Tutorial 4B : Complex Numbers II: Polar Form

Section A (Basic Questions)

Do these questions without a GC first, then verify your answers using a GC wherever possible.

For each of the following complex number, express it in polar form:

(a)
$$\sqrt{3} + i$$

(b)
$$-1+i\sqrt{3}$$

(c)
$$i^2(1+i)$$

(d)
$$-i(1+i)$$

(e)
$$\sin \theta + i \cos \theta$$
, where $0 < \theta < \frac{\pi}{2}$

[a)
$$2e^{i\frac{\pi}{6}}$$

[a)
$$2e^{i\frac{\pi}{6}}$$
 b) $2e^{i\frac{2\pi}{3}}$ c) $\sqrt{2}e^{i\left(-\frac{3\pi}{4}\right)}$ d) $\sqrt{2}e^{i\left(-\frac{\pi}{4}\right)}$ e) $e^{i\left(\frac{\pi}{2}-\theta\right)}$

d)
$$\sqrt{2}e^{i\left(-\frac{\pi}{4}\right)}$$

e)
$$e^{i\left(\frac{\pi}{2}-\theta\right)}$$

Express the following complex numbers in the form x + iy, where $x, y \in \mathbb{R}$: 2

(a)
$$2e^{i\frac{5\pi}{6}}$$

(b)
$$5e^{-i\frac{\pi}{4}}$$

[a)
$$-\sqrt{3} + i$$
 b) $\frac{5\sqrt{2}}{2}(1-i)$]

The complex numbers z_1 and z_2 are such that 3

$$|z_1| = 2$$
, $\arg(z_1) = \frac{\pi}{3}$, $|z_2| = \sqrt{2}$, $\arg(z_2) = -\frac{3\pi}{4}$.

Find the modulus and argument of the following:

(a)
$$\frac{1}{z_1}$$

(b)
$$z_1$$

(c)
$$-z_1$$

(d)
$$z_1 z_2$$

(e)
$$z_2^2$$

(f)
$$\frac{z_1}{z_2}$$

a)
$$\frac{1}{2}$$
, $-\frac{\pi}{3}$ **b)** 2, $-\frac{\pi}{3}$ **c)** 2, $-\frac{2\pi}{3}$

[a)
$$\frac{1}{2}$$
, $-\frac{\pi}{3}$ b) 2, $-\frac{\pi}{3}$ c) 2, $-\frac{2\pi}{3}$ d) $2\sqrt{2}$, $-\frac{5\pi}{12}$ e) 2, $\frac{\pi}{2}$ f) $\sqrt{2}$, $-\frac{11\pi}{12}$]

The complex numbers z and w are such that 4

$$|z|=2$$
, $\arg(z)=-\frac{2\pi}{3}$, $|w|=5$, $\arg(w)=\frac{3\pi}{4}$.

Find the exact values of (a) Re(z) and Im(z), (b) $\left| \frac{w^2}{z} \right|$, arg($\frac{w^2}{z}$) and Im($\frac{w^2}{z}$).

(b)
$$\left| \frac{w^2}{z} \right|$$
, $\arg(\frac{w^2}{z})$ and $\operatorname{Im}(\frac{w^2}{z})$.

[a)
$$-1, -\sqrt{3}$$

[a) -1,
$$-\sqrt{3}$$
 b) $\frac{25}{2}$, $\frac{\pi}{6}$, $\frac{25}{4}$]

Section B (Standard Questions)

The complex number w has modulus $\sqrt{2}$ and argument $-\frac{3\pi}{4}$, and the complex number z has modulus 2 and argument $-\frac{\pi}{3}$.

Find the exact values of the modulus and argument of wz.

By expressing w and z in the form x + iy, $x, y \in \mathbb{R}$, find the exact real and imaginary parts of wz. Hence show that $\sin \frac{\pi}{12} = \frac{\sqrt{3} - 1}{2\sqrt{2}}$.

$$[2\sqrt{2}, \frac{11\pi}{12}; -1-\sqrt{3}, \sqrt{3}-1]$$

Express the complex numbers $z_1 = \frac{1+i}{1-i}$ and $z_2 = \frac{\sqrt{2}}{1-i}$ in polar form.

Draw an Argand diagram showing the points representing z_1 , z_2 and $z_1 + z_2$.

Deduce from your diagram that $tan \frac{3\pi}{8} = 1 + \sqrt{2}$.

$$[z_1 = e^{i\frac{\pi}{2}}, z_2 = e^{i\frac{\pi}{4}}]$$

7 [9740/2012/01/Q6]

Do not use a calculator in answering this question

The complex number z is given by z = 1 + ic where c is a non-zero real number.

- (i) Find z^3 in the form x + iy.
- (ii) Given that z^3 is real, find the possible values of z.
- (iii) For the value of z found in part (ii) for which c < 0, find the smallest positive integer n such that $|z^n| > 1000$. State the modulus and argument of z^n when n takes this value.

[(i)
$$z^3 = 1 - 3c^2 + i(3c - c^3)$$
(ii) $z = 1 \pm \sqrt{3}i$ (iii) smallest $n = 10$, $|z^{10}| = 1024$, arg $z^{10} = \frac{2\pi}{3}$]

8 [9740/2014/02/Q4(b)]

It is given that $w = \sqrt{3} - i$.

- (i) Without using a calculator, find an exact expression for w^6 . Give your answer in the form $re^{i\theta}$, where r > 0 and $0 \le \theta < 2\pi$.
- (ii) Without using a calculator, find the three smallest positive whole number values of n for which $\frac{w^n}{w^*}$ is a real number.

[(i)
$$64e^{i\pi}$$
 (ii) $n = 5, 11, 17$]

9 [JJC Prelim 9740/2014/02/Q4(i)]

The complex numbers p and q are given by

$$p = 1 - i$$
 and $q = 1 + \sqrt{3} i$.

Two other complex numbers r and s are given by

$$r = k + i$$
 and $s = \frac{p^2 r}{q^3}$, where k is a real number.

Given that $|s| = \frac{1}{2}$ and $\arg(s) = -\frac{2}{3}\pi$, find the value of k.

$$\ln\left(\frac{p^2r}{q^3}\right). \quad 2\ln p + \ln r \quad -3\ln q \qquad \qquad [k = -\sqrt{3}]$$

10 [NJC Prelim 9740/2014/02/Q3]

- Given that $\left| \frac{2i z^*}{z} 1 \right|^2 z = i$, find z in the form x + iy.
- **(b)** Let $p = -\sqrt{3} + i$ and q = -4i.
 - (i) Write down p and q exactly in the form $re^{i\theta}$, where r > 0 and $-\pi < \theta \le \pi$.
 - (ii) Find the exact value of $\frac{p^{10}}{q^5} + \frac{q^5}{p^{10}}$.

[(a)
$$4 - i$$
, (b)(i) $2e^{i\frac{5\pi}{6}}$, $4e^{-i\frac{\pi}{2}}$ (ii) $-\sqrt{3}$]

- 11 (a) In an Argand diagram, the points A, B, C, D represent the complex numbers a, b, c, d respectively. Given that ABCD is a square described in an anticlockwise sense, with a = 1 + i and c = 7 + 3i, find b and d.
 - (b) In an Argand diagram, O is the origin, and the point P represents the complex number 3+i. The point Q represents the complex number a+ib, where a, b>0, and triangle OPQ is equilateral. Find the exact values of a and b.

[(a)
$$b = 5 - i$$
, $d = 3 + 5i$ (b) $a = \frac{1}{2}(3 - \sqrt{3})$, $b = \frac{1}{2}(1 + 3\sqrt{3})$]

Section C (Extensions / Challenging Questions)

12 Let z_1 and z_2 be distinct complex numbers. Classify the following statements as true or false, justifying your answers.

(i) If
$$|z_1| = |z_2|$$
, then $\text{Re}\left(\frac{z_1 + z_2}{z_1 - z_2}\right) = 0$. (ii) If $\text{Re}\left(\frac{z_1 + z_2}{z_1 - z_2}\right) = 0$, then $|z_1| = |z_2|$.

9205/1999/02/Q12b 13

The complex numbers z and w each have modulus R, and have arguments α and β respectively, where $0 < \alpha < \beta < \frac{\pi}{2}$.

In either order,

(i) show that
$$z + w = 2R \left\{ \cos \left(\frac{1}{2} (\beta - \alpha) \right) \right\} e^{\frac{1}{2} (\alpha + \beta)i}$$
,

(ii) express
$$|z+w|$$
 and $\arg(z+w)$ in terms of R, α and β , as appropriate.

Show also that
$$|z-w| = 2R \sin\left(\frac{1}{2}(\beta-\alpha)\right)$$
.

The complex numbers z and w are represented by the points Z and W respectively on an Argand diagram with origin O. Triangle OZW has area Δ .

Show that
$$|z^2 - w^2| = 4\Delta$$
.

Section D (Self-Practice Questions)

1(i) Find the exact values of
$$x, y \in \mathbb{R}$$
 such that $\frac{3}{x+iy} + \frac{5}{2+6i} = 4$. [3]

(ii) The complex number z is given by
$$-\sqrt{3} + i$$
.

Find the modulus and argument of
$$z$$
.

Find the smallest positive integer value
$$k$$
 such that $\left(\frac{1}{z^*}\right)^k$ is real. [5]

[1i)
$$x = \frac{10}{13}$$
, $y = -\frac{2}{13}$ ii) 2, $\frac{5\pi}{6}$; smallest $k = 6$]

2 Show that the complex number
$$z=1+e^{-i\frac{\pi}{3}}$$
 can be expressed as $\sqrt{3}e^{-i\frac{\pi}{6}}$.

The complex number zw has modulus 5 and argument $\frac{3\pi}{4}$. Find the complex number w in polar form.

[2)
$$w = \frac{5\sqrt{3}}{3}e^{i\frac{11\pi}{12}}$$

3 CJC Prelim 9740/2009/01/Q8a

One of the roots of the equation $z^4 - z^3 + 4z^2 + 3z + p = 0$ is 1 - 2i, where p is a constant.

A student says that "One of the other roots must be 1+2i."

Explain why this statement is not entirely correct.

- (i) Determine the value of p.
- (ii) Find the exact values of all the other roots of the equation.

[3(i)
$$p = 5$$
 ii) $-\frac{1}{2} \pm \frac{\sqrt{3}}{2}$ i]

TPJC Prelim 9740/2008/01/Q6 (modified) 4

Given that $z_1 = 1 - 2i$ is a root of the quadratic equation $z^2 + az + b = 0$ where $a, b \in \mathbb{R}$, find the values of a and b. Mark on an Argand diagram the points P_1 and P_2 , which represent the roots z_1 and z_2 of the quadratic equation $z^2 + az + b = 0$. A third point P_3 is on the real axis such that P_1 , P_2 and P_3 form a triangle which encloses the origin with an area of 8 square units. Find the complex number represented by the point P_3 . [5] 12 =3 1

[4)
$$a = -2$$
, $b = 5$; -3]

NJC Prelim 9740/2007/01/Q8 (modified)

Given that $z = \frac{i-1}{(\sqrt{3}+i)^2}$, find the exact modulus of z, and show that the argument of z is $\frac{5\pi}{12}$.

Find the exact values of a and b which satisfy the equation $z^3 = e^{a+ib}$, where $a \in \mathbb{R}$ and

[5)
$$|z| = \frac{1}{2\sqrt{2}}$$
; $a = -\frac{9}{2}\ln 2$, $b = -\frac{3\pi}{4}$]

6 JJC Prelim 9233/2006/02/Q3

dong, got Given that $z = \frac{\left(-1 + i\sqrt{3}\right)^{10}}{\left(i\right)^{14}}$, express z in the form a + ib, $a, b \in \mathbb{R}$, giving the exact values of a

[4]
$$[a = 512, b = -512\sqrt{3}]$$

7 DHS Prelim 9740/2013/02/Q4

The equation $z^4 - 4z^3 + az^2 - 20z + 25 = 0$, $a \in \mathbb{R}$, has a root ki, where k is a real number.

- Explain clearly why there is more than one possible value for k. \((i) [1]
- Find the possible exact values of k and show that a = 10. ∕(ii) Hence find the roots of the above equation. [7]
 - Deduce the roots of the following equations in the form x + iy, where x and y are real, (iii)

(a)
$$w^4 + 4iw^3 - 10w^2 - 20iw + 25 = 0$$

(b)
$$25v^4 - 20v^3 + 10v^2 - 4v + 1 = 0.$$
 [4]

$$[k = \pm \sqrt{5}, z = \pm \sqrt{5}i, 2 \pm i, w = \pm \sqrt{5}, \pm 1 - 2i, v = \pm \frac{i}{\sqrt{5}}, \frac{1}{5}(2 \pm i)]$$

8 PJC Common Test 2 9740/2007/Q2

- (i) Find the fourth roots of the complex number $8(1+i\sqrt{3})$, giving your answers exactly in the form $re^{i\theta}$, where r>0 and $-\pi < \theta \le \pi$. [4]
- (ii) Sketch the points P_1 , P_2 , P_3 and P_4 on an Argand diagram, where P_1 , P_2 , P_3 and P_4 represent the roots of $8(1+i\sqrt{3})$. Prove that $P_1P_2P_3P_4$ form a square. [3]

[(i)
$$2e^{i\left(\frac{6k+1}{12}\right)\pi}$$
, $k=-2,-1,0,1$]

not insyllabus

HCI Prelim 9740/2007/02/Q2

The equation E is given by $z^4 + az^2 + b = 0$, where a and b are constants.

(a) Solve E when a=0 and $b=1-i\sqrt{3}$, giving your answers in the form $re^{i\theta}$, where r>0 and $-\pi < \theta \le \pi$.

The points A, B, C and D represent the roots of the equation E on an Argand diagram. By considering the modulus and argument of each of the roots found, identify the shape of the quadrilateral ABCD. Justify your answer. [5]

(b) Find the range of values of b such that all the roots to E are real when a=-2. [3] $[(\mathbf{a}) \ 2^{\frac{1}{4}} e^{i\left(\frac{3k+1}{6}\right)^{\mathsf{T}}}, \ k=-2,-1,0,1; \text{ square } (\mathbf{b}) \ 0 \le b \le 1]$