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Chapter 4: Modular Arithmetic  
 

SYLLABUS INCLUDES 

Students will learn to prove properties and results, and solve non-routine problems involving:  

Modulo arithmetic  

CONTENT 

1 Introduction to Modulo Arithmetic 

2 The Method of Infinite Descent 

 

 

 

 

 

 

1 Introduction to Modulo Arithmetic 

 

Another approach to divisibility questions is through the arithmetic of remainders, or the 

theory of congruences or modular arithmetic as it is now commonly known. The concept, and 

the notation that makes it such a powerful tool, was once again introduced by Gauss, in his 

Disquisitiones Arithmeticae; this monumental work, which appeared in 1801 when Gauss was 

24 years old, laid the foundations of modern number theory.  

 

In his first chapter, Gauss introduces the concept of congruence and the notation that makes it 

such a powerful technique (he explains later that he was induced to use the symbol  because 

of the close analogy with algebraic equality). According to Gauss, “If a number n measures 

the difference between two numbers a and b, then a and b are said to be congruent to n; if not, 

incongruent.” Putting this into the form of a definition, we have 

 

Definition 1.1 Let n be a fixed positive integer. Two integers a and b are said to be congruent 

modulo n, denoted by 
 (mod )a b n  

if n divides the difference a – b; that is, provided that a – b = kn for some integer k. 

 

Let us have a concrete idea. Consider the case n = 2. It is easy to check that 
17 1 (mod 2),   31 1 (mod 2),    26 0 (mod 2)    

In fact, you should see that what modulo 2 does is to split the integers into 2 sets, the odd 

integers, which are all congruent to 1 modulo 2, and the even integers, which are all congruent 

to 0 modulo 2.  
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To further fix our idea, let us look at modulo 5. 
17 2 (mod 5),   31 1 (mod 5),    26 4 (mod 5)  −   

since 17 – 2 = 3(5), 31 – 1 = 6(5) and –26 – 4 = –6(5). When | ( )n a b− , we say that a is 

incongruent to b modulo n, and in this case we write  (mod )a b n . For example, 

26 7 (mod 5) . 

 

Recall the Division Algorithm, which states that: 

 

Given integers a and n, with 0n  , there exist unique integers q and r satisfying 

,       0a qn r r b= +    

The integers q and r are called, respectively, the quotient and remainder in the division of a 

by n. 

 

Then, by the definition of congruence,  (mod )a r n . Because there are n choices for r, we 

see that every integer is congruent modulo n to exactly one of the values 0, 1, 2, …, n – 1; in 

particular, 0 (mod )a n  if and only if n | a. 

 

The set of n integers {0, 1, 2, …, n – 1} is called the set of least nonnegative residues modulo 

n. In general, a collection of n integers 
1 2, ,..., na a a , is said to form a complete set of residues 

modulo n if every integer is congruent modulo n to one and only one of the ak. To put it in 

another way, 
1 2, ,..., na a a are congruent modulo n to 0, 1, 2, …, n – 1, taken in some order. For 

instance 

26, 31, –1, 14, 11, 1, 9  

constitute a complete set of residues modulo 7. 

 

One first important theorem provides a useful characterization of congruence modulo n in 

terms of remainders upon division by n. 

 

Theorem 1.1 For arbitrary integers a and b,  (mod )a b n  if and only if a and b leave the 

same nonnegative remainder when divided by n. 

 

Proof 

 

 

 

 

 

 

 

 

 

Example 1 Since the integers 26 and 31 can be expressed in the form  

26 = 5(5) + 1 and 31 = 6(5) + 1 

with the same remainder 1, Theorem 1.1 tells us that 26 31 (mod 5) . Conversely, the 

congruence 11 31 (mod 7) −  implies that 11 and –31 have the same remainder when divided 

by 7. 

 



Raffles Institution H3 Mathematics    

__________________________________________________________________________________ 

________________ 

Chapter 4: Modular Arithmetic 

Page 3 of 9 

 

 

Congruences may be viewed as a generalised form of equality, in the sense that its behaviour 

with respect to addition and multiplication is similar to that of ordinary equality. Some of the 

elementary properties of equality that carry over to congruences are shown in the following 

theorem. 

 

Theorem 1.2 Let n > 1 be fixed and a, b, c, d be arbitrary integers. Then the following 

properties hold: 

 

(a)   (mod )a a n . 

(b) If  (mod )a b n , then  (mod )b a n . 

(c) If  (mod )a b n  and  (mod )b c n  then  (mod )a c n . 

(d) If  (mod )a b n  and  (mod )c d n , then  (mod )a c b d n+  +  and  (mod )ac bd n . 

(e) If  (mod )a b n , then  (mod )a c b c n+  +  and  (mod )ac bc n . 

(f) If  (mod )a b n , then  (mod )k ka b n  for any positive integer k. 
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Before we go any further, let us see how the above properties can help us with carrying out 

certain types of computations. 

 

Example 2 Show that 41 divides 220 – 1. 

 

 

 

 

 

 

Example 3 Find the remainder when 1! + 2! + … + 99! + 100! is divided by 12. 

 

 

 

 

 

 

 

In Theorem 1.2, we saw that if  (mod )a b n , then  (mod )ac bc n . Is the converse true?  

 

 

 

 

Theorem 1.3  If  (mod )ac bc n , then  (mod )n
d

a b , where d = gcd(c, n). 

 

Proof 

 

 

 

 

 

Theorem 1.3 is especially useful when c and n are coprime. Basically, with this additional 

condition, we are able to carry out ‘cancellation’ without a change in modulus: 

 

Corollary 1.1 If  (mod )ac bc n  and gcd(c, n) = 1, then  (mod )a b n . 

 

A special case of the corollary is when n is a prime p. In this case,   

 

Corollary 1.2 If  (mod )ac bc p  and c is not a multiple of p, then  (mod )a b p . 

 

Example 4 If 0 (mod )ab n , is it true that 0 (mod )a n  or 0 (mod )b n ? What if n is 

a prime number? 
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2  The Method of Infinite Descent 

 

Recall in Chapter 1 we have briefly talked about the Method of Infinite Descent introduced by 

Pierre de Fermat. Armed with tools from number theory (in particular congruences), let us 

look at a few Diophantine equations, and attempt to solve them. 

 

A Diophantine equation is an equation in which only integer solutions are allowed. When 

we tried to show that 2 is irrational, the equation we looked at, 2n2 = m2, is a Diophantine 

equation since we are only interested in integer solutions. 

 

Example 5 Show that the equation  
2 2 2 2x y z xyz+ + =  

has no integral solutions except x = y = z = 0. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Example 6 Show that the equation  
3 3 32 4 0x y z+ + =  

has no integral solutions except x = y = z = 0. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Perhaps the most renowned Diophantine Equation is that in the statement of Fermat’s Last 

Theorem. The theorem states that no three positive integers a, b and c satisfy the equation  
n n na b c+ =  

for any positive integer strictly greater than 2. 
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This theorem was first conjectured by Pierre de Fermat in 1637 in the margin of a copy of 

Arithmetica where he claimed he had a proof that was too large to fit in the margin. The first 

successful proof was released in 1994 by Andrew Wiles, and formally published in 1995, after 

358 years of effort by mathematicians. The unsolved problem stimulated the development of 

algebraic number theory in the 19th century and the proof of the modularity theorem in the 

20th century. It is among the most notable theorems in the history of mathematics and prior to 

its proof, it was in the Guinness Book of World Records as the “most difficult mathematical 

problem’, one of the reasons being that it has the largest number of unsuccessful proofs. 

 

 

Tutorial 
 

1. Prove each of the following statements: 

 (a) If  (mod )a b n  and m | n, then  (mod )a b m . 

 (b) If  (mod )a b n  and c > 0, then  (mod )ca cb cn . 

 (c) If  (mod )a b n  and the integers a, b and n are all divisible by d > 0, then 

 (mod )a b n
d d d
 . 

 

 

2. (a)  Find the remainders when 231 and 3126 are divided by 7. 

 (b) What is the remainder when 
2019

5

1k

k
=

 is divided by 4? 

 

3. For 1n  , use mathematical induction to show that 
1 1( 13) ( 13) ( 13)   (mod 181)n n n+ −−  − + − . 

 

 

4. For 1n  , use modular arithmetic to show that 

 (a) 2 5 27 | 5 3(2 )n n−+ . 

 (b) 2 2 113|3 4n n+ ++ . 

 (c) 2 2 143| 6 7n n+ ++ . 

 

 

5. Prove the following statements: 

 (a) If a is an odd integer, then 2 1 (mod 8)a  . 

 (b) For any integer a, 3 0,1 or 6 (mod 7)a  . 

 (c) If the integer a is not divisible by 2 or 3, then 2 1 (mod 24)a  . 

 

 

6. If p is a prime satisfying n < p < 2n, show that 

2
0 (mod )

n
p

n

 
 

 
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7. The International Standard Book Number (ISBN) used in many libraries consists of 

nine digits 
1 2 9...a a a  followed by a check digit a10, which satisfies 

9

10

1

  (mod 11)k

k

a ka
=

 . 

  

 Determine whether each of the ISBNs below is correct: 

(a) 0-07-232569-0 

(b) 91-7643-497-5 

(c) 1-56947-303-10 

 

When printing the ISBN 
1 2 9...a a a , two unequal digits were transposed. Show that the 

check digits detected this error. 

  

 

8. [9225/1982/Dec/2/19] 

 

Show that every odd number n satisfies 2 1 (mod 8)n  . Given that r, s and t are 

numbers such that r2 + s2 = t2, 

 

(i) show that at least one of r and s is even, 

(ii) deduce that rs is divisible by 4, 

(iii) show that rs is also divisible by 3, 

(iv) show that rst is divisible by 60. 

 

 

9. [9225/1980/June/1/19] 

 

Let p be a prime number and let r be an integer satisfying 1  r  p – 1. Show that p 

divides the binomial coefficient 
p

r

 
 
 

. 

 

(i) Deduce that 
1!

( 1) ( 1)! (mod )r
pr

r p
rp

− 
 − − 

 
 

 

            and hence that 
1( 1)  (mod )r

pr
p

rp

− 
 − 

 
. 

 

(ii) Show that if p is an odd prime, and a and b are integers, then 

 

                  20 (mod ) ( ) 0 (mod ) 0 (mod )p p p p pa b p a b p a b p+   +   +  . 
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10. [852/2/1980/Dec/19 (part)] 

Show that if n is a positive integer of the form 8m + 7, where m is also a positive 

integer, then there do not exist integers a, b and c such that n = a2 + b2 + c2. 

Deduce that no integer of the form 4k(8m + 7), where k is a positive integer, can be 

written as the sum of squares of three integers. 

 

 

Assignment 4: Modular Arithmetic  
 

 

1. [9225/1985/June/1/19] 

 

 It is given that n is a prime greater than 7. 

 

(i) By considering n = 3k  1, or otherwise, show that 3 1 (mod 9)n   . 

(ii) By considering n = 7k  t for t = 1, 2, 3, or otherwise, show that  
6 1 (mod 7)n  . 

(iii) Show that 2 1 (mod 8)n  . 

 

Deduce that n6 – 1 is divisible by 504.       

 

 

 

2. [9225/1983/June/1/19] 

 

(a) Show, by induction or otherwise, that if n is a positive integer then any odd 

number a satisfies 2 21 (mod 2 )
n na + .      

 

(b) Show that if a and k are positive integers then a + 1 divides 2 1 1ka + + . By 

considering the case 22
r

a = , or otherwise, show that if 2n + 1 is prime, then n 

is a power of 2. 

 

 

 

3. [852/1979/June/1/19] 

 

Let a be an integer. Let p and q be distinct prime numbers and  and  positive 

integers. Show that y is a solution of the congruence 

 (mod )y a p q   

if and only if y is a solution to both the congruences 

 (mod )y a p   and   (mod )y a q  

Hence or otherwise, find all solutions of the congruence 
3 10 9 0 (mod 24)x x+ +  . 
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Additional Practice Questions 

 
Refer to the compilation of 2010 to 2019 STEP I and II problems.  

 
1. 2010/STEP I/8 

 

2. 2011/STEP I/8 

 

3. 2011/STEP II/2 

 

4. 2013/STEP II/7 

 

5. 2014/STEP I/1 

 

6. 2014/STEP II/8 

 

7. 2016/STEP I/7 

 

8. 2018/STEP II/6 

 

9. 2019/STEP I/7 

 

 

 

 


