Anderson Junior College H1 Chemistry 8872

2015 JC2 Prelim Paper 2 Suggested Solutions

Section A

- Ionic radius of Si⁴⁺ is smaller than that of Na⁺. 1 (a) (i) [3] This is because both cations have the same number of electrons / electrons experience same screening effect, but Si⁴⁺ has more protons than Na⁺. Hence attraction of the electrons to the nucleus is stronger for Si⁴⁺. $\underline{P^{3-}}$ has a <u>larger</u> ionic radius than Si⁴⁺. (ii) This is because P^{3-} has an additional quantum shell of electrons. [1]: stating difference in (i) and (ii) [1]: explanation in (i) [1]: explanation in (ii) (b) (i) <u>Structure</u> Bonding [2] Α Giant Ionic В Giant Covalent С Giant Ionic D Simple Covalent [1] for every 2 correct structures with corresponding bonding (ii) Identity [2] Α MaO В SiO₂ С Na₂O D P₄O₁₀ [1] for every 2 correct identities (do not accept SO_2/SO_3 for **D**, both are gases at rtp) Explanation: A and C has good electrical conductivity when molten \Rightarrow giant ionic (i.e. can be Na₂O, MgO or Al₂O₃) Since **C** reacts with water to form a strongly alkaline solution, **C** must be Na₂O. Since A reacts very little with water to form a weakly alkaline solution, A must be MgO. Note: Al₂O₃ does not dissolve in water! **B** and **D** has poor electrical conductivity when molten \Rightarrow giant covalent (i.e. SiO₂) or simple molecular (i.e. oxides of P or S) Since **B** does not dissolve in water, **B** must be SiO₂. Since **D** reacts with water to form a strongly acidic solution, **D** must be P₄O₁₀, SO₂ or SO₃ (cannot be SO_2/SO_3 due to the high m.p. given). Note: P_4O_6 reacts with water to form an acidic solution of around pH 2.
 - (c) NaCl has a giant ionic structure with strong electrostatic forces of attraction between [2] Na⁺ and Cl⁻ ions. A lot of <u>energy</u> is required to break these strong ionic bonds in order to melt NaCl. Hence, it has a <u>very high</u> melting point.

SiC l_4 has a <u>simple molecular structure</u> with <u>weak van der Waals' forces</u> between SiC l_4 molecules. Hence, they have <u>low</u> melting points.

[1] for one correct structure and bonding + comparison of energy and mp

2	(a)	(i)	$C_{14}H_{30}(I) + \frac{43}{2}O_2(g) \longrightarrow 14 CO_2(g) + 15 H_2O(I)$ [accept: 2 $C_{14}H_{30}(I) + 43 O_2(g) \longrightarrow 28 CO_2(g) + 30 H_2O(I)$]				
		(ii)		$g) \longrightarrow 14 \text{ CO}_2(g) \longrightarrow 2$		I	[3]
			Bonds broken 13 C–C 30 C–H	Energy 13 × 350 30 × 410	Bonds formed 14×2 C=O 15×2 O–H	Energy 14 × 2 × 740 15 × 2 × 460	
			<u>43</u> O=O	$\frac{43}{2}$ × 496		34520 kJ mol ^{−1} (given out)	
				27514 kJ mol ⁻¹ (taken in)	_		
	$\Delta H_{\rm f}^{\circ}$ (kerosene) = +27514 – 34520						

[1] for the 5 bonds and their correct bond energies[1] for correct no of bonds broken and formed[1] for final answer

(iii) 1 mol of kerosene produces 7006 kJ of energy [2]

 \Rightarrow 198 g of kerosene produces 7006 kJ of energy

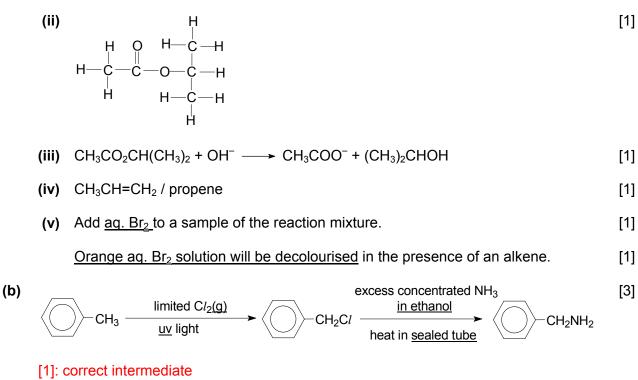
$$\Rightarrow$$
 1 g of kerosene produces 7006 ÷ 198 = 35.4 kJ of energy

Diesel fuel is more efficient, as it produces more energy per unit mass/gram.

[1] for calculation – allow ecf from (ii)[1] for conclusion (correct choice of fuel + explanation)

(b) (i)
$$\Delta H_1$$
 is $2\Delta H_f^{\Theta}$ (SO₂)

(ii)
$$\Delta H_1 = 2 \times \Delta H_c^{\circ} (SO_2) = 2(-99) = -198 \text{ kJ mol}^{-1}$$
 [2]
 $\Delta H_2 = 2 \times \Delta H_f^{\circ} (SO_2) = 2(-297) = -594 \text{ kJ mol}^{-1}$


[1]

$$\Delta H_3 = \Delta H_2 + \Delta H_1 = -792 \text{ kJ mol}^{-1}$$
$$\Delta H_f^{\Theta} (SO_3) = \frac{1}{2} \Delta H_3 = -396 \text{ kJ mol}^{-1}$$

[1] for application of Hess' Law (allow ecf from (i)) [1] for $\Delta H_{\rm f}^{\rm e}$ (SO₃)

(a) (i) CH₃CH(OH)CH₃

3

[1]

[1]: correct reagents and conditions for each step

4	(a)	n(ethanol) = 9.2 ÷ 46.0 = 0.200 mol
	(b .)	(i) To know the terms and we constant as that the position of acuilibrium will not abif

(b) (i) To keep the temperature constant so that the <u>position of equilibrium will not shift</u> [1] <u>due to changes in temperature</u>.

(ii)	To guench the reaction mixture by	y reacting away the H ₂ SO ₄ catalyst	[1]

(c) (i) redox / oxidation

(v)

(ii) $MnO_4^- + 2H_2O + 3e \longrightarrow MnO_2 + 4OH^-$ reduction [1] $CH_3CH_2CHO + 3OH^- \longrightarrow CH_3CH_2CO_2^- + 2H_2O + 2e$ oxidation overall: $2MnO_4^- + 3CH_3CH_2CHO + OH^- \longrightarrow 3CH_3CH_2CO_2^- + 2MnO_2 + 2H_2O$

(iii)		propanal(I)	ethanol(l)	acetal F(I)	water(I)	[1]
	initial amount / mol	0.1	0.2	0	0	
	change in amount / mol	- x	- 2x	+ x	+ x	
	equilibrium amount / mol	0.1 – x	0.2 – 2x	х	х	

1 mol of propanal requires
$$\frac{2}{3}$$
 mol of MnO₄⁻ for reaction.
Hence (0.1 – x) mol of propanal requires $\frac{0.2 - 2x}{3}$ mol of

1 mol of alcohol requires $\frac{4}{3}$ mol of MnO₄⁻ for reaction.

Hence (0.2 - 2x) mol of ethanol requires $\frac{0.8 - 8x}{3}$ mol of MnO₄⁻ for reaction.

 $\frac{0.2-2x}{3}$ mol of MnO₄⁻ for reaction.

Total n(MnO₄⁻) used in the titration = $\frac{0.2 - 2x}{3} + \frac{0.8 - 8x}{3} = 0.0253$ $\Rightarrow x = 0.09241$

equilibrium amount of:

 propanal
 = 0.1 - 0.09241
 = 0.00759 mol

 ethanol
 = 0.2 - 2(0.09241)
 = 0.0152 mol

 acetal
 = 0.0924 mol

 water
 = 0.0924 mol

[1] for using mole ratio and total $n(KMnO_4)$ in working [1] for x

[1] for propanal and ethanol

1

[1]

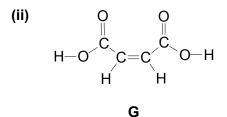
[1]

[3]

[1]

(d)

$$K_{c} = \frac{[aceta][H_{2}O]}{[propanal] [ethanol]^{2}}$$


$$= \frac{(\frac{0.0924}{0.0250})(\frac{0.0924}{0.0250})}{(\frac{0.00759}{0.0250})(\frac{0.0152}{0.0250})^{2}}$$

$$= \frac{(0.0924)(0.0924)}{(0.00759)(\frac{0.0152^{2}}{0.0250})}$$

$$= 122 \text{ mol}^{-1} \text{ dm}^{3}$$
[1] for expression
[1] for K, value

[1] for *K*_c value [1] for units 5

(b) (i) Reaction I: $\underline{\text{dilute H}_2\text{SO}_4}$, heat (under reflux) Reaction II: excess $\underline{\text{concentrated H}_2\text{SO}_4}$, 170 / 180 °C

(iii) The presence of π bond in the C=C double bond prevent free rotation about the [1] double bond.

[1] correct O–H bond[1] one lone pair in correct place in H bond[1] correct dipoles on at least one O–H bond

(v) G can form <u>intramolecular hydrogen bonding</u> leading to <u>less extensive</u> [1] <u>intermolecular hydrogen bonding</u> than fumaric acid, resulting in lower melting point.

(b) (i)
$$n(NaOH) = 0.05 \times 32 \div 1000 = 1.6 \times 10^{-3} \text{ mol}$$

 $n(\text{fumaric acid}) = 1.6 \times 10^{-3} \div 2 = 8.0 \times 10^{-4} \text{ mol}$
[fumaric acid] = $8.0 \times 10^{-4} \div 20/1000$
 $= 0.0400 \text{ mol dm}^{-3}$

(ii) Phenolphthalein.

The pH at the end (equivalence) point for this titration is around 8.5. Phenolphthalein has a <u>working pH range</u> that lies within <u>the range of rapid pH change for the titration</u>.

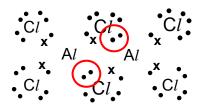
(c) (i)
$$K_a = \frac{[CH_3COO^-][H^+]}{[CH_3CO_2H]}$$
 [1]

(ii)
1.84 x 10⁻⁵ =
$$\frac{[H^+](0.20)}{0.30}$$

[H⁺] = 1.84 x 10⁻⁵ x $\frac{0.30}{0.20}$ = 2.76 x 10⁻⁵ mol dm⁻³
pH = -lg (2.76 x 10⁻⁵) = **4.56**

(iii) $H^+ + CH_3CO_2^- \rightarrow CH_3CO_2H$ $OH^- + CH_3CO_2H \rightarrow CH_3CO_2^- + H_2O$ (no mark for using "HA") [4]

[1]


[3]

[3]

[2]

[2]

[2]

[1]: correct dot and cross diagram[1]: with two dative bonds (circled) between C*l* and A*l* (each with 2 dots or 2 crosses) clearly indicated

- (ii) Increasing the temperature favours the <u>forward endothermic reaction</u>. Position of equilibrium <u>shifts right</u> to absorb the increase of heat energy. This results in an [1] increase in amount of AlCl₃ and decrease in amount of Al₂Cl₆. [1]
- (b) An <u>orange</u> solution with <u>pH 3</u> is observed.

AlCl₃ dissolves with slight hydrolysis

 $\begin{array}{l} AlCl_3 + 6H_2O \longrightarrow Al(H_2O)_6^{3^+} + 3Cl \\ Al(H_2O)_6^{3^+} + H_2O \implies Al(OH)(H_2O)_5^{2^+} + H_3O^+ \end{array}$

[1]: correct colour (accept yellow)[1]: correct pH[1]: correct equations

Explanation not required AlCl₃ dissolves in water where Al^{3+} ions form complex ions $[Al(H_2O)_6]^{3+}$.

 $A/CI_3(s) + 6H_2O(I) \longrightarrow [A/(H_2O)_6]^{3+}(aq) + 3C/(aq)$

 Al^{3+} has a high charge density, hence a high polaring power. It polarises the O–H bond in water molecules and weakens it to produce a proton, making the solution acidic.

 $[A/(H_2O)_6]^{3+}(aq) + H_2O(I) = [A/(H_2O)_5(OH)]^{2+}(aq) + H_3O^{+}(aq)$

(C) (i)

Dortiolo	Mass number	Number of			
Particle		protons	electrons	neutrons	
L ²⁺	111	49	47	62	
M ^{2–}	51	25	27	26	

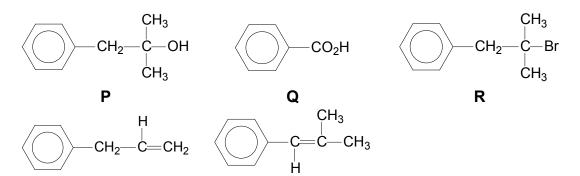
(ii) Must be less than sum of 1^{st} IE + 2^{nd} IE of Ga = 577 + 1980 = 2557

[1]

[1]

[1]: any <u>specific value</u> < 2557 (must be shown)

In is <u>below Ga</u> in the Period Table so the sum of its 1st and 2nd ionisation [1] energies is less than that of Ga. As the <u>no. of quantum shell increases down</u> the group / valence electrons of In are further away from the nucleus and experience <u>less</u> electrostatic <u>attraction</u> by the nucleus, hence requiring less energy to remove it.


[3]

(iii) angle of deflection $\alpha \frac{charge}{mass}(\frac{z}{m})$

Particle	z/m ratio	angle of deflection
Ca ²⁺	+ 2	+10.0°
	40	
M ^{2–}	<u>-2</u> 51	$\left[\frac{-2}{51} \div \frac{+2}{40}\right] x (+10.0^{\circ})$
	51	= -7.84 °

[1]: correct sign (u/c)[1]: correct magnitude with working

(d)	Observation	Type of reaction	Deduction
	Compound P has the molecular formula of $C_{10}H_{14}O$.	_	A contains a benzene ring since the C:H ratio is approximately 1:1.
	When P is heated with acidified potassium manganate(VII), it forms compound Q , $C_7H_6O_2$.	side-chain oxidation	Q has a side chain COOH P is a mono-substituted benzene.
	The solution remains orange when P is heated with acidified potassium dichromate(VI).	absence of oxidation	 P is resistant to oxidation. P must be a tertiary alcohol or ketone.
	Heating P under reflux with a mixture of sodium bromide and concentrated sulfuric acid gives compound R .	substitution	P is an alcohol R is bromoalkane
	When R is heated under reflux with ethanolic sodium hydroxide, a mixture of two different isomeric alkenes S and T is formed.	elimination (of HBr)	

S & T

2–4pt = 1m 5-7pt = 2m 8-11pt = 3m [1]: each correct structures [8]

7

(a)

(i)

experiment number	volume of $I_2(aq) / cm^3$	time taken / s	rate
1	20	21	20 21
2	20	42	20 42
3	40	84	$\frac{40}{84}$
4	40	112	40 112

Comparing experiment. 1 and 2,

When volume of HCl used is halved, rate is halved. \Rightarrow order of reaction with respect to HCl is **1**

Comparing experiment 2 and 3,

When volume of I_2 used is doubled, rate remains the same \Rightarrow order of reaction with respect to I_2 is $\underline{\textbf{0}}$

Comparing experiment 3 and 4,

 $\frac{\text{rate}_{3}}{\text{rate}_{4}} = \frac{\text{k} \left[\text{CH}_{3}\text{COCH}_{3}\right]_{3}^{x} \left[\text{I}_{2}\right]_{3}^{0} \left[\text{HCI}\right]_{3}}{\text{k} \left[\text{CH}_{3}\text{COCH}_{3}\right]_{4}^{x} \left[\text{I}_{2}\right]_{4}^{0} \left[\text{HCI}\right]_{4}}$ $\frac{\frac{40}{84}}{\frac{40}{112}} = \frac{\left[\text{CH}_{3}\text{COCH}_{3}\right]_{3}^{x} \left[\text{HCI}\right]_{3}}{\left[\text{CH}_{3}\text{COCH}_{3}\right]_{4}^{x} \left[\text{HCI}\right]_{4}}$ $\frac{112}{84} = \frac{\left(40\right)^{x}\left(20\right)}{\left(20\right)^{x}\left(30\right)} \Rightarrow x = 1$

 \Rightarrow order of reaction with respect to CH₃COCH₃ is <u>1</u>

Therefore, rate equation for this equation is rate = k [CH₃COCH₃] [H⁺].

[1]: correct determination of rate for Expt 1 to 4[1]: each correct deduction of order

- (ii) $mol^{-1} dm^3 s^{-1}$
- (iii) 84 s

Working not required:

Notice that the total volume for experiment 5 is halved. Hence the concentration is doubled.

Expt	vol. of propanone /cm ³	vol. of I ₂ (aq) /cm ³	vol. of HC <i>l</i> /cm ³	vol. of water /cm ³	time taken / s	rate
5	10	20	20	0	t ₅	
5'	20	40	40	0	t ₅	
4	20	40	30	10	112	40 112

[1]

[1]

Comparing experiment 4 and 5', where [propanone] and [I2] are constant,

$$\frac{\frac{\text{rate}_{5'}}{\text{rate}_{4}} = \frac{[\text{HCI}]_{5'}}{[\text{HCI}]_{4}}$$
$$\frac{\frac{40}{t_{5'}}}{\frac{40}{112}} = \frac{[\text{HCI}]_{5'}}{[\text{HCI}]_{4}}$$
$$\frac{112}{t_{5}} = \frac{40}{30}$$

t₅ = 84 s

(iv)

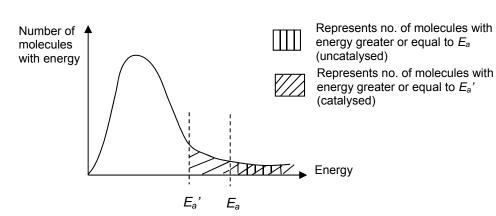
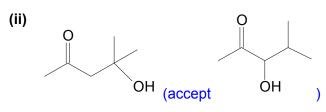


Diagram should have correct label of axes, correct shape of curve, Ea for [1] uncatalysed and catalysed reactions labelled clearly, correct shaded area


The catalyst provide an alternative pathway that has a lower activation energy [1] $(E_{a}' < E_{a}).$

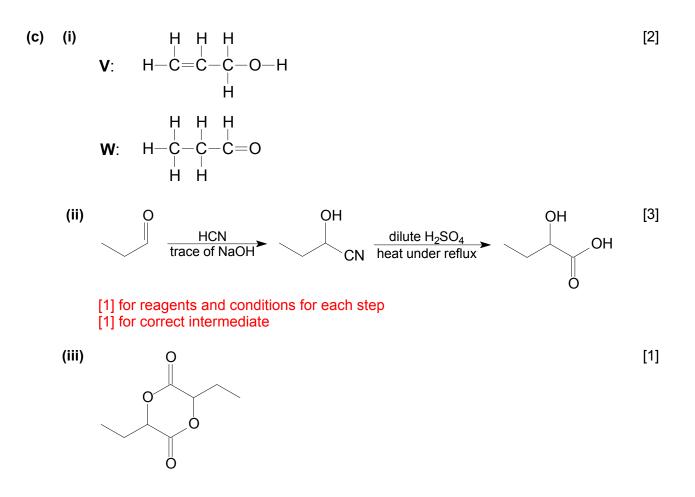
More molecules have energies greater than or equal to the lowered activation [1] energy Ea'. This results in an increase in the frequency of effective collisions and hence rate of reaction increases.

(v) $CH_3COO^-Na^+$ and CHI_3

[1] each

(b) (i) Elimination (of H₂O)

(iii) CH₃CH₃CHO


AJC JC2 PRELIM 2015

[1]

[2]

[1]

[1]

