Name :

METHODIST GIRLS' SCHOOL

Founded in 1887

PRELIMINARY EXAMINATION 2024 Secondary 4

ADDITIONAL MATHEMATICS Tuesday PAPER 2 2 hours 15 mins

4049/02

13 August 2024

Candidates answer on the Question Paper. No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your class, index number and name in the spaces at the top of this page. Write in dark blue or black pen You may use a HB pencil for any diagrams or graphs. Do not use staples, paper clips, glue or correction fluid.

Answer all questions.

Give non-exact numerical answers correct to 3 significant figure, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question. The use of an approved scientific calculator is expected, where appropriate. You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 90.

9

Page 2 of 20

1. ALGEBRA

Quadratic Equation

For the quadratic equation $ax^2 + bx + c = 0$, $b + \sqrt{b^2}$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Binomial Expansion

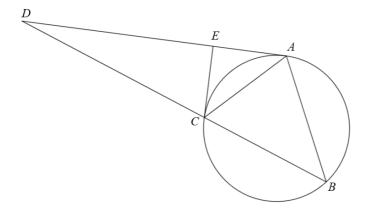
$$(a+b)^n = a^n + \binom{n}{1}a^{n-1}b + \binom{n}{2}a^{n-2}b^2 + \dots + \binom{n}{r}a^{n-r}b^r + \dots + b^n,$$

where *n* is a positive integer and $\binom{n}{r} = \frac{n!}{r!(n-r)!} = \frac{n(n-1)\dots(n-r+1)}{r!}.$

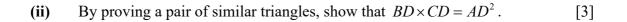
2. TRIGONOMETRY

Identities

$$\sin^2 A + \cos^2 A = 1$$
$$\sec^2 A = 1 + \tan^2 A$$
$$\cos \sec^2 A = 1 + \tan^2 A$$
$$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$$
$$\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$$
$$\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$$
$$\sin 2A = 2\sin A \cos A$$
$$\cos 2A = \cos^2 A - \sin^2 A = 2\cos^2 A - 1 = 1 - 2\sin^2 A$$
$$\tan 2A = \frac{2\tan A}{1 - \tan^2 A}$$


Formulae for $\triangle ABC$

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$
$$a^2 = b^2 + c^2 - 2bc \cos A$$
$$\Delta = \frac{1}{2}bc \sin A$$


1 (a) Solve the equation
$$\sqrt{2x+1} - \sqrt{x} = 1$$
. [3]

(b) Express
$$\frac{(2\sqrt{3}-5)^2}{\sqrt{3}-2}$$
 in the form $p\sqrt{3}+q$ where p and q are integers. [4]

2 The diagram shows a circle passing through the vertices of a triangle *ABC*. The tangent to the circle at *A* meets *BC* extended at point *D*. The tangent at *C* meets *AD* at *E*.

(i) Prove that angle *CED* is twice of angle *ABC*. [3]

- 3 The mass, *m* grams, of a radioactive substance detected in a piece of stone is given by the formula $m = \alpha e^{-kt}$, where $\alpha \neq 0$, *k* is a constant and *t* is the time interval in months.
 - (i) The mass of the substance is reduced to half its original value four months after it was first being detected, find the value of k. [2]

(ii) Find the initial mass of the substance given its mass after 1 month is 0.25 g. [2]

(iii) Calculate the time taken for the mass to reduce to 0.01 g. [2]

4 (a) Solve the equation $3\cos 2x = \sin x + 2$, for $0^\circ \le x \le 360^\circ$. [4]

Page 7 of 20

(b) Find all the angles between 0 and 5 which satisfy the equation $\sin 2x + 3\cos^2 x = 0$.

5 (a) (i) Given that *m* is a constant, expand $(3+mx)^4$, in ascending powers of *x*, simplifying each term in your expansion. [2]

(ii) Given also that the coefficient of x is equal to the coefficient of x^2 , find the value of m. [1]

(b) (i) By considering the general term in the binomial expansion of $\left(3x - \frac{1}{2x}\right)^9$, explain why there are no even powers of x in this expansion. [3]

(ii) Using the value of *m* found in **part (a)(ii)**, find the term independent of *x*

in the expansion of
$$(3+mx)^4 \left(3x-\frac{1}{2x}\right)$$
. [4]

- 6 A circle C has equation $x^2 + y^2 + 6x 4y = 12$.
 - (i) Find the centre and the radius of C.

The points P(-8, 2) and Q(1, -1) lie on the circumference of C.

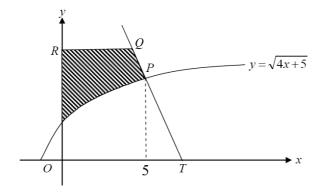
(ii) Determine whether PQ is a diameter of C.

[2]

[3]

(iii) Find the equation of tangent to the circle at the point R(0, 6). [3]

(iv) The circle C is reflected in the tangent line at R obtained in part (iii). Write down the equation of the new circle. [2]


7 (a) Express
$$\frac{2x^3 + x^2 + x}{(x-1)(x^2+1)}$$
 in partial fractions. [5]

(b) Differentiate $\ln(x^2 + 1)$ with respect to x.

[1]

(c) Hence, find
$$\int \frac{2x^3 + x^2 + x}{(x-1)(x^2+1)} dx$$
. [4]

8 The diagram shows part of the curve $y = \sqrt{4x+5}$. The normal of the curve at *P* meets the *x*-axis at *T*. The *x*-coordinate of *P* is 5. Given that *PT* is twice of *PQ* and *RQ* is parallel to the *x*-axis,

(i) find the equation of the normal at *P*,

[3]

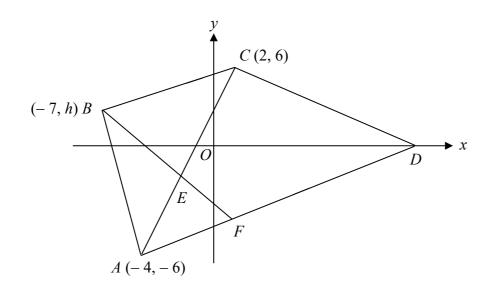
(ii) explain why the curve has no stationary points, [2]

(iii) find the coordinates of Q,

(iv) find the area of the shaded region.

[3]

[2]


- 9 (a) It is given that $y = a \sin bx + c$, for $0^{\circ} \le x \le 360^{\circ}$, where *a*, *b*, *c* are integers and a > 0. The period is 120° and the maximum and minimum value of y is 3 and - 5.
 - (i) State the value of a, of b and of c. [3]

(ii) Sketch the graph of $y = a \sin bx + c$. [2]

(b) Prove that
$$\frac{1+\cos x}{1-\cos x} = (\csc x + \cot x)^2$$
. [3]

(c) Without the use of a calculator, find x such that $\cos 2x = \sin 230^\circ$ where $0^\circ < x < 180^\circ$. [3]

10 Solutions to this question by accurate drawing will not be accepted.

The diagram, which is not drawn to scale, shows a quadrilateral *ABCD* with vertices A(-4, -6), B(-7, h) and C(2, 6) and D, which lies on the *x*-axis. *AD* is parallel to *BC*. The point *E* lies on *AC* such that AE : AC = 1:3. The line *BE* produced meets the line *AD* at *F*.

(i) Given that AB = BC, show that h = 3. [2]

(ii) Show that $\angle ABC = 90^{\circ}$.

[2]

(iii) Find the coordinates of *D*.

(iv) Find the coordinates of E. [2]

(v) Find the coordinates of G such that ABCG is a square. [2]

(vi) Find the area of triangle *ABC*.

[2]

[2]

END OF PAPER

BLANK PAGE