Anglo-Chinese School

(Independent)

PRELIMINARY EXAMINATION 2022

YEAR 6 IB DIPLOMA PROGRAMME

MATHEMATICS: ANALYSIS AND APPROACHES

HIGHER LEVEL

PAPER 1

Tuesday 13 September 2022

2 hours

Candidate Session Number

0	0	2	3	2	9					
---	---	---	---	---	---	--	--	--	--	--

INSTRUCTIONS TO CANDIDATES

- Write your session number in the boxes above.
- Do not open this examination paper until instructed to do so.
- You are not permitted access to any calculator for this paper.
- Section A: answer all questions. Answers must be written within the boxes provided.
- Section B: answer all questions on the writing paper provided. Fill in your session number on each answer sheet, and attach them to this examination paper using the string provided.
- Unless otherwise stated in the question, all numerical answers must be given exactly or correct to three significant figures.
- A clean copy of the Mathematics: Analysis and Approaches formula booklet is required for this paper.
- The maximum mark for this examination paper is [110 marks].
- Questions with an asterisk(*) are common to both HL & SL papers.

Section (55 Ma		Section B (55 Marks)		
Question Marks		Question	Marks	
1				
2		10		
3				
4				
5		11		
6				
7				
8		12		
9				
Subtotal		Subtotal		
TOTAL		/ 11(0	

Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

Section A

Answer **all** questions. Answers must be written within the answer boxes provided. Working may be continued below the lines if necessary.

Do **not** write solutions on this page.

- 1. *[Maximum Mark: 7]
 - (a) Given that $\sin A = \frac{1}{\sqrt{3}}$ and that A is acute.
 - (i) Find the exact value of $\tan A$.
 - (ii) Hence, find the value of $\tan\left(\frac{A}{2}\right)$ in the form $\sqrt{m}-\sqrt{n}$, where m and n are integers.
 - (b) Solve the equation $2\sin x = \tan x$ for $-\frac{\pi}{2} < x < \frac{\pi}{2}$. [3]

[4]

2.	*[Maximum	Mark:	5]
----	-----------	-------	----

Consider the expression $\left(x^2 + \frac{k}{x}\right)^n$ where k and n are positive integers.

- (a) Given that there are 11 terms in the expansion, state the value of n. [1]
- (b) For this value of n, find the value of k given that the coefficient of x^{14} is 180. [4]

3. *[Maximum Mark: 7]

Consider the function $f(x) = \frac{x}{cx+6}$, where $c \neq 0$.

- The line x = -2 is a vertical asymptote to the graph of y = f(x). Find the value of c.
- (b) State the equation of the horizontal asymptote to the graph of y = f(x). [1]
- (c) On the set of axes below, sketch the graph of y = f(x), indicating all asymptotes and any axial intercept(s). [3]

(d) Hence, solve the inequality 0 < f(x) < 2.

[1]

[2]

4. [Maximum Mark: 6]	
-----------------------------	--

An arithmetic sequence $u_1,u_2,u_3,...$ has $u_1=1$ and common difference $d\neq 0$. Given that u_2,u_3 and u_6 are the first three terms of a geometric sequence.

- (a) Find the value of d. [3]
- (b) Given that in the arithmetic sequence $u_n = -17$, determine the value of $\sum_{r=1}^{n} u_r$. [3]

5.	[Maximum]	Mark.	51
J.	HIVIAAHIIUHII	iviai n.	.)

Prove, by Mathematical Induction, that 6^n-1 is always divisible by 5, for integers $n \ge 2$.

$a+b \ge 2$	\sqrt{ab} .		

[Maximum Mark: 4]

6.

7. [Maximum Mark: 4]

The graph of y=f'(x), $0 \le x < 5$ is shown in the following diagram. The curve intersects the x-axis at (1,0) and (4,0) and has a minimum at x=3. Given that f(0)=1 and that the shaded area enclosed by the curve y=f'(x), the x-axis and the y-axis is 1. The area enclosed by the curve y=f'(x) and the x-axis between x=1 and x=4 is 5.

- (a) Write down the x-coordinate of the point of inflexion on the graph of y = f(x). [1]
- (b) Hence or otherwise, find the value of f(1) and f(4). [3]

A continuous random variable X has probability density function f(x) given by

$$f(x) = \begin{cases} k & 2 < x \le 3, \\ k(x-2) & 3 < x \le 4, \\ 0 & \text{otherwise.} \end{cases}$$

- (a) Show that the value of k is $\frac{2}{5}$. [3]
- (b) Determine the value of the median, m. [5]

(a) Show that $\int x^3 e^x dx = e^x (x^3 - 3x^2 + 6x - 6) + C$, where C represents an arbitrary constant.

[4]

(b) Hence, by using the substitution $x = \sqrt{t}$, evaluate $\int_0^2 t e^{\sqrt{t}} dt$.

[5]

 •
 •

Section B

Answer all questions in the answer sheets provided. Please start each question on a new page.

10. *[Maximum Mark: 15]

Consider the function $h(x) = (\sin(2x) + \cos(2x))^2$.

- (a) Show that $h(x) = \sin(4x) + 1$. [2]
- (b) The graph of y = h(x) can be obtained from the graph of $y = \sin x$ through two geometrical transformations.
 - (i) Describe the two geometrical transformations in order.
 - (ii) Sketch the graph of y = h(x) for $0 \le x \le \pi$, clearly label all turning point(s) and axial intercept(s). [7]
- (c) State
 - (i) the period of h and;
 - (ii) the range of h. [2]
- (d) Find the **exact** area bounded by the graph of y = h(x), the x-axis and the y-axis. [4]

11. [Maximum Mark: 22]

A function f is defined by $f(x) = \arcsin\left(\frac{x^2-1}{x^2+1}\right), x \in \mathbb{R}$. The graph of y = f(x) is shown in

the diagram below. The graph of y = f(x) cuts the x-axis at x = 1 and x = -1, the y-intercept at point A is also the minimum point.

- (a) Show that f is an even function.
- (b) By considering the limit of f as $x \to \infty$, show that the graph of y = f(x) has a horizontal asymptote of $y = \frac{\pi}{2}$. [3]
- (c) (i) Show that $f'(x) = \frac{2x}{|x|(x^2+1)}$ and state its domain clearly.
 - (ii) Hence, show that f is decreasing at x = -2. [7]
- (d) Sketch the graph of $y = \frac{1}{f(x)}, x \in \mathbb{R}$, indicate any asymptote(s), turning point(s) and axial intercept(s) clearly. [4]
- (e) A function g is defined as $g(x) = \arcsin\left(\frac{x^2 1}{x^2 + 1}\right), x \in \mathbb{R}, x \ge 0$. Find an expression for $g^{-1}(x)$.

[2]

12. [Maximum Mark: 18]

A fair four-sided die with faces labelled as 1,2,3 and 4 is rolled 4 times and the result recorded. A "match" is defined to be the occurrence of side i on the i th roll. For example, the die rolled a 1 on the first roll is a "match" and the die rolled a 2 on the second roll is also a "match".

(a) Copy and complete the following partial tree diagram up to and including the second roll.

(b) Show that the probability of having at least one match on the 4^{th} roll is $\frac{175}{256}$. [3]

A fair n sided die with faces labelled 1, 2, 3, ... and n is used. Let X be the number of matches obtained when the die is rolled n times.

- (c) Write down an expression of P(X = 0) in terms of n. [2]
- (d) Hence or otherwise, show that $P(X \ge 1) = 1 \left(1 \frac{1}{n}\right)^n$. [2]
- (e) Using Maclaurin expansion, show that $\frac{1}{e} = \frac{1}{2!} \frac{1}{3!} + \frac{1}{4!} \dots$ [2]
- (f) (i) By expanding $\left(1-\frac{1}{n}\right)^n$ show that

$$\left(1 - \frac{1}{n}\right)^{n} = \frac{n^{2}\left(1 - \frac{1}{n}\right)}{2!} \left(\frac{1}{n^{2}}\right) - \frac{n^{3}\left(1 - \frac{1}{n}\right)\left(1 - \frac{2}{n}\right)}{3!} \left(\frac{1}{n^{3}}\right) + \frac{n^{4}\left(1 - \frac{1}{n}\right)\left(1 - \frac{2}{n}\right)\left(1 - \frac{3}{n}\right)}{4!} \left(\frac{1}{n^{4}}\right) - \dots \quad [4]$$

(ii) Hence, show that as n approaches infinity, $P(X \ge 1) = 1 - \frac{1}{e}$. [2]

END OF PAPER

[3]