)	When $x = 13.2$, $y = 4.2423 \approx 4.24$				
	The estimate is unreliable as the value of		he given data range of the		
	number of hours of television watc				
9(i)	Let X be r.v "Number of cakes con				
- (-)					
	$X \sim B(6, \frac{2.4}{6}) = B(6, 0.4)$				
(a)	$P(X = 0) = 0.46656 \approx 0.467$				
(b)	$P(X \le 2) = 0.54432 \approx 0.544$				
(0)	$ 1 (\Lambda \ge 2) - 0.34432 \approx 0.344$				

(ii)	Let Y be r.v "Number of packs containing at most two cakes containing fruit, out of packs"			
	$Y \sim B(8, 0.54432)$			
	$P(Y \ge 4) = 1 - P(Y \le 3)$			
	=0.72867 ≈ 0.729			
(iii)	Let A be r.v "Number of packs containing at most two cakes containing fruit, out of 150 packs"			
	$A \sim B(150, 0.54432)$			
	Since n is large, and $np = 81.648 > 5$			
	nq = 68.352 > 5			
	$A \sim N(150 \times 0.54432, 150 \times 0.54432 \times 0.45568)$			
	$A \sim N(68.352, 31.147)$			
	$P(A > 75) \xrightarrow{c.c} P(A > 75.5)$			
	= 0.10013			
	≈ 0.100			
10(i)	Let <i>X</i> be r.v "Length of leaves from beech trees"			
	$H_0: \mu = 7$			
	$H_1: \mu < 7$			
	Since n is large, $\overline{X} \sim N(7, \frac{4.4}{50})$ approximately by C.L.T.			
	p-value = $0.045946 < 0.05$			
	We reject H_0 and conclude that there is sufficient evidence to show that the population mean length of leaves from beech trees in this forest is less than 7cm.			
(ii)	Unbiased estimate of the population mean $=\frac{310.4}{50}=6.208\approx6.21$			
	Unbiased estimate of the population variance $=\frac{1}{49}\left(2209.2 - \frac{310.4^2}{50}\right) = 5.7599$			
(iii)	$H_0: \mu = 7$			
	$H_1: \mu \neq 7$			
	p-value = 0.019623			
	To reject H_0 , p-value $< \alpha\%$			
	$0.019623 < \alpha\%$			
	<i>α</i> >1.96			
11(i)	$P(L) = \frac{48 + 10 + 20 + 12}{90} = \frac{90}{90}$			
	48 + 10 + 20 + 12 + 130 + 15 + 55 + x = 290 + x			
	$P(G) = \frac{10+55+20+15}{42+122+122+125+55+5} = \frac{100}{202+5}$			
	48+10+20+12+130+15+55+x 290+x			
	L and G are independent $\Rightarrow P(L \cap G) = P(L) \times P(G)$			
	$\frac{30}{200} = \frac{90}{200} \times \frac{100}{200}$			
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			
	$\frac{30}{290+x} = \frac{9000}{(290+x)^2}$			
	290 + x (290 + x)			

	1 - 300
	$1 = \frac{300}{290 + x}$
	x = 10(shown)
(ii)	$P(L \cup T) = \frac{48 + 10 + 20 + 12 + 15 + 130}{300} = \frac{47}{60}$
	300 = 60
(iii)	12+130 71
	$P(T \cap G') = \frac{12 + 130}{300} = \frac{71}{150}$ $P(L \mid G) = P(L) = \frac{90}{300} = \frac{3}{10}$
(iv)	$P(L \mid C) = P(L) = \frac{90}{3} = 3$
	$P(L G) = P(L) = \frac{1}{300} = \frac{1}{10}$
(v)	P(1 student owns exactly two items) = $\frac{10+15+12}{300} = \frac{37}{300}$
	P(2 students owns exactly two items) = $\frac{37}{300} \times \frac{36}{299} = \frac{111}{7475}$
	300 299 7475
12(i)	$A \sim N(50, \sigma^2)$
	P(A > 75) = 0.0189
	$P(Z > \frac{75 - 50}{\sigma}) = 0.0189$
	$P(Z \le \frac{25}{\sigma}) = 0.9811$
	$\frac{25}{\sigma} = 2.0770$
	$\sigma = 12.037$
	$\sigma^2 = 144.877 \approx 145(shown)$
(ii)	$B \sim N(75, 64)$
	$B_1 + \dots + B_7 \sim N(75 \times 7, 64 \times 7) = N(525, 448)$
	$P(B_1 + + B_7 < 500) = 0.11877 \approx 0.119$
(iii)	Let $X = B_1 + + B_7 - 2(A_1 + + A_5)$
	E(X) = 7E(B) - 2[5E(A)] = 25
	Var(X) = 7Var(B) + 4[5Var(A)] = 448 + 2900 = 3348
	$X \sim N(25,3348)$
	$P(X > 0) = 0.66715 \approx 0.667$