
   

 1 

JURONG PIONEER JUNIOR COLLEGE 
9749 H2 PHYSICS /8867 H1 PHYSICS 

 
MEASUREMENT 

 
Content 
 

 Physical quantities and SI units 

 Scalars and vectors 

 Errors and uncertainties 
 
 
Learning Outcomes  
 
Candidates should be able to: 
 
(a) recall the following base quantities and their SI units: mass (kg), length (m), time (s), 

current (A), temperature (K), amount of substance (mol). 
 
(b) express derived units as products or quotients of the base units and use the named 
 units listed in ‘Summary of Key Quantities, Symbols and Units’ as appropriate. 
 
(c) use SI base units to check the homogeneity of physical equations. 
 
(d)  show an understanding of and use the conventions for labelling graph axes and table 

columns as set out in the ASE publication Signs, Symbols and Systematics (The 
ASE Companion to 16-19 Science, 2000). 

 
(e) use the following prefixes and their symbols to indicate decimal sub-multiples or 

 multiples of both base and derived units: pico (p), nano (n), micro (), milli (m),      
 centi (c), deci (d), kilo (k), mega (M), giga (G), tera (T).  
 
(f) make reasonable estimates of physical quantities included within the syllabus. 
 
(g) distinguish between scalar and vector quantities, and give examples of each. 
 
(h) add and subtract coplanar vectors. 
 
(i) represent a vector as two perpendicular components. 
 
(j) show an understanding of the distinction between systematic errors (including zero 
 errors) and random errors. 
 
(k) show an understanding of the distinction between precision and accuracy. 
 
(l) assess the uncertainty in a derived quantity by addition of actual, fractional, 

percentage uncertainties or by numerical substitution (a rigorous statistical treatment 
is not required). 
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Introduction 

 
▪ Physics aims to understand the natural world around us and to represent the various 

phenomenon via mathematical relationships. Scientific experiments are then designed to test 
out the validity of the mathematical relationships. 

 
▪   Such experiments involve the measurements of various physical quantities. The reliability of 

the measurements is important so as to correctly verify the concepts and theories. The 
precisions of any experimental results should also be quoted to an appropriate numbers of 
significant figures to reflect on the order or accuracy.  

 
▪   In this lecture, we will learn to use different physical quantities, their SI units and how to 

work with the errors and uncertainties incurred when taking measurements. We will also be 
learning the classification of physical quantities as scalars or vectors, the addition and 
subtraction of vectors and the resolving of a vector into its components. 

 
 
1         SI units 

(a) Candidates should be able to recall the following base quantities and their units:         
mass (kg), length (m), time (s), current (A), temperature (K), amount of substance 
(mol). 

 
1.1 Physical quantities 
 

 Physical quantities are quantities that can be measured. 
 

 A physical quantity consists of a numerical value and a unit. 
 

 For example, the height of a man is about 1.70 m.  

 
 

 

 

 

 
 In experiments, instruments are used for the measurement and recording of various       
physical quantities.  Some examples are: 

 

 

 

 

 

 

Physical quantity Instrument  

Mass, weight Spring balance, lever balance 

Length Ruler, vernier callipers, micrometer screw gauge 

Time Stopwatch, clock, cathode ray oscilloscope  

Temperature Thermometer 

Angle      Protractor 

Electric current      Ammeter 

Potential difference Voltmeter 

 

 

                                  

 

 

 

         

h = 1.70 m 

numerical value 

unit   physical quantity 
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 In 1960, the international scientific community adopted a number of conventions 
about physical quantities and their units. The Système Internationale d’Unités    
(International System of Units) is based on seven base quantities and their 
corresponding units, called base units. 
 

1.2       Base quantities and base units  
             
              ▪     Base quantities are physical quantities that are fundamental and are not defined  
                  in terms of other physical quantities.  

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
        *not in syllabus     

 
              ▪    There are other physical quantities such as velocity and pressure that need to be 

measured. Such physical quantities are called derived quantities.   
 
(b) Candidates should be able to express derived units as products or quotients of the 
 base units and use the named units listed in ‘Summary of Key Quantities, Symbols 
 and Units’ as appropriate. 
 

1.3       Derived quantities and derived units 
 

▪  Derived quantities are physical quantities that are defined in terms of base quantities 
according to a defining equation.  

 
 For example, velocity is a derived quantity and it has the defining equation 

change in displacement

time taken
v  .. 

 
▪  Units of derived quantities are called derived units and are expressed as products or 

quotients of base units. 
 

            ▪  Derived units can be obtained from the defining equation as follows: 

               The defining equation for velocity is   
change in displacement

time taken
v  .. 

               Hence, the unit of velocity is m s–1 (metre per second). 

              [Note the space break between the m and s–1]. 

base quantity usual symbol for 
base quantity 

SI base unit  symbol for 

base unit  

Mass m kilogram kg 

Length l metre m 

Time t second s 

Electric current I ampere A 

Thermodynamic 

Temperature 
T 

kelvin K 

Amount of 

substance 
n 

mole mol 

Luminous intensity* L candela cd 
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 In determining derived units, it is important to differentiate between symbols used 
for the physical quantities and the corresponding symbols for units. A summary of 
the usual symbols and units for different physical quantities can be found on pages 
34 – 35 of the 9749 H2 Physics syllabus document (www.seab.gov.sg). 
 
  

Derived 
quantity 

Defining equation Derived unit Usual unit 

acceleration 

 

t

uv 


time

velocityinchange

 
 

 
1

2m s
m s

s


  

- 

force  
t

uvm 


time

momentuminchange

 

 

2
1

smkg
s

smkg 


  newton (N) 

pressure 
A

F


area

force
 

21

2

2

smkg

m

smkg







 

 

pascal (Pa) 

work 
force   displacement in 
the direction of the force 

Fs  
22

2

smkg

msmkg







 

 

joule (J) 

power 
t

E


time

work
 

32

22

smkg

s

smkg







 

 

watt (W) 

potential 
difference 

Q

E


charge

work

 

132

22

Asmkg

sA

smkg





  
 

volt (V) 

 
 
1.4       Dimensionless quantities and dimensionless constants 
  

 Dimensionless quantities are physical quantities that have no units. Some 
examples are refractive index and relative molecular mass. 

 

 All real numbers and some mathematical constants like  have no units. They are 
called dimensionless constants. 

 

 Note: Some physical quantities that are constants have units. Some examples are: 
 

o acceleration of free fall, g = 9.81 m s−2,  

o elementary charge,   191.60 10 Ce  
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(c) Candidates should be able to use SI base units to check the homogeneity of physical 
 equations. 
 
1.5       Homogeneity of equations 
 

 An equation is called homogeneous or dimensionally consistent if every term on 
both sides of the equation has the same units. That is, units on the LHS = units on 
the RHS. 
 

 For example, for an equation W = X + Y, the units of the physical quantities W, X 
and Y must be the same. 

 
 Base units can be used to check the homogeneity of physical equations. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 An equation that is physically correct must be dimensionally consistent or 
homogeneous.  
 

 However, note that an equation that is dimensionally consistent or homogeneous 
may NOT be physically correct. 

Example 1 
 
Check whether the following equations are homogeneous and state whether they are 
physically correct. 
(a) v = u + at   
(b) v = u + 2at 
(c) s = ut +  at 
 
where s is displacement, v is final velocity, u is initial velocity and a is acceleration.  
 

Solution: 
  
(a) v = u + at   

Unit of v = m s1  (unit of velocity) 

Unit of u = m s1  (unit of velocity) 

Unit of at = m s2  s = m s1   

Hence equation is homogeneous. This is physically correct. 
 
(b) v = u + 2at  

Unit of v = m s1  

Unit of u = m s1  

Unit of 2at = m s2  s = m s1   

Hence equation is homogeneous. But it is not physically correct. 
 
(c) s = ut +  at 
 Unit of s = m  

 Unit of ut = m s1  s = m  

 Unit of at = m s2  s = m s1  
 
 Equation is not homogeneous and thus definitely physically incorrect. 
 
 The correct equation is s = ut + ½at2. 
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 Example 3 
 
 Bernoulli’s equation, which applies to fluid flow, states that  

                               21
     

2
p hpg v k  

where p is a pressure, h a height, ρ a density, g an acceleration, v a velocity and k a 
constant. Show that the equation is dimensionally consistent and state an SI unit for k. 

 

Solution: 

(a) Since 
F

p
A

 , 

 units of p  
units of

units of

F

A
  

   

2

2

kg m s

m




  

   
1 2kg m  s   

 

 units of h g  units of   units of   units of h g    

    
3 2m kg m  m s   

    
1 2kg m  s   

 

 units of 
21

2
v   2units of   units of v   

    
 

2
3 1kg m  m s 

 

    
1 2kg m  s   

 

 Since the terms separated by the addition signs have the same SI base units, the equation 

is dimensionally consistent. Hence, the SI base units of k should be 1 2kg m  s  . 

 

 Example 2 
 
In the ideal gas law, pV = nRT where n is the number of moles of gas, p is pressure, V is 
gas volume and T is the thermodynamic temperature.   What are the possible units of R? 

 

Solution: 

 
 

1 2 3

2 2 1 1
kg m s m

Units of kg m s mol  K
mol K

pV nRT

pV
R

nT

R

 

  





 
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(e) Candidates should be able to use the following prefixes and their symbols to indicate 
 decimal sub-multiples or multiples of both base and derived units: pico (p), nano (n), 

 micro (), milli (m), centi (c), deci (d), kilo (k), mega (M), giga (G), tera (T).  
 
1.6       Standard form 
 

▪    A way of writing very small or very large quantities. 
 

            ▪    Standard form expresses a number as N  10n where n is an integer, either     

                positive or negative, and N is any number such that 1 N < 10 or – 10 > N < – 1.  

 

▪    For example, the sun’s diameter is 1,392,000,000 m and an atom’s average diameter 
is 0.000 000 000 3 m. Thus,  

 
                 Sun’s diameter = 1.392 x 109 m = 1.392 Gm 
 

     Average atom’s diameter = 3 x 10−10 m = 0.3 nm 
 

1.7 Prefixes 
 
           ▪    The following prefixes and their symbols can be used to indicate decimal sub-   
                 multiples or multiples of both base and derived units: 
 

 
 Multiplying 

factor 
Prefix Symbol 

Decimal          
sub-multiples 

0.000 000 000 001 1210  pico p 

0. 000 000 001 910  nano n 

0. 000 001 610  micro  

0. 001 310  milli m 

0. 01 210  centi c 

0. 1 110  deci d 

Decimal 
multiples 

1 000 310  kilo k 

1 000 000 610  mega M 

1 000 000 000 910  giga G 

1 000 000 000 000 1210  terra T 

 
                E.g.        0.00000123 J can be expressed as 1.23 µJ. 
 
 (d)  Candidates should be able to show an understanding of and use the conventions for 

labelling graph axes and table columns as set out in the ASE publication Signs, 
Symbols and Systematics (The ASE Companion to 16-19 Science, 2000). 

 
1.8 Conventions used for labelling table columns and graph axes  
 

 The table column headings and the axes of the graph should show the physical 
quantity and the unit, separated by a solidus (slash). No units should be shown 
beside the values in the body of the table. 
 
 

 
 In the table below, columns 2 and 3 are both correctly tabulated.  
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 However column 3 is preferred as it gives a better representation. 

 Although the labelling of the two axes shown below are correct, the latter gives a 
better presentation. 

 

(f) Candidates should be able to make reasonable estimates of physical quantities 
 included within the syllabus. 
 
1.9       Estimates Order of magnitude of physical quantities 

 
▪ The ability to estimate the value of a physical quantity and to compute an 

approximate answer is a necessary skill in problem solving. The estimated answer 
can serve as a check on the calculation. 

 
▪  In making an estimation or approximation of the physical quantities, it is usually 

necessary to make some assumptions.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

T / K 11
 / K

T

  3 11
 / 10  K

T

   

273 0.00366 3.66 

283 0.00353 3.53 

293 0.00341 3.41 

Example 4 
 
What is a reasonable estimate for the amount of energy needed to boil a flask of water? The 

energy needed is given by   Q mc   where c is the specific heat capacity of water and is 

approximately 4.2 x 103 J kg –1 K –1. 

 
Solution: 
 

Estimated room temperature = 30 C  

 
Thus, 70 K.   

 
What about the mass of water? 
Estimated volume of normal flask = 1.5 litres. 
Thus, the mass of water is about 1.5 kg. 
 

The estimated amount of energy needed    3 54.2 10 4.4  = 01. 15 70 JQ mc       
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▪   Some estimation are only to the ‘power of ten’ of the number that describes that 
physical quantity. This is referred to as an order of magnitude of the physical 
quantity.  

                 

Physical quantity Estimate / Order of Magnitude  

Diameter of a nucleus 10-15 m 

Diameter of an atom 10-10 m 

Weight of a man 103 N 

Weight of a car 104 N 

 
1.10     Units Conversion 

 
▪   Sometime physical quantities are given in units other than S.I. Units.  For calculation 

in Physics, the values have to be converted to S.I. Units. 
 

o 1 cm3 = _______________ m3 
 

o 60 km h−1  = _______________ m s−1 
 

o 1 g cm−3  = _______________ kg m−3 
 
 
(j) Candidates should be able to show an understanding of the distinction between 
 systematic errors (including zero errors) and random errors. 
 
2 Errors and uncertainties 

 
 When an experimenter conducts an experiment and uses the instruments to take 

readings, the experimenter has to depend on his own skills to obtain as accurate a 
reading as possible.  
 

 However, each instrument also has a limit of accuracy within which the 
experimenter is working with. 

 
 Thus, physical quantities cannot be measured exactly with any instrument. 
 
 Errors are uncertainties in measurements. They may arise due to: 
 

(a) the measuring instruments used, 
 
(b) the techniques or skills of the experimenter, 
 
(c) the surrounding physical conditions,  
 
(d) the experimental design or method used.  

 
 These errors caused measurements to deviate from their actual or true values.  

 
 

2.1 Systematic and Random Errors 
 
 There are two types of errors; systematic and random. 

 
 The table below shows the comparison between a systematic and a random error. 
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Systematic error Random error 

Definition: 
 
Systematic errors result in readings 
taken being either always consistently 
over or under its true or actual value.  
  

Definition: 
 
Random errors result in a scatter of 
readings about a mean value, such that 
the readings have an equal chance of 
being over or under its true or actual 
value. 
 

The error is thus systematic if: 
 
(a) repeated measurements under the 
same conditions yield the same error 
in magnitude and sign. 
 
(b) its value changes in a predictable 
manner. 
 

The error is thus random if: 
 
(a) repeated measurements results in 
errors with different magnitudes and signs.    

Reducing Error: 
 
Systematic errors can be reduced by 
using good experimental techniques, 
replacing faulty equipment or via 
calibration curves. 
 
Systematic errors cannot be 
eliminated by taking an average of 
several readings. 
 

Reducing Error: 
 
Random errors can be reduced by taking 
an average of several readings. 
 

 

 

This is as random errors tend to cancel 
each other out when taking average as 
both positive and negative errors are 
equally likely to occur.  

 

Examples 
Zero errors on instruments.  
 
 
For example, when the gap of a 
micrometer screw gauge is closed, its 
reading is not zero but +0.01 mm. The 
zero error thus caused the 
measurement to be larger than the 
actual value. If the zero error is −0.01 
mm, then the measurement will be 
smaller than the actual value. 
 
To reduce the error, the zero error 
should be subtracted from the 
measured value to obtain the actual 
value.  
 

Examples 
Random parallax error when reading a 
scale.  
 
For example, the line of sight of the 
experimenter is not perpendicular to the 
scale. The randomness in the error occurs 
because the angle between the line of 
sight and the scale is not consistent 
throughout the experiment. This results in 
readings that are larger or smaller than the 
actual values. 
 
 
 
 
 
 
 
 
The error may be reduced by having the 
scale as close as possible to the object to 
be measured, and viewing the scale with 
the line of sight perpendicular to the scale. 
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Reaction time of the experimenter.  
 
 
For example, in a time measurement, 
there may be a consistent delay 
between the experimenter observing 
an event and starting a stopwatch. 
 
The error may be reduced by starting 
and stopping the stopwatch to the 
same stimulus. 
 

Random error due to irregularity of a 
physical quantity. 
 
For example, the diameter of a rod is not 
uniform and this causes random error in 
the measurement of its diameter. 
 
 
The error may be reduced by measuring 
the diameter at several positions along the 
length of the rod, and then averaging. 

 
(k) Candidates should be able to show an understanding of the distinction between 
 precision and accuracy. 
 
2.2  Precision and Accuracy 
 
2.2.1 Accuracy 
 

 Accuracy is the degree of closeness the measurements are to the true value. 
Accurate measurements will have readings that are close to the actual or true 
value of the physical quantity. 
 

 Accuracy depends on the instrument used, the skills of the experimenter and the 
techniques involved. 
 

2.2.2 Precision 
 

 Precision is the degree of agreement of repeated measurements of the same 
quantity.  Precise measurements will have a small spread of readings, resulting in 
small random errors. Imprecise measurements will have a large spread of readings 
and thus large random errors. 

 
 On the other hand, precision of a measuring instrument refers to the extent or limit 

of sensitivity of the physical quantity being measured. For example, the precision of 
a metre rule is up to 0.1 cm, while the precision of a micrometer screw gauge is up 
to 0.001 cm. Hence, a micrometer screw gauge is a more precise instrument 
compared to a metre rule. 

 
 
 

 
 
 

 
 

 
 
       
 
 
 
 

 

  
valuev
alue 

 

 reading 

number of readings 

true 
value 

reading 

number of readings 

 

 

true 
value 

reading 

number of readings 

 

 

number of readings 

n
o

. 
o

f 
m

e
a

s
u

r
e

m
e

n
ts

measurement
T

 

true 
value 

reading 
true 
value 
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2.3 Uncertainty 
 
2.3.1    Absolute or Actual uncertainty 
 

 In any instrument, there is always a limit of accuracy within which the experimenter 
can attain. For example, what is the reading of R1 below? 
 
 

 
 
 

 
 
 

Reading, R1 ≈ 26.13 cm or 26.14 cm? 

 The last digit is an estimate. Thus, all readings will have a certain ‘uncertainty’.   
 

 The uncertainty is dependent on the instruments used and the experimenter can 
only read as accurately as what the instrument can measure. 

 
 The actual uncertainty in the scale reading or pointer reading of an instrument is 

generally taken as half the smallest scale division or graduation of the instrument. 
 

 For the above reading, R1 = (26.15   0.05) cm. 
 

 Absolute or actual uncertainty of R1, written as R1 is = 0.05 cm. 
 

 Generally, any reading or measurements of a physical quantity A can be recorded 
as below: 

 A = a  a 
 

  where a is the reading from the instrument and a is the absolute uncertainty.  
 
2.3.2  Fractional and percentage uncertainties 
 

 For a reading A = a  a,  

 The fractional uncertainty in A is 
a

a
. 

 The percentage uncertainty in A is 100


a

a
%. 

 

 For the above reading of R1 = (26.15   0.05) cm 
 

- absolute uncertainty in R1, 1R 0.05   cm 

 

- fractional uncertainty in R1, 
1

1

R 0.05

R 26.15


  

                 0.002  

- percentage uncertainty in R1, 
1

1

R
100% 0.2%

R


   

 

R1 
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 In deciding which instrument to use when measuring a physical quantity, low 
fractional or percentage uncertainty is required. For examples, vernier calipers and 
micrometer screw gauge are used for small readings.   

 
(l) Candidates should be able to assess the uncertainty in a derived quantity by
 addition of actual, fractional or percentage uncertainties or by numerical substitution (a    
            rigorous statistical treatment is not required). 

 
2.3.3 Uncertainties in derived quantities 
 

 The final result of an experiment is seldom obtained by a single measurement. It is 
usually calculated from an expression containing different measured quantities.  

 
 Consider the measurement of the length of a glass block using a ruler. 

  
 

 The measurement of the length, L, is obtained from two readings, R1 and R2. 
 

- R1 = (0.85  0.05) cm   - R2 = (2.95  0.05) cm 
 

- L = (R2  R1) = 2.10 cm 
 

 What about the uncertainty of the length measurement? 
 

 Consider from first principle. 
 

- Lmax = 3.00 – 0.80 = 2.20 cm 
 

- Lmin = 2.90 – 0.90 = 2.00 cm 
 
Hence, L range from 2.20 cm to 2.00 cm.  
 
Thus, we can write the length as follows: 
 

L = l  l = 2.1  0.1 cm 

 

The uncertainty of L is l = 0.1 cm 

 

It is also obtained as follows:  l = R1 + R2 = 0.05 + 0.05 = 0.1 cm 
 

0 1  2 

    L = (2.1  0.1) cm 

R1 = (0.85  0.05) cm  R2 = (2.95  0.05) cm 

cm  3 

    Glass block 
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 The table below shows how the uncertainties of the derived quantities A, B, C, D, 

E, and F are calculated. The measured quantities x and y have uncertainties x 

and y respectively, while k, m and n are all dimensionless constants. 
 

Operation Equation Uncertainty 

Addition 
A mx ny 

 
Absolute uncertainty, A m x n y      

Subtraction B mx ny   Absolute uncertainty, B m x n y      

Multiplication C kxy  Fractional uncertainty, 
C x y

C x y

  
   

Division 
x

D k
y

  Fractional uncertainty, 
D x y

D x y

  
   

Product with powers 
m nE kx y  Fractional uncertainty, 

E x y
m n

E x y

  
   

Quotient with powers 
m

n

x
F k

y
  Fractional uncertainty, 

F x y
m n

F x y

  
   

 
2.3.4    Significant figures 
 

 The number of significant figures in a result is simply the number of figures that  
are known with some degree of reliability.  

 

 Thus, it will be sufficient to give uncertainties to one significant figure (s.f.).  
 

 The measured quantities are then rounded off to the same decimal place (d.p.) as 
the uncertainties. 

 

                
 
 
          
 
 
 
 

 Thus, in measuring the length of the glass block, L = 2.1  0.1 cm.  
 

o L = 2.10  0.10 cm is wrong because uncertainty written has 2 significant 
figure.  Uncertainty can only has 1 s.f. 

 

o L = 2.10  0.1 cm is wrong because the length should be expressed to 1 dp, 
same number of dp as its uncertainty.  

 
 
 
 
 
 
 
 
 

 

Note:  
  
1.   All uncertainties are rounded off to 1 significant figure. 
  
2.  The derived quantity is then rounded off to the same decimal place as its   
      uncertainty. 
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-  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Example 5 
 

A rectangle has a length l = (34.3  0.1) cm and breadth b = (21.8  0.1) cm. 

Calculate the perimeter P and area A of the rectangle and express their values with 

their absolute uncertainties. 

 

Solution: 

P = 2l + 2b = 2 (34.3+ 21.8) = 112.2 cm 

P = 2l + 2b = 2  (0.1 + 0.1) = 0.4 cm (to 1 s.f.) 

P = (112.2  0.4) cm  (to 1 dp, similar to dp of uncertainty) 

A = lb  = 34.3  21.8 = 747.74 cm2  

0.1 0.1
0.00750

34.3 21.8

  
    

A l b

A l b
 

A =0.00750  A = 0.00750  747.74 = 5.61 cm2 = 6 cm2  (to 1 s.f.) 

A = (748  6) cm2 

 

 Example 6 
 
 In a simple pendulum experiment to determine the acceleration due to gravity g, the 

equation used is 
g

T
l

2 , where T is the period and l is the length of the 

pendulum. The values for T and l are  01.016.2   s and  005.0150.1   m 

respectively. Determine the value of g with its uncertainty. 
 
Solution: 

 Rearranging the equation, we have 
2

24

T
g

l
 . 

 
2

2

16.2

150.14 



g  

 9.7308g   ms−2 

 

 Fractional uncertainty in g, 
T

T

g

g 






2

l

l
, and we have 

 











16.2

01.0
2

150.1

005.0

7308.9

g
 

  0.1g   ms−2     (1 s.f.) 

 
 Therefore, the value of g is  1.07.9   ms−2. 
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Example 7 
 
A metal cube of side L has a mass of M.  

 

(a) If M = (0.065 ± 0.001) kg  and L = (0.200 ± 0.001) m, determine its density   and 

express  with its associated uncertainty. 

 

(b) What are the possible errors in the measurements and how can they be reduced? 

 

(c) Suggest possible improvements to the determination of the density.  

 

Solution: 

(a) Density, 
3

M

L
  = 

 
 

Fractional error =  

                          = (0.001 / 0.065) + 3(0.001 / 0.200) 

                          = 0.0304 

 

Absolute error,  = 0.0304  8.125 

                               = 0.247 

                               = 0.2 kg m3 (to 1 s.f.) 

 

Therefore, density,  = (8.1 ± 0.2) kg m3 

 
(b)  Random error: parallax error in length reading 
                               non-uniformity of the length of the sides of the cube 
 
       Systematic error: zero error of weighing balance  

                       zero error of metre rule if zero mark of ruler is not clear 
 
(c)  Random error: use a marker/pointer when measuring length 
                               take repeat readings and determine the average length 
 
      Systematic error: take into account zero error 
 
      Improvements: use vernier calipers to measure length. 

3

3

0.065
8.125 kg m

0.200



3
M L

M L

    
   

   
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Example 8 
 
The equation connecting object distance u, image distance v and focal length f for a lens is 

1 1 1

u v f
  . A student measures values of u and v with their associated uncertainties, which are 

 50 3u   mm and  200 5v   mm. Determine the value of f with its uncertainty. 

 
Solution: 

1 1 1
40

50 200f
   mm 

 

To determine maxf , 

max max max

1 1 1

f u v
   

max

1 1 1

53 205f
   

max 42.112f   mm 

 

To determine minf , 

min min min

1 1 1

f u v
   

min

1 1 1

47 195f
   

max 37.872f   mm 

Therefore, the actual uncertainty in f is 

max min

2

f f
f


   

42.112 37.872

2
f


   

2f   mm     (1 s.f.) 
 

Therefore, the value of f is  40 2  mm. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



   

 18 

3 Scalars and vectors 

 
(g) Candidates should be able to distinguish between scalar and vector quantities, and 
 give examples of each. 
 
3.1 Scalars and vectors 
 

 Physical quantities can be classified as scalars or vectors. 
 

 A scalar quantity has a magnitude only, while a vector quantity has both a 
magnitude and a direction. For example, the speed of a car is 12 m s−1, but the 
velocity of the car will be 12 m s−1 in the direction horizontally towards the right. 

 
 Some examples of scalar quantities are mass, distance, time, speed, volume, 

temperature and energy. 
 
 Some examples of vector quantities are displacement, velocity, acceleration, 

weight, force and momentum 
 

(h) Candidates should be able to add and subtract coplanar vectors. 
 
3.2 Vector addition and subtraction 
 

 A vector is represented by a line drawn in a particular direction. The length of the 
line represents the magnitude of the vector while the direction of the arrow 
represents the direction of the vector.  

  
 Coplanar vectors are vectors that lie in the same plane. 

 

 Two vectors P  and Q  can be added together using either the parallelogram rule 

or triangle rule of vector addition. 
 
3.2.1 Parallelogram rule of vector addition 
 
 

 
 
 
 
 
 
 

 
3.2.2 Triangle rule of vector addition 

 
 
 
 
 
 
 
 
 
 

 
 

 

  

+ = 

 

 

 

  

+ = 



   

 19 

3.2.3 Vector subtraction 
 

 Likewise, two vectors P  and Q  can be subtracted to give a resultant vector. This 

can be done by writing the subtraction as an addition of vectors instead. 

 Thus,  P Q P Q    . 

 
 
 

 
 
 
 
 

Example 9 
 

Forces 1F  and 2F  of magnitude 10.0 N and 20.0 N respectively act at the same point on an 

object. Given that the angle between the two forces is 60°, determine the magnitude and 
direction of the resultant force acting on the object. 
 
 
 
 
 
 
 
Solution: 

Using the triangle rule of vector addition, 1 2RF F F  . 

 
 
 
 
 
 
 
 
Using the cosine rule, 

 120cos2 21

2

2

2

1

2
FFFFFR  

  120cos0.200.1020.200.10 222

RF  

26.5RF   N 

 
Using the sine rule, 

RFF




120sinsin

1


 

5.26

120sin

0.10

sin 



 

19.1    

Therefore, the resultant force is 26.5 N at an angle of 19.1o above the horizontal, as shown in 
the diagram.  
 
 

 

 

 

 

 

 

 
 

 
+ = 
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Example 10 
 
A car changes its velocity from 30 ms−1 due East to 25 ms−1 due South.  
 
Calculate (a) the change in speed, and  
 
                (b) the change in velocity of the car. 
 
Solution: 
 
(a) Since speed is a scalar quantity, it has a magnitude only. Hence, the change in speed is 
 25 30 5    ms−1. 

 

(b) Change in velocity, 
f iv v v    

   f iv v v     

  
 Drawing a vector diagram, we have 
 
 
 
 
  
 
 
 
  
 Using the Pythagoras’ Theorem, 

 
222

fi vvv   

 222 2530 v  

 39v   ms−1 

 

 
i

f

v

v
tan  

 
30

25
tan   

 40    

 

 Therefore, the change in velocity is 39 ms−1 at an angle of 40o below the horizontal, as 
 shown in the diagram.  
 

 
 
 
 
 
 
 
 
 
 
 
(i) Candidates should be able to represent a vector as two perpendicular components. 
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3.3 Components of vectors 
 

 A vector can be split up into two parts which are called the components of the 
vector. The components are usually chosen to be along two mutually perpendicular 
directions.  

 
 The process of finding the components is known as resolving the vector into its 

components.  
 

 For example, the horizontal and vertical components of R  are:  
 

     cosxR R   and sinyR R    respectively, as shown below. 

 
 
 
 
 
 
 
 
 

 Note that the magnitude of R  can be obtained from its components using the 

Pythagoras’ Theorem, where 
222

yx RRR  , and the angle   can be calculated 

using 
x

y

R

R
tan . 

 The resolution of vectors into their components provides an alternative way of 
adding and subtracting vectors, and is useful in determining the resultant vector for 
more than two vectors. 

 

Example 11 
 
Calculate the horizontal and vertical components of a force of 50 N, acting at an angle of 40° 

above the horizontal.  
 
 
 
 
 
Solution: 
 
Resolving the force into its components, 

 40cos50xF  

38xF   N 

 40sin50yF  

32yF   N 

Therefore, the horizontal component of the force is 38 N, while the vertical component of the 
force is 32 N. 
 

Example 12 

 

 

 

 

50 N 

40° 

= 50 N 
30 

= 300 N 

45 
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Three forces, 1F = 300 N, 2F = 200 N and 3F = 50 N act at  

a point as shown on the right.  
 
(a) Resolve the three forces into their x- and y-components, 
(b) Calculate the resultant force acting at the point. 
 
Solution: 
 
 
 
 
 
 
 
 
 
 
 
 

(a) Resolving 1F = 300 N into its components, 

 
1 300 cos45xF      1 300 sin45yF     

 
1 212xF   N   1 212 NyF   

 Therefore, the x- and y-components of 1F  are both 212 N. 

 Resolving 2F = 200 N into its components, 

 
2 200 cos30xF      2 200 sin30yF     

 
2 173 NxF     2 100 NyF   

 Therefore, the x- and y-components of 2F  are 173 N and 100 N respectively. 

 For 3F = 50 N, it is already in the vertical direction.   

      As such, it will not have any horizontal component.  3 3  = 50 NyF F   

 Therefore, there is no horizontal component for 3F and its vertical component is 50 N. 

 

 (b) Resultant horizontal component = RxF xx FF 21   

                                                       = 300 cos45  200 cos30  
                                                       = 38.9 N (in the positive x-direction) 

 Resultant vertical component = RyF 1 2 3y yF F F    

                                                          = 300 sin45  200 sin30  50  
                                                               = 62 N (in the positive y-direction) 

Magnitude of resultant force 2 2 2  R Rx RyF F F   

                                  
RF   = 2 2(38.9) (62)    

                                                   =  73 N  

Direction,   = tan-1 62

38.9

 
 
 

 

                    = 57.9 = 58  
 Therefore, the resultant force acting at the point is 73 N at an angle of 58° above the 
 horizontal, as shown in the diagram. 

Example 13 

 

 

  

50 N 30 

45 

300 N 

200 N 

300 cos45 

300 sin45 

200 cos30 

200 sin30 

38.9 N 

     62 N 
R 

  
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A body of weight 100 N rests on a plane which is inclined at 30° to the horizontal. Calculate 
the components of the weight parallel to and perpendicular to the plane.  
 
 
 
 
 
 
 
Solution: 
Resolving the weight into its components, 

 30sin100//W  

50// W  N 

 30cos100W  

87W  N 

Therefore, the component of the weight parallel to the slope is 50 N, while the component of 
the weight perpendicular to the slope is 87 N. 

 

Definitions of SI Base Units                                                                                    Appendix 1 

The metre is (299 792 458)–1 of the distance light travels in one second. 

The kilogram is equal to the mass of the International Prototype kilogram (a platinum-iridium 

cylinder) kept in Sevres, Paris. 

The second is defined in terms of 9 192 631 770 periods of a particular wavelength of light 
emitted by a caesium atom. 

The ampere is the steady current flowing in two straight, infinitely long and parallel conductors 

of circular cross-section, placed one metre apart in a vacuum, which will produce a force of 2  

10–7 N acting perpendicularly on a metre length of conductor. 

One kelvin is exactly (273.16)–1 of the temperature interval between absolute zero and the 

triple point of water. 

One mole is the amount of any substance containing the same number of elementary units 

(atoms or molecules) as there are atoms found in 0.012 kg of carbon-12. 

The candela is the luminous intensity, in the perpendicular direction, of a surface of 1/600 000 
square metre of a blackbody at the temperature per square metre. 
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