

2024 Year 6 Timed Practice Revision Practice Paper 2 Solutions Source: 2020 Year 6 Term 3 Timed Practice

Section A: Pure Mathematics (60 marks)

1	The complex number z is given by $x + iy$, where x and y are real numbers.		
	(i) Express y in terms of x if $\arg(z^2) = -\frac{\pi}{2}$. [2]		[2]
	(ii)	State the values of x and y if $\operatorname{Re}(z) > 0$ and $ z = 2$.	[1]
	Using these values of x and y, find the smallest positive integer n for which $\frac{z^*}{z^n}$ is a negative real number. [2]		$\frac{z^*}{z^n}$ [2]

(i)	$z = r e^{i\theta}$	Represent z^2 on an argand
[2]	$z^2 = r^2 e^{i(2\theta)}$	diagram!
	$2\theta = -\frac{\pi}{2} + 2k\pi, \ k \in \mathbb{Z}$	
	$\theta = -\frac{\pi}{4} + k\pi, \ k \in \mathbb{Z}$	
	$ \tan\left(\theta\right) = -1 = \frac{y}{x} \Longrightarrow y = -x , x \neq 0 $	
	Alternative	
	Given $z = x + iy$	
	$\arg(z^2) = -\frac{\pi}{2}$	
	$2 \arg z = -\frac{\pi}{2} \text{ or } \frac{3\pi}{2}$	
	$\arg z = -\frac{\pi}{4}$ or $\frac{3\pi}{4} \Rightarrow z$ is in the 2nd or 4th quadrant	
	$\therefore y = -x, \ x \neq 0$	
(ii)	$x = \sqrt{2}, \ y = -\sqrt{2}$	
[1]		

(iii) [2]	$z = \sqrt{2} - i\sqrt{2}$ $\arg(z) = -\frac{\pi}{4}$ $\frac{z^*}{z^n} = \frac{re^{i(-\theta)}}{r^n e^{i(n\theta)}} = r^{1-n} e^{-i(n+1)\theta}$ $-(n+1)\theta = \pi + k(2\pi), \ k \in \mathbb{Z}$ $-(n+1)\left(-\frac{\pi}{4}\right) = (2k+1)\pi, \ k \in \mathbb{Z}$ $\frac{n+1}{4} = 2k+1, \ k \in \mathbb{Z}$	For $\frac{z^*}{z^n}$ to be a negative real number means that $\arg\left(\frac{z^*}{z^n}\right) = \pi$
	$ \begin{array}{l} 4 \\ n = 8k + 3, \ k \in \mathbb{Z} \\ The smallest positive integer n is 3. \\ \underline{Alternative} \\ n > 0, (n+1)\left(\frac{\pi}{4}\right) = \pi, \ 3\pi, 5\pi \\ The smallest positive integer n is 3. \end{array} $	

2	(a)	By writing $\frac{2}{r(r^2-1)}$ in partial fractions, find an expression for $\sum_{r=2}^{n} \frac{2}{r(r^2-1)}$. [3]
	(b)	A geometric series has first term <i>a</i> and common ratio <i>r</i> , where <i>a</i> and <i>r</i> are non- zero and $r \neq 1$. The 3 rd and 9 th terms of the series are 448 and 7 respectively. Given also that the sum of the first <i>n</i> terms is 1197, find the values of <i>a</i> , <i>r</i> and <i>n</i> . [4]

(a) [3]	Let $\frac{2}{r(r^2-1)} = \frac{A}{r} + \frac{B}{r+1} + \frac{C}{r-1}$ 2 = A(r+1)(r-1) + Br(r-1) + Cr(r+1) Let $r = 0, A = -2$ Let $r = 1, C = 1$	
	Let $r = -1$, $B = 1$ $\therefore \frac{2}{r(r^2 - 1)} = \frac{-2}{r} + \frac{1}{r+1} + \frac{1}{r-1}$ $\sum_{r=2}^{n} \frac{2}{r(r^2 - 1)} = \sum_{r=2}^{n} \left[\frac{1}{r-1} - \frac{2}{r} + \frac{1}{r+1} \right]$	To apply MOD write in "order" $\frac{1}{r-1} - \frac{2}{r} + \frac{1}{r+1}.$

$$\begin{aligned} = \frac{1}{1} - \frac{2}{2} + \frac{1}{3} \\ + \frac{1}{2} - \frac{2}{3} + \frac{1}{4} \\ + \frac{1}{3} - \frac{2}{4} + \frac{1}{3} \\ + \frac{1}{4} - \frac{2}{3} + \frac{1}{4} \\ + \frac{1}{3} - \frac{2}{n-4} + \frac{1}{n} \\ + \frac{1}{n-3} - \frac{2}{n-4} + \frac{1}{n} \\ + \frac{1}{n-2} - \frac{2}{n-1} + \frac{1}{n} \\ + \frac{1}{n-2} - \frac{2}{n-1} + \frac{1}{n} \\ + \frac{1}{n-1} - \frac{2}{n} + \frac{1}{n+1} \\ + \frac{1}{n-1} - \frac{2}{n} + \frac{1}{n} \\ + \frac{1}{n-2} - \frac{2}{n-1} + \frac{1}{n} \\ + \frac{1}{n-1} - \frac{2}{n-1} + \frac{1}{n} \\ + \frac{1}{n-1} - \frac{2}{n-1} + \frac{1}{n+1} \\ + \frac{1}{n-1} - \frac{1}{2} + \frac{1792(1-(\frac{1}{2})^n)}{1-r} \\ = 1197 \\ \text{Is } r = \frac{1}{2} \cdot \frac{1792(1-(\frac{1}{2})^n)}{1-(\frac{1}{2})} \\ = 1197 \\ \text{Is } r = -\frac{1}{2} \cdot \frac{1792(1-(-\frac{1}{2})^n)}{1-(-\frac{1}{2})} \\ = 1197 \\ \text{Is } r = -\frac{1}{2} \cdot \frac{1792(1-(-\frac{1}{2})^n)}{1-(-\frac{1}{2})} \\ = 1197 \\ \text{Is } r = -\frac{1}{2} \cdot \frac{1792(1-(-\frac{1}{2})^n)}{1-(-\frac{1}{2})} \\ = 1197 \\ \text{Is } r = -\frac{1}{2} \cdot \frac{1792(1-(-\frac{1}{2})^n)}{1-(-\frac{1}{2})} \\ = 1197 \\ \text{Is } r = -\frac{1}{2} \cdot \frac{1792(1-(-\frac{1}{2})^n)}{1-(-\frac{1}{2})} \\ = 1197 \\ \text{Is } r = -\frac{1}{2} \cdot \frac{1792(1-(-\frac{1}{2})^n)}{1-(-\frac{1}{2})} \\ = 1197 \\ \text{Is } r = -\frac{1}{2} \cdot \frac{1792(1-(-\frac{1}{2})^n)}{1-(-\frac{1}{2})} \\ = 1197 \\ \text{Is } r = -\frac{1}{2} \cdot \frac{1792(1-(-\frac{1}{2})^n)}{1-(-\frac{1}{2})} \\ = 1197 \\ \text{Is } r = -\frac{1}{2} \cdot \frac{1792(1-(-\frac{1}{2})^n)}{1-(-\frac{1}{2})} \\ = 1197 \\ \text{Is } r = -\frac{1}{2} \cdot \frac{1792(1-(-\frac{1}{2})^n)}{1-(-\frac{1}{2})} \\ = 1197 \\ \frac{1}{1-(-\frac{1}{2})^n} \\ = \frac{1}{2} \cdot \frac{1197}{1792} \\ \frac{1}{1-(-\frac{1}{2})^n} \\ = \frac{1}{2} \cdot \frac{1}{1792} \\ \frac{1}{1-(-\frac{1}{2})^n} \\ = \frac{1}{1} + \frac{1}{1}$$

$$(-\frac{1}{2})^{n} = -\frac{1}{512}$$
Note that *n* must be an odd integer,

$$(\frac{1}{2})^{n} = \frac{1}{512}$$

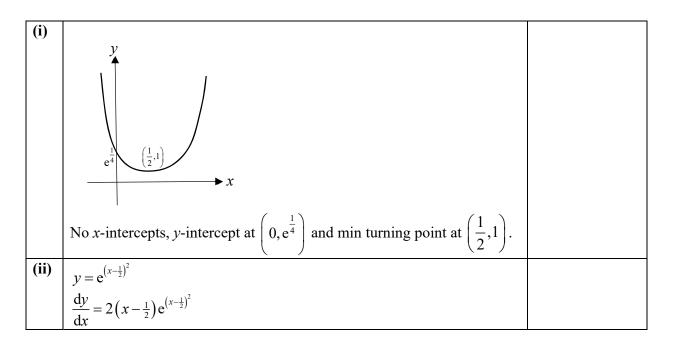
$$n \ln \frac{1}{2} = \ln \frac{1}{512}$$

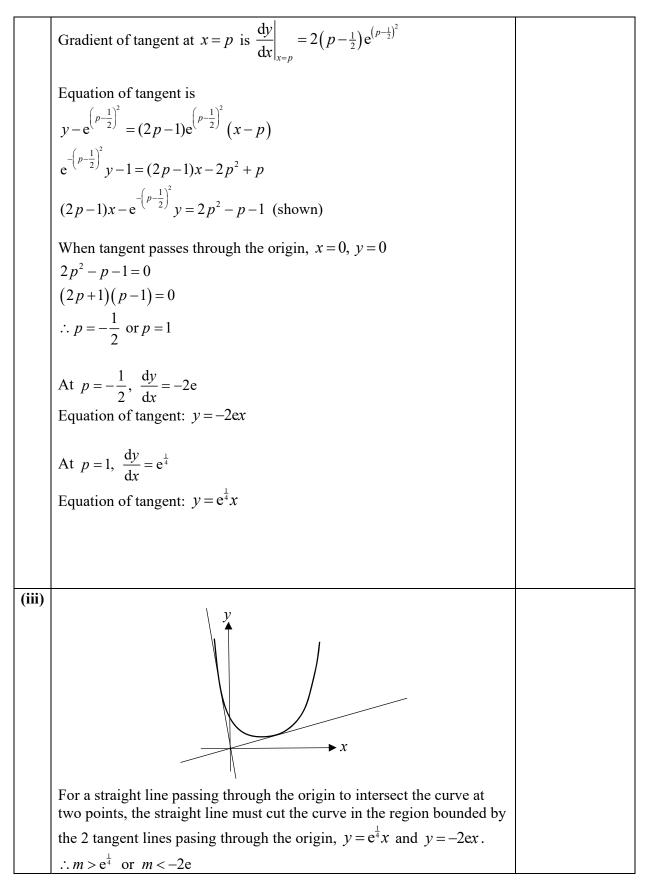
$$\therefore n = 9, a = 1792, r = -\frac{1}{2}$$
Alternative
Observe that since every term is positive, and the first term
 $a = 1792 > \text{sum of } n \text{ terms} = 1197, r = -\frac{1}{2} \text{ otherwise the sum can only}$
get larger from 1792.
Sum of *n* terms $= \frac{1792\left(1 - \left(-\frac{1}{2}\right)^{n}\right)}{1 - \left(-\frac{1}{2}\right)} = 1197$
 $1 - \left(-\frac{1}{2}\right)^{n} = \frac{2}{3}\left(\frac{1197}{1792}\right)$
 $\left(-\frac{1}{2}\right)^{n} = -\frac{1}{512}$
Note that *n* must be an odd integer,
 $\left(\frac{1}{2}\right)^{n} = \frac{1}{512}$
 $n \ln \frac{1}{2} = \ln \frac{1}{512}$
 $n = 9$

3	The functions f and g are defined by $f: x \mapsto \sqrt{16-4x}, x \in \mathbb{R}, x \le 4,$ $g: x \mapsto x^2, x \in \mathbb{R}.$	
	(i)	Sketch on the same diagram, the graphs of f and f^{-1} , giving the coordinates of all points of intersection. [4]
	(ii)	Explain why the composite function fg does not exist. [1]
	(iii)	Find gf in similar form and state its range.[2]

		-
(i)	y = $f(x)$ (2.47, 2.47) (4,0) x	The graphs of f and f^{-1} should appear as "reflections about the line $y = x$ ".
	$y = f^{-1}(x)$	There are 3 points of intersection.
	Clearly (0, 4), (4, 0) are solutions to $f(x) = f^{-1}(x)$	
	Another solution to $f(x) = f^{-1}(x)$ lies on $y = x$.	Note that
	$\sqrt{16-4x} = x .$	$\sqrt{16 - 4x} = x$
	By GC, $x = 2.47$ (3sf)	$x = -2 + 2\sqrt{5}$
	The coordinates of points of intersections are $(0, 4)$, $(4, 0)$ and $(2.47, 2.47)$.	
(ii)	$D_{f} = (-\infty, 4]$ $R_{g} = [0, \infty)$	
	Since $R_g \not\subset D_f$, hence fg does not exist.	
(iii)	$\mathrm{gf}: x \mapsto 16-4x, \ x \in \mathbb{R}, \ x \le 4$	"similar form"
	$R_{gf} = [0,\infty)$	means arrow notation which includes "domain"

4	A curve C has equation $y = k(x+1) + \frac{4}{x+1}$, $x \in \mathbb{R}$, $x \neq -1$, where k is a constant,			
	0 < k < 2.			
	(i)	Sketch C, labelling clearly the axial intercept(s), the coordinates of the turn	ning	
		points and equations of the asymptotes. [4]		
	The graph of <i>C</i> is transformed by a reflection in the <i>x</i> -axis, followed by a translation of			
	1 unit in the positive x-direction, followed by a stretch with scale factor $\frac{1}{2}$ parallel to the			
	y-axis.			
	(ii)	Find the equation of the resulting curve in the form $y = f(x)$.	[3]	


 $y = k\left(x+1\right) + \frac{4}{x+1}$ (i) When x = 0, $y = k + 4 \Rightarrow$ coordinates are (0, k + 4)When y=0, $k(x+1) + \frac{4}{x+1} = 0$ $k(x+1) = -\frac{4}{x+1}$ $\left(x+1\right)^2 = -\frac{4}{k}$ Not applicable since k > 0. The graph does not cut the *x*-axis. $\frac{\mathrm{d}y}{\mathrm{d}x} = k - \frac{4}{\left(x+1\right)^2} = 0 \Leftrightarrow x = -1 \pm \frac{2}{\sqrt{k}}$ When $x = -1 - \frac{2}{\sqrt{k}}$, $y = k \left(-1 - \frac{2}{\sqrt{k}} + 1 \right) + \frac{4}{-1 - \frac{2}{\sqrt{k}} + 1} = -4\sqrt{k}$ Turning points are in quadrant 1 and 3. When $x = -1 + \frac{2}{\sqrt{k}}$, $y = k \left(-1 + \frac{2}{\sqrt{k}} + 1 \right) + \frac{4}{-1 + \frac{2}{\sqrt{k}} + 1} = 4\sqrt{k}$ Note that 0 < k < 2 so $-1 + \frac{2}{\sqrt{k}} > 0$ (0, k+4) y = kx + k $(-1 + \frac{2}{\sqrt{k}}, 4\sqrt{k})$ x = -1x (ii) Applying transformations to C: $y = k(x+1) + \frac{4}{x+1}$ Reflection in the x-axis (replace y by -y) $-y = k(x+1) + \frac{4}{x+1}$ $y = -k(x+1) - \frac{4}{x+1}$ Translate 1 unit in the positive x-direction (replace x by x-1)


$$y = -k((x-1)+1) - \frac{4}{(x-1)+1}$$

$$y = -kx - \frac{4}{x}$$
Scale with a factor $\frac{1}{2}$ parallel to the y-axis (replace y by 2y)
$$2y = -kx - \frac{4}{x}$$

$$y = -\frac{kx}{2} - \frac{2}{x}$$

5	The curve <i>C</i> has equation $y = e^{\left(x - \frac{1}{2}\right)^2}$.		
	(i)	Sketch C, labelling clearly the coordinates of the axial intercept(s) and turning point(s), if any.[2]	
	(ii)	Show that the equation of the tangent to <i>C</i> at the point where $x = p$ can be expressed as $(2p-1)x - e^{-\left(p-\frac{1}{2}\right)^2}y = 2p^2 - p - 1.$ Hence find the equations of the tangents to <i>C</i> which passes through the origin.	
	(iii)) The straight line $y = mx$ intersects C at two distinct points.	
		State the range of values of <i>m</i> . [2]	

6	A frig	A frigate is stationed at position $F(1,2,0)$. Two submarines S_1 and S_2 are under the sea		
	surfa	surface. Submarine S_1 is at position $A(-2, -1, -1)$ and travelling in a path parallel to		
	vector $-3\mathbf{i} + 2\mathbf{j} - \mathbf{k}$. An enemy submarine S_2 is detected at position $B(3,2,-2)$			
	travelling in a path parallel to vector $-2\mathbf{i} - 3\mathbf{j} + \mathbf{k}$.			
		S_1 S_2		
	(i)	Determine if the paths of the submarines will intersect each other. [3]		
	(ii)	The enemy submarine S_1 will launch a torpedo at the frigate when it is at a point		
		P in its path that is closest to F . Find the co-ordinates of P . [4]		
	/•••			
	(iii)	Find a cartesian equation of the plane π that contains F and the path of S_2 .		
	Calculate the acute angle between π and the <i>x</i> - <i>y</i> plane. [4]			
	(iv) A depth charge is a countermeasure used against submarines. The frigate releases			
	a depth charge which descends to the position $Q(1, 2, -k)$ to target S_2 . The depth			
	charge is detonated when the distance from Q to P is at a minimum. Find the value			
	of k . [1]			
	When detonated the depth charge will cause damage within a 0.1 unit radius.			
1		Explain whether S_2 will be damaged by the depth charge. [2]		

(i)	For S_1 , l_1 : $\mathbf{r} = \begin{pmatrix} -2\\-1\\-1 \end{pmatrix} + \lambda \begin{pmatrix} -3\\2\\-1 \end{pmatrix}$, $\lambda \in \mathbb{R}$	Write neatly and be careful when "flipping page over".
	For S_2 , l_2 : $\mathbf{r} = \begin{pmatrix} 3 \\ 2 \\ -2 \end{pmatrix} + \mu \begin{pmatrix} -2 \\ -3 \\ 1 \end{pmatrix}$, $\mu \in \mathbb{R}$	
	For point of intersection,	
	$\begin{pmatrix} -2 \\ -1 \\ -1 \end{pmatrix} + \lambda \begin{pmatrix} -3 \\ 2 \\ -1 \end{pmatrix} = \begin{pmatrix} 3 \\ 2 \\ -2 \end{pmatrix} + \mu \begin{pmatrix} -2 \\ -3 \\ 1 \end{pmatrix}$	

	$3\lambda - 2\mu = -5 \qquad(1)$	
	$-2\lambda - 3\mu = -3 \qquad(2)$	
	$\lambda + \mu = 1 \qquad \qquad(3)$	
	Using (1) and (2), $\lambda = -\frac{9}{13}$, $\mu = \frac{19}{13}$ which does not satisfy (3)	
	Since there are no solutions that satisfy (1), (2) and (3), the 2	
(**)	paths of the submarines do not cross each other.	
(ii)	\longrightarrow $\begin{pmatrix} 3 \\ -2 \end{pmatrix}$	
	$\overrightarrow{OP} = \begin{pmatrix} 3 \\ 2 \\ -2 \end{pmatrix} + \mu \begin{pmatrix} -2 \\ -3 \\ 1 \end{pmatrix}, \text{ for some } \mu \in \mathbb{R}$	
	$\left(-2\right)$ $\left(1\right)$	
	$\begin{pmatrix} -2 \end{pmatrix} \begin{pmatrix} 2 \end{pmatrix}$	
	$\overrightarrow{PF} = \begin{pmatrix} -2\\0\\2 \end{pmatrix} + \mu \begin{pmatrix} 2\\3\\1 \end{pmatrix}$	
	$\begin{pmatrix} 2 \end{pmatrix} \begin{pmatrix} -1 \end{pmatrix}$	
	$\left[\begin{pmatrix} -2 \end{pmatrix} \begin{pmatrix} 2 \end{pmatrix} \right] \begin{pmatrix} -2 \end{pmatrix}$	
	$\overrightarrow{PF} \perp l_2$ so $\begin{vmatrix} -2 \\ 0 \\ 2 \end{vmatrix} + \mu \begin{vmatrix} 2 \\ 3 \\ -1 \end{vmatrix} \begin{vmatrix} -2 \\ -3 \\ 1 \end{vmatrix} = 0$	
	$\left \left(\begin{array}{c} 2 \end{array} \right) \left(\begin{array}{c} -1 \end{array} \right) \right \left(\begin{array}{c} 1 \end{array} \right)$	
	$4 + 2 - \mu (4 + 9 + 1) = 0$	
	$\mu = \frac{3}{7}$	
	$\mu - \frac{1}{7}$	
	$\begin{pmatrix} 3 \\ 2 \end{pmatrix} \begin{pmatrix} -2 \\ -2 \end{pmatrix} \begin{pmatrix} 15 \\ -2 \end{pmatrix}$	
	$\overrightarrow{OP} = \begin{pmatrix} 3 \\ 2 \\ -2 \end{pmatrix} + \frac{3}{7} \begin{pmatrix} -2 \\ -3 \\ 1 \end{pmatrix} = \frac{1}{7} \begin{pmatrix} 15 \\ 5 \\ -11 \end{pmatrix}$	
	$\begin{pmatrix} -2 \end{pmatrix}$ $\begin{pmatrix} 1 \end{pmatrix}$ $\begin{pmatrix} -11 \end{pmatrix}$	
	Co-ordinates are $P\left(\frac{15}{7}, \frac{5}{7}, -\frac{11}{7}\right)$	Question required
	$\left(7,7,7\right)$	"co-ordinates"
(iii)	(1) (3) (-1)	
	$\left \overrightarrow{BF} = \overrightarrow{OF} - \overrightarrow{OB} = \left 2 \right - \left 2 \right = 2 \left 0 \right $	
	$\overrightarrow{BF} = \overrightarrow{OF} - \overrightarrow{OB} = \begin{pmatrix} 1\\ 2\\ 0 \end{pmatrix} - \begin{pmatrix} 3\\ 2\\ -2 \end{pmatrix} = 2 \begin{pmatrix} -1\\ 0\\ 1 \end{pmatrix}$	
	$\underline{n} = \begin{pmatrix} 2\\3\\-1 \end{pmatrix} \times \begin{pmatrix} -1\\0\\1 \end{pmatrix} = \begin{pmatrix} 3\\-1\\3 \end{pmatrix}$	
	$\pi \cdot r_{0} = 1 = 2 = 1$	
	$\pi: r \bullet \begin{pmatrix} 3 \\ -1 \\ 3 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} \bullet \begin{pmatrix} 3 \\ -1 \\ 3 \end{pmatrix}$	Our time and in 1
		Question required "Cartesian Equation"
	Cartesian Equation of π , π : $3x - y + 3z = 1$	Surtosiun Equation
	Let angle between the 2 planes be θ .	

	$\cos\theta = \frac{\begin{vmatrix} 0 \\ 0 \\ 1 \end{vmatrix}}{\sqrt{3^2 + (-1)^2 + 3^2}} = \frac{3}{\sqrt{19}}$	x-y plane is $z = 0$ has normal $\mathbf{k} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$
	$\theta = 46.508^{\circ} (5sf)$	
(iv)	$= 46.5^{\circ} (1 \text{ dp})$ $= 46.5^{\circ} (1 \text{ dp})$ $= 1 \begin{pmatrix} 15 \\ -8 \end{pmatrix}$ $= 1 \begin{pmatrix} -8 \\ -8 \end{pmatrix}$	
	$\overrightarrow{OQ} = \begin{pmatrix} 1\\2\\-k \end{pmatrix}, \overrightarrow{OP} = \frac{1}{7} \begin{pmatrix} 15\\5\\-11 \end{pmatrix} \implies \overrightarrow{PQ} = \frac{1}{7} \begin{pmatrix} -8\\9\\-7k+11 \end{pmatrix}$	
	$\left \overrightarrow{PQ}\right $ is minimized when $-7k+11=0$, so $k=\frac{11}{7}$	
	Explanation 1 Assume the submarine is at point <i>P</i> when depth charge	
	detonated. $\left \overrightarrow{PQ} \right = \frac{1}{7} \sqrt{\left(-8\right)^2 + 9^2 + 0} = \frac{\sqrt{145}}{7} > 0.1$	
	Therefore the submarine is not damaged.	
	Explanation 2	
	Assume the submarine is somewhere along the path l_2 where	
	$l_2: \mathbf{r} = \begin{pmatrix} 3\\2\\-2 \end{pmatrix} + \mu \begin{pmatrix} -2\\-3\\1 \end{pmatrix}, \ \mu \in \mathbb{R}$, when depth charge detonated.	
	Points along the submarine's path are given by	
	$(3-2\mu,2-3\mu,-2+\mu)$.	
	Distance between $(3-2\mu, 2-3\mu, -2+\mu)$ and $Q\left(1, 2, -\frac{11}{7}\right)$	¥1=((2-2X)2+(*3X)2+(((*3)#7)+X)2)^(
	can be expressed as $D(\mu) = \sqrt{(2-2\mu)^2 + (-3\mu)^2 + (-\frac{3}{7}+\mu)^2}$	
	which has minimum (from GC) of $1.67 > 0.1$	- 89
	Therefore the submarine is not damaged.	Hinimum X=0.3163262 Y=1.6681723

7 A chemical substance Uru starts to form when N units of Vibranium react with M units of Kryptonite, where M < N. Let y denote the number of units of Uru formed t hours after the reaction takes place. The differential equation for the chemical reaction is given by $\frac{dy}{dt} = k(N-y)(M-y),$ where $0 \le y \le M$ and k is a positive constant.

(i)	By first expressing $\frac{1}{(N-y)(M-y)}$ in the form $\frac{A}{N-y} + \frac{B}{M-y}$, where	
	A and B are constants to be found in terms of N and M, find t in terms of y. [5]	
It is given that $\frac{M}{N} = \frac{3}{4}$.		
(ii)	Find the time taken to produce $\frac{N}{4}$ units of Uru, giving your answer in terms of	
	$N ext{ and } k.$ [2]	
(iii)	Express the solution of the differential equation in the form $y = f(t)$. [2]	
	Sketch the part of the curve with this equation which is relevant in this context and state what happens to y for large values of t . [3]	

$$\begin{aligned} \begin{array}{l} \begin{array}{l} (\mathbf{i})\\ \|\mathbf{5}\| \end{array} & \frac{1}{(N-y)(M-y)} = \frac{1}{N-M} \left(\frac{1}{M-y} - \frac{1}{N-y} \right) \\ \text{Therefore } A = -\frac{1}{N-M}, \quad B = \frac{1}{N-M} \\ \begin{array}{l} \frac{dy}{dt} = k(N-y)(M-y) \\ \frac{1}{(N-y)(M-y)} \frac{dy}{dt} = k \\ \frac{1}{N-M} \left(\frac{1}{M-y} - \frac{1}{N-y} \right) \frac{dy}{dt} = k \\ \begin{array}{l} \frac{1}{N-M} \left(\frac{1}{M-y} - \frac{1}{N-y} \right) \frac{dy}{dt} = k \\ \frac{1}{M-y} - \frac{1}{N-y} dy = \int k(N-M) dt \\ \ln \left| \frac{N-y}{M-y} \right| = k(N-M)t + C, \text{ where } C \in \mathbb{R} \text{ is an arbitrary constant }. \\ \end{array} \right. \\ \begin{array}{l} 0 \leq y \leq M \text{ and } M < N, \quad \ln \left(\frac{N-y}{M-y} \right) = k(N-M)t + C, \\ t = 0, \ y = 0 \Rightarrow C = \ln \left(\frac{N}{M} \right) \\ \ln \left(\frac{N-y}{M-y} \right) = k(N-M)t + \ln \left(\frac{N}{M} \right) \\ k(N-M)t = \ln \left(\frac{N-y}{M-y} \right) - \ln \left(\frac{N}{M} \right) \end{aligned}$$

$$\begin{aligned} t &= \frac{1}{k(N-M)} \ln\left(\frac{M}{N}\left(\frac{N-y}{M-y}\right)\right) \\ \hline \text{(ii)}\\ \text{(2)}\\ \text{(iven that } \frac{M}{N} &= \frac{3}{4} \Leftrightarrow M = \frac{3}{4}N. \\ \text{When } y &= \frac{1}{4}N, \\ t &= \frac{1}{k\left(N-\frac{3}{4}N\right)} \ln\left(\frac{3}{4}\left(\frac{N-\frac{1}{4}N}{\frac{3}{4}N-\frac{1}{4}N}\right)\right) = \frac{4}{kN} \ln\left(\frac{3}{4}\left(\frac{3}{2}\right)\right) = \frac{4}{kN} \ln\left(\frac{9}{8}\right) \\ \hline \text{(iii)}\\ \text{(iii)}\\ \text{(5)}\\ t &= \frac{4}{kN} \ln\left(\frac{3}{4}\left(\frac{N-y}{\frac{3}{4}N-y}\right)\right) \Leftrightarrow \frac{3N-3y}{3N-4y} = \frac{kN}{4} \\ \frac{3N-3y}{3N-3y} = 3Ne^{\frac{kN}{4}} - 4ye^{\frac{kN}{4}} \\ \left(4e^{\frac{kN}{4}} - 3\right)y = 3N\left(e^{\frac{kN}{4}} - 1\right) \\ y &= 3N\left(\frac{e^{\frac{kN}{4}} - 1}{4e^{\frac{k}{4}} - 3}\right) \text{ or } y = 3N\left(\frac{1-e^{\frac{kN}{4}}}{4-3e^{\frac{kN}{4}}}\right) \text{ or } y = N\left(1-\frac{1}{4-3e^{\frac{kN}{4}}}\right) \\ \frac{3N}{4} \\ 0 \\ \frac{3N}{4} \\ 0 \\ \frac{3N}{4} \\ 0 \\ \text{OR As } kN > 0, \text{ so as } t \Rightarrow \infty, e^{-\left(\frac{kN}{4}\right)} \Rightarrow 0 \Rightarrow y = 3N\left(\frac{1-e^{\frac{kN}{4}}}{4-3e^{\frac{kN}{4}}}\right) \Rightarrow \frac{3N}{4} \\ \text{OR As } kN > 0, \text{ so as } t \text{ gets large, } e^{\frac{kN}{4}} \text{ also gets large so} \\ \frac{e^{\frac{kN}{4}} - 3}{e^{\frac{kN}{4}}} = \frac{1}{4} \text{ and hence } y \text{ increases and tends towards } \frac{3N}{4}. \end{aligned}$$

Section B: Probability and Statistics (40 marks)

8	Find the number of ways in which the letters of the word INTEGRITY can be arranged if		
	(i)	there are no restrictions,	[1]
	(ii)	any 2 vowels must be separated by exactly 2 consonants,	[2]
	(iii)	no adjacent letters are the same.	[3]

(b)	II, N, TT, E, G, R, Y	
(i)	Number of ways = $\frac{9!}{2!2!} = 90720$	
(ii)	$\begin{bmatrix} VCCVCCV & CC & CC & VCCVCCV \\ C & C & CC & C$	"Act out" the possibilities.
(iii)	Number of ways with TT as a unit = $\frac{8!}{2!}$, and similar with II as unit. Both these include possibility of both TT and II as units which occur in 7! ways Number of ways = $\frac{9!}{2!2!} - \frac{8!}{2!} - \frac{8!}{2!} + 7! = 55440$ <u>Alternative 1</u> Number of ways = total way – TT as an unit but II separated – II as an unit but TT separated – TT and II both as units. So number of ways = $\frac{9!}{2!2!} - 6! \times {}^{7}C_{2} \times 2 - 7! = 55440$ <u>Alternative 2</u> Number of ways = arrange except TT and II then slot in TT then slot in II + the case with TIT as a group	Please see TutS1A Q7(iv)
	So number of ways = $5! \times {}^{6}C_{2} \times {}^{8}C_{2} + 7! = 55440$	

9	Durin	g training, the time in seconds for a soldier to dismantle a certain type of equipment		
,				
		ormally distributed continuous random variable T . The standard deviation of T is		
	3.5 ar	nd the expected value of T is 35.1. After a new set of instructional material is		
	introd	uced, n soldiers are selected at random and the mean time taken for this sample of		
	soldie	rs to dismantle the equipment is found to be \overline{t} seconds. A test is carried out, at 5%		
	signifi	cance level, to determine whether the mean time taken to dismantle the equipment		
	has be	en reduced.		
	(i)	State the appropriate hypothesis for the test. [1]		
	(ii)	Given that $n = 20$, find the set of values of \overline{t} for which the result of the test		
		would be to reject the null hypothesis. [3]		
	(iii)	Given instead that $\overline{t} = 33.2$ and the result of the test is that the null hypothesis is		
		not rejected. Find the largest possible value of <i>n</i> . [3]		

$\begin{bmatrix} 3 \\ 3 \end{bmatrix} \qquad $	not use the Limit Theorem opulation is given to be y distributed.
H_0: $\mu = 35.1 \text{ vs } \text{H}_1$: $\mu < 35.1$ We do not find the equipment(ii)Given T is the time taken for a soldiers to dismantle the equipmentWe do not find the equipment[3]Under H_0, $\overline{T} \sim N\left(35.1, \frac{3.5^2}{20}\right)$ Central as the period of significance: 5%Level of significance: 5%Note difference: 5%Reject H_0 if p-value < 0.05 using a one-tail z-test.	Limit Theorem opulation is given to be
(ii) Given <i>T</i> is the time taken for a soldiers to dismantle the equipment [3] Under H ₀ , $\overline{T} \sim N\left(35.1, \frac{3.5^2}{20}\right)$ Level of significance: 5% Reject H ₀ if <i>p</i> -value < 0.05 using a one-tail <i>z</i> -test. $P\left(\overline{T} \le \overline{t}\right) \le 0.05$ From G.C., $P\left(\overline{T} \le 33.81269842\right) = 0.05 \Rightarrow \overline{t} \le 33.8$ We do n Central as the po- already normally Note difficance: for a soldiers to dismantle the equipment of the target of target of the target of target	Limit Theorem opulation is given to be
(ii) Given <i>T</i> is the time taken for a soldiers to dismantle the equipment [3] Under H ₀ , $\overline{T} \sim N\left(35.1, \frac{3.5^2}{20}\right)$ Level of significance: 5% Reject H ₀ if <i>p</i> -value < 0.05 using a one-tail <i>z</i> -test. $P(\overline{T} \le \overline{t}) \le 0.05$ From G.C., $P(\overline{T} \le 33.81269842) = 0.05 \Rightarrow \overline{t} \le 33.8$ We do n Central as the po- already normally Note difference between random	Limit Theorem opulation is given to be
[3] Under H ₀ , $\overline{T} \sim N\left(35.1, \frac{3.5^2}{20}\right)$ Level of significance: 5% Reject H ₀ if <i>p</i> -value < 0.05 using a one-tail <i>z</i> -test. $P(\overline{T} \le \overline{t}) \le 0.05$ From G.C., $P(\overline{T} \le 33.81269842) = 0.05 \Rightarrow \overline{t} \le 33.8$ Central as the period already normally the period of the peri	Limit Theorem opulation is given to be
Under H0, $T \sim N\left(\frac{35.1, \frac{3.5}{20}}{20}\right)$ as the periodLevel of significance: 5%as the periodReject H0 if p -value < 0.05 using a one-tail z -test.as the period $P\left(\overline{T} \leq \overline{t}\right) \leq 0.05$ Note differenceFrom G.C., $P\left(\overline{T} \leq 33.81269842\right) = 0.05 \Rightarrow \overline{t} \leq 33.8$ between random	opulation is given to be
Level of significance: 5% Reject H_0 if p-value < 0.05 using a one-tail z-test.already normally $P(\overline{T} \le \overline{t}) \le 0.05$ From G.C., $P(\overline{T} \le 33.81269842) = 0.05 \Rightarrow \overline{t} \le 33.8$ Note dif between random	given to be
Level of significance: 5% Reject H_0 if p-value < 0.05 using a one-tail z-test.	
Reject H0 if p -value < 0.05 using a one-tail z -test.Note dif $P(\overline{T} \le \overline{t}) \le 0.05$ Note difFrom G.C., $P(\overline{T} \le 33.81269842) = 0.05 \Rightarrow \overline{t} \le 33.8$ between random	y distributed.
$P(\overline{T} \le \overline{t}) \le 0.05$ From G.C., $P(\overline{T} \le 33.81269842) = 0.05 \Rightarrow \overline{t} \le 33.8$ Note difference between random ra	
From G.C., $P(\overline{T} \le 33.81269842) = 0.05 \Rightarrow \overline{t} \le 33.8$ between random	20
From G.C., $P(1 \le 33.81269842) = 0.05 \implies t \le 33.8$ random	
random	\overline{T} which is a
Therefore, the set of values is $\{t \in \mathbb{R} : 0 < t \le 33.8\}$ or $(0, 33.8]$. which is	variable and \overline{t}
	a value.
(iii) $= -(-, 3.5^2)$	
(iii) [3] Under H ₀ , $\overline{T} \sim N\left(35.1, \frac{3.5^2}{n}\right)$	
Level of significance: 5%	
Reject H ₀ if p -value ≤ 0.05	
i.e. For H ₀ not to be rejected, p -value > 0.05	
$P(\overline{T} \le 33.2) > 0.05$	
Method 1 by standardisation:	
$ _{\mathbf{T}} = 33.2 - 35.1 _{>0.05}$	
$P\left(Z \le \frac{33.2 - 35.1}{3.5 / \sqrt{n}}\right) > 0.05$	
$ \left(\sqrt{\sqrt{n}} \right) $	
By G.C., $P(Z \le -1.6449) > 0.05$	
33.2-35.1	
$\Rightarrow \frac{33.2 - 35.1}{3.5/\sqrt{\pi}} > -1.6449$	
$/\sqrt{n}$	

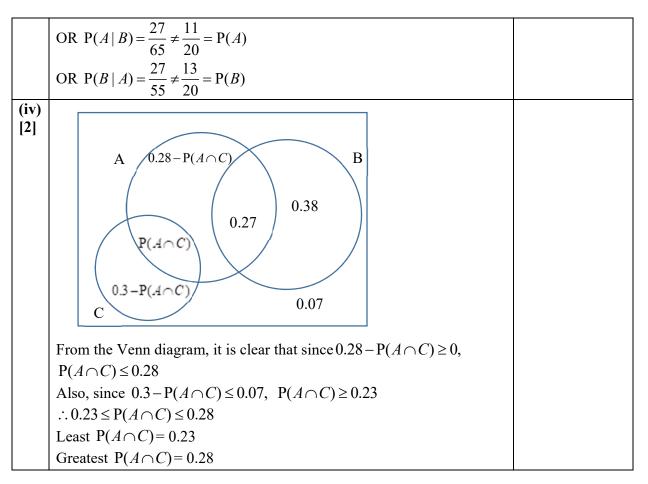
	$\frac{.9}{5}\sqrt{n} > -1.6449$ $< \left[1.6449 \left(\frac{3.5}{1.9} \right) \right]^2 \approx$	9.181378	
Meth	od 2 by GC table:		
Let y	= normalcdf ($-1E$	99, 33.2, 35.1, $3.5/\sqrt{x}$)	
x	Y		
8	0.0623		
9	0.0517		
10	0.043		
There	fore, largest possil	le number of <i>n</i> is 9.	

10	A bag contains 3 red balls and <i>n</i> yellow balls, where $n \ge 2$. In a game, Joe removes 2 balls at random from the bag one at a time without replacement. The number of red balls Joe removes from the bag is denoted by <i>T</i> .		
	(i)	Find $P(T = t)$ for all possible values of t.	[2]
	(ii)	Find $E(T)$ and $Var(T)$.	[5]

	1		
(i)	t	P(T=t)	
	0	$\frac{\binom{3}{0}\binom{n}{2}}{\binom{n+3}{2}} = \frac{\frac{n(n-1)}{2}}{\frac{(n+3)(n+2)}{2}} = \frac{n(n-1)}{(n+3)(n+2)}$	
	1	$\frac{\binom{3}{1}\binom{n}{1}}{\binom{n+3}{2}} = \frac{3n}{\frac{(n+3)(n+2)}{2}} = \frac{6n}{(n+3)(n+2)}$	Check that $\frac{n(n-1)+6n+6}{(n+3)(n+2)} = 1$
	2	$\frac{\binom{3}{2}\binom{n}{0}}{\binom{n+3}{2}} = \frac{3}{\frac{(n+3)(n+2)}{2}} = \frac{6}{(n+3)(n+2)}$	
(ii)	$E(T) = \frac{1}{(n)}$	$\frac{6n}{(n+3)(n+2)} + 2 \times \frac{6}{(n+3)(n+2)} = \frac{6n+12}{(n+3)(n+2)} = \frac{6}{n+3}$	Simplify your answers.

$$E(T^{2}) = \frac{6n}{(n+3)(n+2)} + 4 \times \frac{6}{(n+3)(n+2)} = \frac{6(n+4)}{(n+3)(n+2)}$$

$$Var(T) = E(T^{2}) - [E(T)]^{2} = \frac{6(n+4)}{(n+3)(n+2)} - (\frac{6}{n+3})^{2}$$


$$= \frac{6[(n+3)(n+4) - 6(n+2)]}{(n+3)^{2}(n+2)}$$

$$= \frac{6(n^{2} + n)}{(n+2)(n+3)^{2}}$$

$$= \frac{6n(n+1)}{(n+2)(n+3)^{2}}$$

11	For ev	vents A and B it is given that $P(A) = 0.55$, $P(B) = 0.65$ and $P(A \cup B) = 0.93$	•
	Find		
	(i)	$P(A \cap B)$	[2]
	(ii)	$P(A \cup B')$	[2]
	(iii)	Determine if <i>A</i> and <i>B</i> are independent.	[1]
	It is f	urther given that $P(C) = 0.3$ and that events <i>B</i> and <i>C</i> are mutually exclusive.	
	(iv)	Find the greatest and least possible values of $P(A \cap C)$.	[3]

(i) [2]	$P(A \cap B) = P(A) + P(B) - P(A \cup B)$ = 0.55 + 0.65 - 0.93	See Venn Diagram below
	= 0.37 + 0.03 - 0.93 = 0.27	in (iv)
(ii)	$P(A \cup B') = P(A) + P(A \cup B)'$	
[2]	= 0.55 + (1 - 0.93)	
	= 0.62	
	OR	
	$\mathbf{P}(A \cup B') = 1 - \mathbf{P}(A' \cap B)$	
	$=1-[P(B)-P(A\cap B)]$	
	=1-(0.65-0.27)	
	= 0.62	
(iii)	Since $P(A \cap B) = 0.27 \neq P(A) \times P(B) = 0.3575$, A and B are not	
[1]	independent	

12		is question you should state clearly all the distributions that you use, together the values of the appropriate parameters.	
A local supermarket sells two types of potatoes, Russet potatoes and Holland po The masses, in grams, of the Russet potatoes have the distribution $N(200, 30^2)$ a			
	masses, in grams, of the Holland potatoes have the distribution $N(150, 24^2)$.		
	(i)	Find the probability that the total mass of 3 randomly chosen Holland potatoes isless than twice the mass of a randomly chosen Russet potato.[3]	
	(ii)	The supermarket decides to pack the potatoes into a variety pack. Each variety pack consists of 5 randomly chosen Russet and 4 randomly chosen Holland potatoes. The probability that a randomly chosen variety pack is within k grams of 1600 grams is found to be 0.775. Find k . [3]	
	(iii)	40 variety packs are randomly selected and are to be donated to needy families. Using the value of k found in (ii), find the probability that at most 5 variety packs are not within k grams of 1600 grams, [2]	
	(iv)	State an assumption needed for your calculations in parts (i), (ii) and (iii). [1]	

The supermarket recently introduced a new type of potatoes, called New potatoes. The mean mass of New potatoes is 55 grams and standard deviation is 13 grams.		
(v)	Find an approximate value for the probability that the average mass from a random	
	sample of 100 New potatoes is not more than 58 grams. [3]	

(i)	Let <i>R</i> be the random variable denoting the mass, in grams, of a Russet potato. Let <i>H</i> be the random variable denoting the mass, in grams, of a Holland potato. $E((H_1 + H_2 + H_3) - 2R) = 3 \times 150 - 2 \times 200 = 50$ $Var(H_1 + H_2 + H_3 - 2R) = 3 \times 24^2 + 2^2 \times 30^2 = 5328$ $H_1 + H_2 + H_3 - 2R \sim N(50,5328)$ $P(H_1 + H_2 + H_3 - 2R < 0)$ $= P(H_1 + H_2 + H_3 - 2R < 0)$ = 0.247 (to 3s.f.)	Define random variable clearly. Do NOT use "Z" which is for N(0,1) Read Question clearly. Indicate the distribution clearly in ALL parts.
(ii)	Let V be the random variable denoting the mass, in grams, of a randomly chosen variety pack. $E(V) = 5 \times 200 + 4 \times 150 = 1600$ $Var(V) = 5 \times 30^{2} + 4 \times 24^{2} = 6804$ $V \sim N(1600, 6804)$ P(1600 - k < V < 1600 + k) = 0.775 k = 100 (to 3s.f.)	
(iii)	Let W be the random variable denoting the number of variety packs not within "k" grams of the mean out of 40 packs. $W \sim B(40, 1-0.775 = 0.225)$ $P(W \le 5) = 0.0869$ (3sf)	Define the binomial random variable clearly
(iv)	The mass of (randomly chosen) Russet potatoes and Holland potatoes are independent of each other. Please note: "Distributions" or "Probabilities" CANNOT be described as being independent of each other. "Events" or "Random Variables" can be described as independent.	
(v)	Let <i>C</i> be the random variable denoting the mass of a randomly chosen New potato. $E(C) = 55$ and $Var(C) = 13^2$ Since $n = 100$ is large, by Central Limit Theorem, $\overline{C} = \frac{C_1 +C_{100}}{100} \sim N\left(55, \frac{13^2}{100}\right)$ approximately	You cannot claim that C is normally distributed as that is not specified. Notice also that the question asks to "approximate" the probability.

$P\left(\overline{C} \le 58\right) = 0.989$	(to 3s.f.)	
---	------------	--