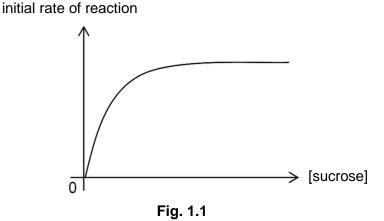
SH1 Exit Quiz (Reaction Kinetics)

Name: _____

Duration: 20 min


1 Sucrose is a sugar produced in plants such as sugarcane and sugar beet where it is extracted and refined for use as a sweetener in food and beverage.

In sucrose, the bond between the monomers glucose and fructose can be broken via a hydrolysis reaction with water. The hydrolysis is so slow that a solution of sucrose can be stored for a long period of time at room temperature with negligible change.

- (a) Enzymes like sucrase have specific activity. When a very small amount of sucrase is added to a solution of sucrose, however, the hydrolysis reaction will proceed rapidly.
 - (i) Explain what is meant by the term *specific activity* of an enzyme.

.....[1]

The graph in Fig. 1.1 shows how the initial rate varies with sucrose concentration for the hydrolysis reaction where a very small amount of sucrase was added.

(ii) "At very high concentrations, the order of reaction with respect to [sucrose] is 1."

Comment on the validity of this statement and explain your answer using Fig. 1.1.

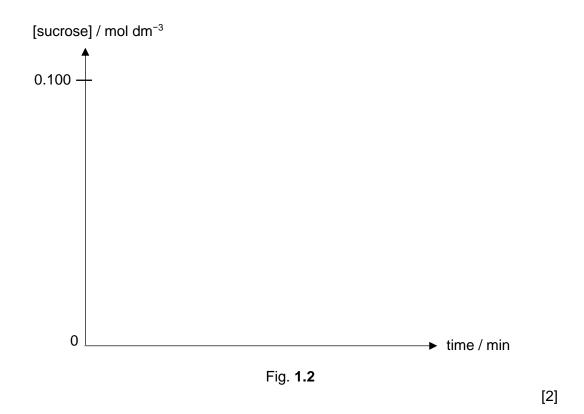
.....[1]

(iii) Using a Boltzmann distribution curve, explain why the addition of sucrase increases the rate of the hydrolysis reaction.

••••••	 	•••••
	 	[3]

(b) The hydrolysis reaction of sucrose can also be accelerated with acids such as hydrochloric acid.

The hydrolysis reaction of sucrose with HC*l* was studied at constant temperature via a series of experiments.


experiment	[sucrose] / mol dm ⁻³	[HC <i>l</i>] / mol dm ⁻³	rate / mol dm ⁻³ min ⁻¹
1	0.10	1.0	$2.0 imes 10^{-5}$
2	0.20	1.0	$4.0 imes 10^{-5}$
3	0.30	2.0	$1.2 imes 10^{-4}$

(i) Deduce the order of reaction for sucrose and HC*l*. Hence, give the rate equation for the reaction.

In each experiment, concentration of HC*l* remained effectively constant throughout the hydrolysis reaction.

(ii) Complete Fig. 1.2 to show how the concentration of sucrose varies with time, at constant temperature for experiment 1 where the initial concentration of sucrose used was 0.100 mol dm⁻³.

Label any important features on Fig. 1.2.

2 The age of rock samples can be calculated using Uranium-Lead dating. ²³⁵U is an unstable isotope which decays into ²⁰⁷Pb. This nuclear reaction obeys first-order kinetics with a half-life of 710 million years.

The decay can be summarised by the following equation:

 $^{235}U \rightarrow ^{207}Pb$ + other decay products

A rock sample has a 235 U : 207 Pb ratio of 1 : 15.

Assuming that all the ²⁰⁷Pb detected is formed from the decay of ²³⁵U, what is the age of the rock sample?

Α	710 million years	С	2130 million years
---	-------------------	---	--------------------

B 1420 million years **D** 2840 million years