PU2 MATHEMATICS

Paper 8865/01

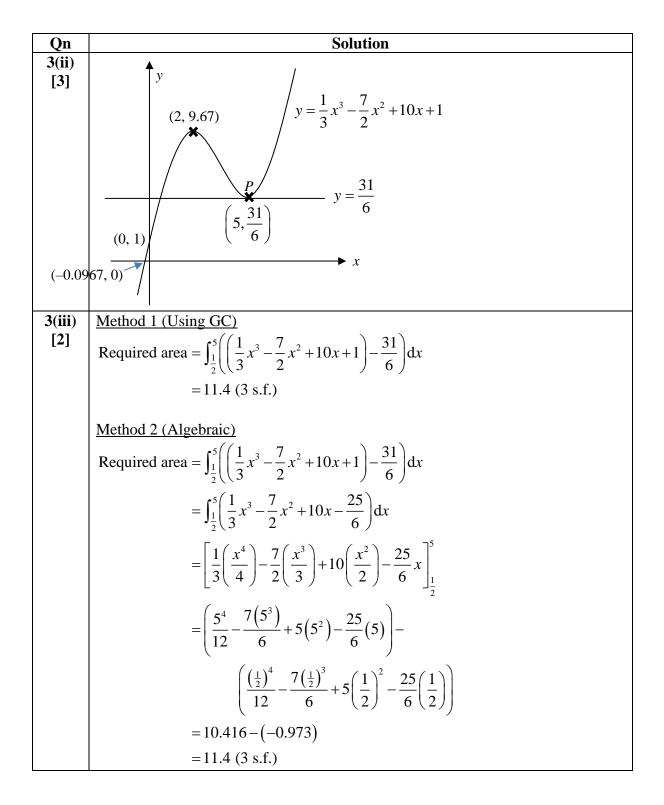
Section A: Pure Mathematics

Qn	Solution
1(i) [3]	Let x, y and z be the cost of one serving of beans, vegetables and nuts respectively. Amy's $: 2x + 3y + z = 9.1 (1)$
	Betty's $: 3x + 4y + 2z = 14 (2)$
	Cathy's $: 3x + 3y = 8.1 (3)$
	Using GC, $x = 1.2$, $y = 1.5$, $z = 2.2$
	The cost of one serving of beans, vegetables and nuts is \$1.20, \$1.50 and \$2.20 respectively.
1(ii)	Method 1
[1]	Original Price of the salad = $\frac{6.32}{0.8} = 7.9$
	1.2 + 1.5a + 2.2 = 7.9
	a = 3
	$\frac{\text{Method } 2}{0.8(1.2) + 0.8(1.5a) + 0.8(2.2)} = 6.32$ a = 3

Solution
Method 1
Substitute $x = 3$ and $y = p$ into
$p^2 x - 5 y = 8$
$3p^2 - 5p = 8$
$3p^2 - 5p - 8 = 0$
$p = -1$ or $p = \frac{8}{3}$ (rejected)
<u>Method 2</u> Substitute $x = 3$ and $y = p$ into $x^2 + 9y^2 + 3x = 30 + xy$
$9 + 9p^2 + 9 = 30 + 3p$
$9p^2 - 3p - 12 = 0$
$3p^2 - p - 4 = 0$
$p = -1$ or $p = \frac{4}{3}$ (rejected)

Qn	Solution
2(ii)	Substitute $p = -1$ into
[3]	$p^2 x - 5y = 8$
	x - 5y = 8
	x = 8 + 5y (1)
	Subst (1) into $x^2 + 9y^2 + 3x = 30 + xy$
	$(8+5y)^{2}+9y^{2}+3(8+5y)=30+(8+5y)y$
	$64 + 80y + 25y^2 + 9y^2 + 24 + 15y = 30 + 8y + 5y^2$
	$29y^2 + 87y + 58 = 0$
	y = -1(1st set of solution) or $y = -2$
	x = 8 + 5(-2) = -2
	The other set of solution is $x = -2$ and $y = -2$.
2(iii)	$x^2 > 5$
[2]	$x^2 - 5 > 0$
	$\left(x+\sqrt{5}\right)\left(x-\sqrt{5}\right) > 0$
	$-\sqrt{5}$ $\sqrt{5}$
	$x < -\sqrt{5}$ or $x > \sqrt{5}$

Qn	Solution
3(i) [3]	$\frac{\mathrm{d}y}{\mathrm{d}x} = x^2 - 7x + 10$
	$\left. \frac{dy}{dx} \right _{x=5} = 5^2 - 7(5) + 10 = 0$
	When $x = 5$, $y = y = \frac{1}{3}(5)^3 - \frac{7}{2}(5)^2 + 10(5) + 1 = \frac{31}{6}$
	Equation of tangent at $P: y - y_1 = m(x - x_1)$
	$y - \frac{31}{6} = 0(x-5)$
	$y = \frac{31}{6}$



Qn	Solution
4(a)(i) [2]	$\frac{\mathrm{d}}{\mathrm{d}x}\left[\frac{1}{3(2x-1)^2}\right] = \frac{\mathrm{d}}{\mathrm{d}x}\left[\frac{1}{3} \times \frac{1}{(2x-1)^2}\right]$
	$=\frac{1}{3}\times\frac{\mathrm{d}}{\mathrm{d}x}\left[\left(2x-1\right)^{-2}\right]$
	$=\frac{1}{3}(-2)(2x-1)^{-3}(2)$
	$= -\frac{4}{3}(2x-1)^{-3} = -\frac{4}{3(2x-1)^{3}}$
4(a)(ii) [2]	$\frac{\mathrm{d}}{\mathrm{d}x}\left(4\mathrm{e}^{x^3}\right) = 4 \times \frac{\mathrm{d}}{\mathrm{d}x}\left(\mathrm{e}^{x^3}\right)$
	$=4\left(3x^2e^{x^3}\right)$
	$=12x^2e^{x^3}$
4(b)(i) [3]	$= 12x^2 e^{x^3}$ $\int \left(x - \frac{2}{x}\right)^2 dx = \int x^2 - 2\left(x\right) \left(\frac{2}{x}\right) + \left(\frac{2}{x}\right)^2 dx$
	$= \int x^2 - 4 + 4x^{-2} \mathrm{d}x$
	$=\frac{x^{3}}{3}-4x+4\left(\frac{x^{-1}}{-1}\right)+c$
	$=\frac{x^3}{3} - 4x - \frac{4}{x} + c$
4(b)(ii) [2]	$\int e^{\frac{x+1}{4}} dx = \int e^{\frac{1}{4}x+\frac{1}{4}} dx = \frac{e^{\frac{1}{4}x+\frac{1}{4}}}{1} + c = 4e^{\frac{x+1}{4}} + c$
	$\overline{4}$

Qn	Solution
5(i)	Using GC,
[2]	$\left. \frac{d}{dt} \left[15\ln(t+1) - 5t + 10 \right] \right _{t=5} = -2.5$
	The population of the moth is <u>decreasing at a rate of 2.5 thousand moths per year at</u> the 5^{th} year after the natural bird predator is introduced.
5(ii)	$P = 15\ln(t+1) - 5t + 10$
[5]	$\frac{dP}{dt} = \frac{15}{t+1} - 5$ To find stationary point,

Qn	Solution
	$\frac{\mathrm{d}P}{\mathrm{d}t} = 0$
	$\Rightarrow \frac{15}{t+1} - 5 = 0$
	15 _
	$\Rightarrow \frac{15}{t+1} = 5$
	$\Longrightarrow 15 = 5(t+1)$
	$\Rightarrow 5t = 10$
	$\Rightarrow t = 2$
	Performing first derivative test:
	t 2^{-} 2 2^{+}
	(1.99) (2.01)
	$\begin{vmatrix} \frac{\mathrm{d}P}{\mathrm{d}r} &> 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 &$
	$\frac{dt}{slams} = \frac{(0.0167)}{(-0.0166)}$
	Slope Hence P is a maximum at $t = 2$
	The maximum value of $P = 15 \ln(2+1) - 5(2) + 10 = 16.5$ The maximum population
5(iii)	is 16 500 (3 s.f.). P▲
[2]	
	(0,10) (2,16.5)
	\overline{O} (8.87, 0),
5(iv) [2]	The rate of change of the population of the natural bird predators is 0 initially, i.e. $Q = 0$ when $t = 0$.
	$\mathcal{L} = 0$ when $t = 0$.
	$0 = b(3(0)+1) - a \times 2^0$
	$\Rightarrow 0 = b - a$
	$\Rightarrow a = b$
5(v)	Using GC,
[1]	
	$\int_{0}^{4} 5(3t+1) - 5 \times 2^{t} dt = 31.798 = 31.8 (3s.f.)$
	Population is 31.8 hundred (or 3180)

Section B: Probability and Statistics

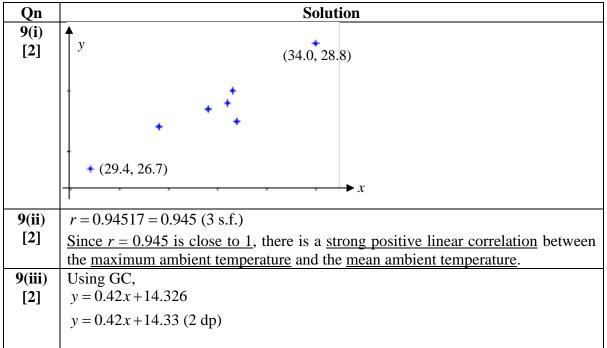
Qn	Solution
6(i)	Vowels: A, O, U, I, E
[2]	Consonants: F, V, R, T
	There can only be one arrangement for vowels (V) and consonants(C) to alternate: V, C, V, C, V, C, V, C, V, No. of ways $=5!\times4!=2880$
6(ii)	Complement: all the 4 consonants are together
[3]	V V V V C C C C C
	No. of ways for all 4 consonants together $= 6! \times 4!$
	No. of ways $=9!-6!\times4!$
	= 345600

Qn	Solution
7(i)	Let <i>X</i> be the number of faulty mechanical pencils, out of 15.
[2]	Then $X \sim B(15, 0.07)$
	$\mathbf{P}\left(X < \frac{15}{4}\right) = \mathbf{P}\left(X < 3.75\right)$
	$= P(X \le 3)$
	= 0.98247 = 0.982 (3s.f.)
7(ii) [3]	$P\left(X \ge 1 \mid X < \frac{15}{4}\right) = P\left(X \ge 1 \mid X \le 3\right)$
	$P(X \ge 1 \cap X \le 3)$
	$=\frac{P(X \ge 1 \cap X \le 3)}{P(X \le 3)}$
	$=\frac{P(1 \le X \le 3)}{P(X \le 3)}$
	$-P(X \le 3)$
	$=\frac{P(X \le 3) - P(X = 0)}{P(X \le 3)}$
	= 0.65729 = 0.657 (3s.f.)

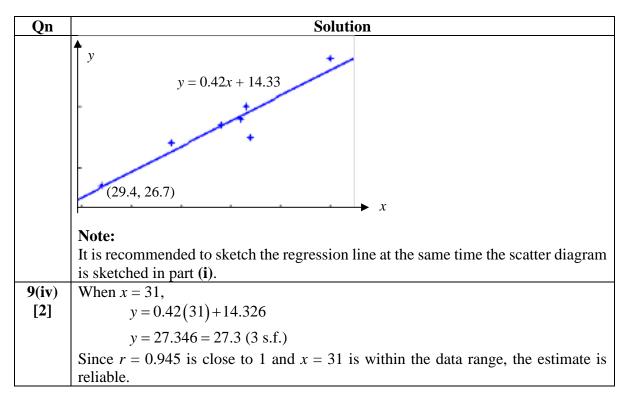
Qn	Solution
8(i) [2]	$P(A \cap B') = 0.2$
	$\mathbf{P}(B) = 1 - \mathbf{P}(A' \cap B') - \mathbf{P}(A \cap B')$
	=1-0.2-0.5
8 (ii)	= 0.3 <u>Method 1:</u>
[3]	Given A and B are independent, A and B' are independent. $P(A \cap B') = P(A) \times P(B') = 0.5$
	$P(A) = \frac{0.5}{P(B')}$
	$=\frac{0.5}{1-0.3}$
	$=\frac{5}{-1}$
	$=\frac{-}{7}$
	Method 2: Given A and B are independent, A' and B' are independent. $P(A' \cap B') = P(A') \times P(B') = 0.2$
	$P(A') = \frac{0.2}{P(B')}$
	P(B')
	$=\frac{0.2}{1-0.3}$
	$=\frac{2}{7}$
	$\begin{array}{c} 7 \\ P(A) = 1 - P(A') \end{array}$
	$=1-\frac{2}{7}$
	$=\frac{5}{7}$
	/
	1

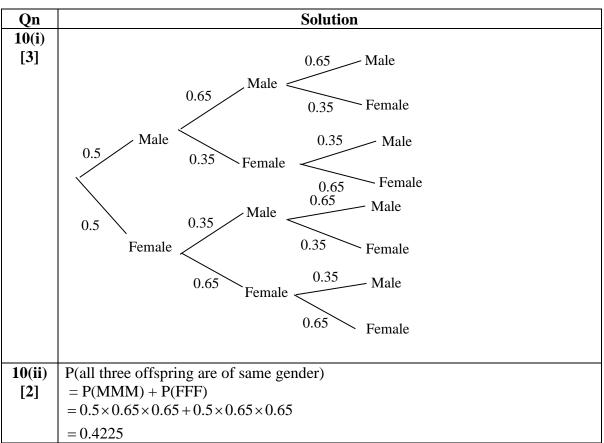
Qn	Solution
	Method 3:
	Given A and B are independent,
	$\mathbf{P}(A \cap B) = \mathbf{P}(A) \times \mathbf{P}(B)$
	$\mathbf{P}(A \cup B) = \mathbf{P}(A) + \mathbf{P}(B) - \mathbf{P}(A \cap B)$
	$= P(A) + P(B) - P(A) \times P(B)$
	$0.8 = P(A) + 0.3 - P(A) \times 0.3$
	0.5 = 0.7 P(A)
	$P(A) = \frac{5}{7} = 0.714 \ (3s.f.)$
8(iii)	P(A' B) = P(A') (since A and B and independent)
[1]	$=1-\frac{5}{7}$
	$=\frac{2}{7}=0.286$ (3s.f.)
	Alternatively,
	$P(A' B) = \frac{P(A' \cap B)}{P(B)}$
	$= \frac{P(A') \times P(B)}{P(B)}$ (since A and B and independent)
	$= \mathbf{P}(A')$
	$=\frac{2}{7}=0.286$ (3s.f.)

8



(34.0, 28.8)





Qn	Solution
10(iii)	P(first offspring is a male at least two female offspring)
[3]	P(first offspring is a male \cap at least two female offspring)
	P(at least two female offspring)
	P(MFF)
	$= \frac{1}{P(MFF) + P(FMF) + P(FFM) + P(FFF)}$
	$0.5 \times 0.35 \times 0.65$
	$= \frac{1}{0.5 \times 0.35 \times 0.65 + 0.5 \times 0.35 \times 0.35 + 0.5 \times 0.65 \times 0.35 + 0.5 \times 0.65 \times 0.65 \times 0.65}$
	= 0.2275
10(iv)	Method 1
[2]	Required probability
	$= 0.4225^2 \times (1 - 0.4225) \times 3$
	= 0.309 (3 s.f.)
	<u>Method 2</u> Let <i>Y</i> be the number of families with all three offspring of the same gender out of 3 families. $Y \sim B(3, 0.4225)$ P(Y = 2) = 0.309 (3 s.f.)

Qn	Solution
<u>(a)</u> [1]	$P(X < \mu - 5)$ $\mu - 5$ $\mu + 5$ $P(X > \mu + 5)$ $\mu - 5$ $\mu + 5$
11(i) (b) [3]	=1-0.15 = 0.85 $P(X < \mu - 5) = 0.15$ $P\left(\frac{X - \mu}{\sigma} < \frac{\mu - 5 - \mu}{\sigma}\right) = 0.15$ $P\left(Z < \frac{-5}{\sigma}\right) = 0.15 \qquad Z \sim N(0,1)$ Using GC, $-\frac{5}{\sigma} = -1.0364$ $\sigma = 4.8242 = 4.8 (1d.p.)$

Qn	Solution
11(ii)	$X \sim N(200, 5^2)$
[3]	Given $P(X_1 + X_2 + X_3 < k) = 0.3$.
	$E(X_1 + X_2 + X_3) = 3 \times 200 = 600$
	$\operatorname{Var}(X_1 + X_2 + X_3) = 3 \times 5^2 = 75$
	$X_1 + X_2 + X_3 \sim N(600, 75)$
	Using GC, k = 595.46 = 595 (3s.f.)
11(iii)	Let Y be the mass of one packet of Filter Roast coffee beans.
[3]	Then $Y \sim N(205, 8^2)$.
	We want to find P(X < Y) = P(X - Y < 0)
	$\Gamma(X < \Gamma) = \Gamma(X - \Gamma < 0)$
	E(X-Y) = 200 - 205 = -5
	$\operatorname{Var}(X-Y) = 5^2 + 8^2 = 89$
	$X - Y \sim N(-5, 89)$
11(')	P(X - Y < 0) = 0.70194 = 0.702 (3s.f.)
11(iv) [3]	Method 1 We want to find
	$P(0.95(X_1 + X_2 + Y) > 580)$ i.e. $P(X_1 + X_2 + Y > 610.53)$
	$E(Y + Y + V) = 2 \times 200 + 205 = 605$
	$E(X_1 + X_2 + Y) = 2 \times 200 + 205 = 605$ Var(X_1 + X_2 + Y) = 2×5 ² + 8 ² = 114
	$ \begin{array}{c} \sqrt{a} \left(X_1 + X_2 + Y \right) = 2 \times 5 + 8 = 114 \\ X_1 + X_2 + Y \sim N(605, 114) \end{array} $
	$X_1 + X_2 + I = In(003, 114)$
	$P(0.95(X_1 + X_2 + Y) > 580) = 0.30225 = 0.302 \text{ (3s.f.)}$
	Method 2 Mass of one packet of ground Espresso Roast coffee beans: 0.95X
	Mass of one packet of ground Filter Roast coffee beans: 0.95Y
	Total mass of 2 packets of ground Espresso Roast coffee beans and 1 packet of ground Filter Roast coffee beans:
	$0.95(X_1 + X_2 + Y)$
	We want to find
	$P(0.95(X_1 + X_2 + Y) > 580)$
	$E(0.95(X_1 + X_2 + Y)) = 0.95(2 \times 200 + 205) = 574.75$

Qn	Solution
	$\operatorname{Var}\left(0.95\left(X_{1}+X_{2}+Y\right)\right) = 0.95^{2}\left(2 \times 5^{2}+8^{2}\right) = 102.885$
	$0.95(X_1 + X_2 + Y) \sim N(574.75, 102.885)$
	$P(0.95(X_1 + X_2 + Y) > 580) = 0.30237 = 0.302 (3s.f.)$

Qn	Solution
12(i)	A random sample means that every day between May and July for the past three
[2]	years has equal probability of being selected to form the sample. The <u>selection of</u>
	one day is independent of the selection of another day.
12(ii)	Unbiased estimate of population mean, \overline{x}
[2]	2104.2 25.07
	$=\frac{2104.2}{60}=35.07$
	Unbiased estimate of population variance, s^2
	$1 \left[(2104.2)^2 \right]$
	$=\frac{1}{60-1}\left[74698.8 - \frac{\left(2104.2\right)^2}{60}\right] = 15.331 \approx 15.3$
	Let X be the mid-day temperature of a randomly chosen day between May and July
[1]	for the past three years.
	Let μ be the population mean mid-day temperature between May and July for the
	past three years.
	H 22.0
	$H_0: \mu = 33.9$
	H ₁ : $\mu > 33.9$
12(iv)	Under H_0 , since $n = 60$ is large, by Central Limit Theorem,
[3]	$\overline{X} \sim N\left(33.9, \frac{15.331}{60}\right)$ approximately.
	$\begin{pmatrix} 60 \end{pmatrix}$
	Use <i>z</i> -test at 5% level of significance,
	_
	Using GC, the test statistics $\overline{x} = 35.07$ gives $z_{calc} = 2.3146$ and p-value = =
	0.010317 ≈ 0.0103
	Using GC, since <i>p</i> -value = $0.010317 \approx 0.0103 \le 0.05$
	Since <i>p</i> -value = $0.0103 \le 0.05$, we reject H ₀ and conclude that there is sufficient
	evidence at 5% level of significance to conclude that the climate is getting hotter.
12(v)	Does not indicate that the mean mid-day temperature at this place is getting hotter
[2]	=> Do not reject Ho.
	p -value > $\frac{\alpha}{100}$
	$0.010317 > \frac{\alpha}{100}$
	100

Qn	Solution
x	$0 < \alpha < 1.03$ (3 s.f.)
12(vi)	Let <i>Y</i> be the mid-day temperature of a randomly chosen day between May and July.
[3]	$Y \sim N(33.9, 2.3^2)$
	$H_0: \mu = 33.9$
	$H_1: \mu > 33.9$
	Under H _o , $\overline{Y} \sim N\left(33.9, \frac{2.3^2}{60}\right)$.
	Test Statistic, $Z = \frac{\overline{Y} - 33.9}{\sqrt{\frac{2.3^2}{60}}} \sim N(0,1)$
	Use z-test at 5% level of significance.
	Since the test indicated that the climate at this place is hotter ⇒ Reject H₀
	Method 1 (Using \overline{Y} distribution):
	Critical value: 34.388
	Rejection region: $\overline{y} \ge 34.388$
	Since we reject H _o , test statistic value is within the rejection region. $\therefore k \ge 34.4 (3 \text{ s.f.})$
	Method 2 (Using standardized test statistic):
	Corresponding test statistic value: $z = \frac{k - 33.9}{\sqrt{\frac{2.3^2}{60}}}$
	Critical value: 1.6449
	Rejection region: $z \ge 1.6449$
	Since we reject H _o , test statistic value is within the rejection region. $z = \frac{k - 33.9}{\sqrt{\frac{2.3^2}{60}}} \ge 1.6449$
	$\sqrt{60}$
	$k \ge 1.6449 \times \sqrt{\frac{2.3^2}{60}} + 33.9$
	<i>k</i> ≥ 34.388
	$k \ge 34.4 \ (3 \text{ s.f.})$