

RIVER VALLEY HIGH SCHOOL YEAR 6 PRELIMINARY EXAMINATION II

CANDIDATE NAME				
CLASS	6			
CENTRE NUMBER	S		INDEX NUMBER	
H2 CHEN	IISTR	Y		9729/03
Paper 3 Free R	Response			19 September 2017 2 hours
Candidates ans	wer on s	eparate paper.		
Additional Mate	rials:	Answer Paper		
		Cover Page		
		Data Booklet		

READ THESE INSTRUCTIONS FIRST

Write your name, class, centre number and index number on all the work you hand in. Write in dark blue or black pen on both sides of paper.

You may use a soft pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

Section A

Answer **all** questions.

Section B

Answer one question.

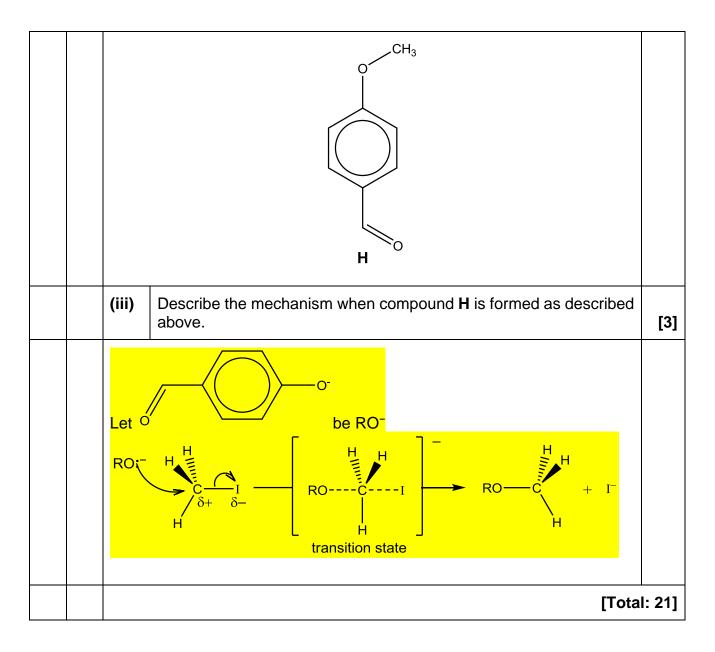
Begin each question on a fresh sheet of paper.The use of an approved scientific calculator is expected, where appropriate.A Data Booklet is provided. Do not write anything on it.You are reminded of the need for good English and clear presentation in your answers.

The number of marks is given in brackets [] at the end of each question or part question. At the end of the examination, fasten all your work securely together, with the cover page on top.

This document consists of **XX** printed pages.

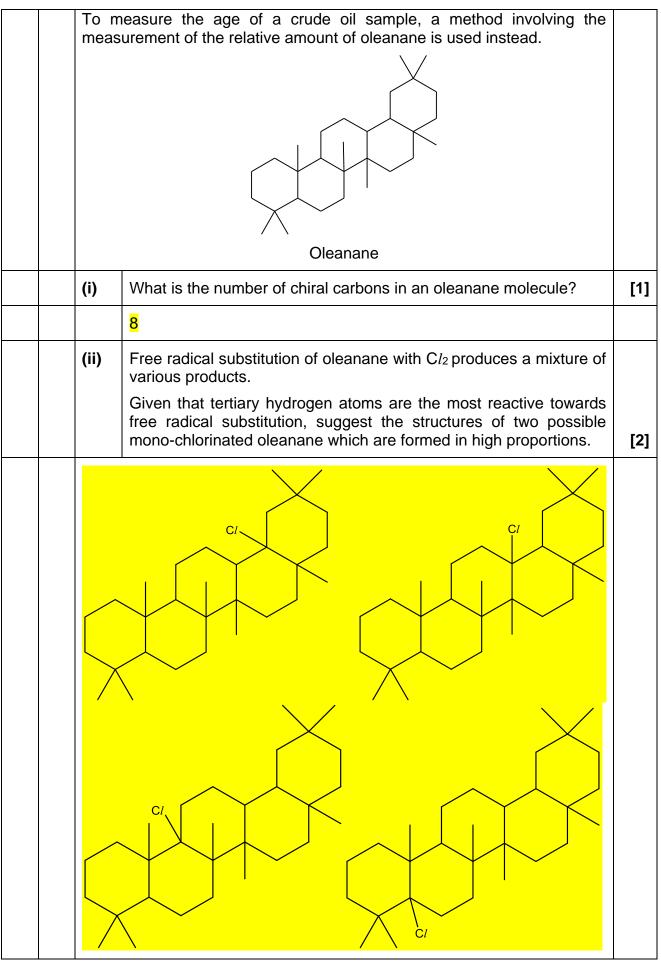
Section A

Answer **all** the questions in this section.

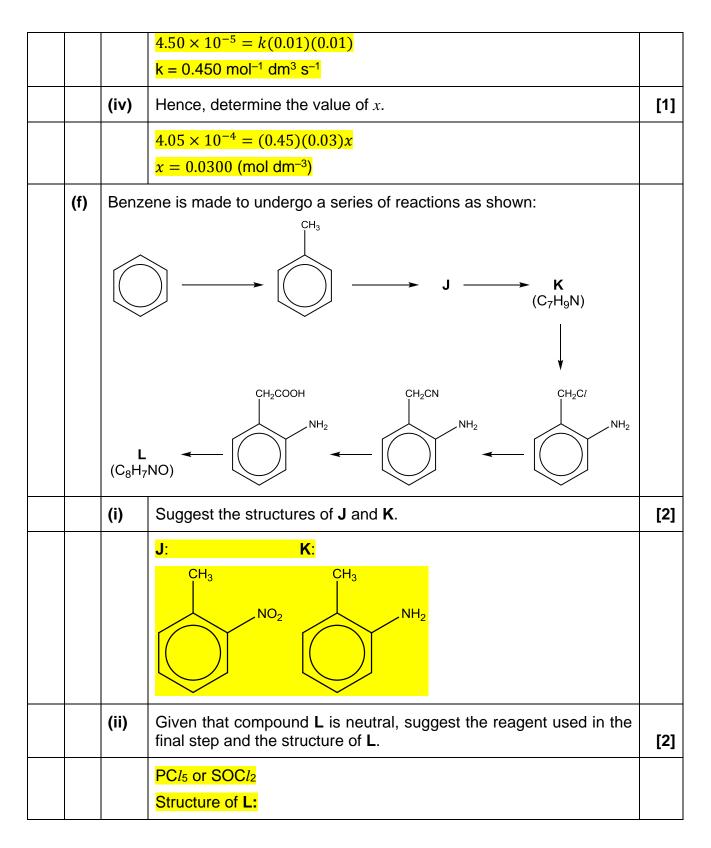

1	(a)	and a		itable conditions, SCl_2 reacts with water to produce a yellow solid acidic solution A . Solution A contains a mixture of $SO_2(aq)$ and compound.							
		(i)	State the of	rate the oxidation number of S in SCl2.							
			<mark>+2</mark>	<mark>⊦2</mark>							
		(ii)	Construct a	an equation	for the read	ction betwe	en SCl ₂ and	d water.	[1]		
			<mark>2SCℓ₂ + 2H</mark>	2 <mark>0 → S + S</mark>	30 ₂ + 4HC <i>l</i>						
		(iii)	to SO₃ as s A 2.00 L fla	In the Contact Process, one important step is the conversion of SO ₂ to SO ₃ as shown below. $2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$ A 2.00 L flask was filled with 0.0400 mol SO ₂ and 0.0200 mol O ₂ . At equilibrium, the flask contained 0.0296 mol of SO ₃ . Determine							
						0	_	280.	[3]		
			l / mol	2SO ₂	+	0 ₂	⇒	2SO₃			
			C / mol	-0.0296				0 +0.0296			
			E / mol	0.0290		-0.0148 0.0052		0.0290			
				0.0104		0.0032		0.0290			
			$ \frac{K_{c}}{=\frac{[0.0296]}{[0.0104/2]^{2}[}} = 3116 $ = 3120 mol								

	Tab	le 1.1	
	Time / min	Volume of O ₂ gas / cm ³	
	20	55	
	40	110	
	60	165	
	80	220	
(i)	Plot a graph of volume of O_2 g Use x axis: 2 cm for 10 min ; y		[
	See graph paper		
(ii)	Give equations for the reactio electrolysis of sulfuric acid.	ns that occur at each electrode in the	[2
	Cathode: $2H_2O(I) + 2e^- \rightarrow H_2(I)$	<mark>g) + 2OH⁻(aq)</mark>	
 	Anode: $2H_2O(I) \rightarrow 4H^+(aq) + C$	<mark>D₂(g) + 4e⁻</mark>	
(iii)		label a line (H ₂) to predict the volume en off during the same experiment.	[
	See graph paper. Each point i	s twice the value of graph in (ii).	
(iv)	U 1 7	label a line (O_2) to predict the volume en off if a current of 0.3 A was used tent.	[
	See graph paper. Each point i	s (3/7.5) the value of graph in (ii).	
(v)	graphite electrodes. The volu	tinum electrodes were replaced with me of gas collected at the anode was e of hydrogen gas collected was	
	•	as collected at the anode between the production of CO gas at the anode.	
	_	as produced at the anode.	[2
	•	roduction of CO gas at the anode.	e

		Vco = 2(40) = 80 cm³	
(c)		t 100 years ago, in a reaction discovered by German chemist Karl compound B was converted into compound C when heated with $H_{3}C \rightarrow C (C_{8}H_{8}O_{2})$ B	
	Comr	bound C is a structural isomer of B .	
	-	nsoluble in water but dissolves in aqueous sodium hydroxide.	
		es a yellow ppt with alkaline aqueous iodine and a white ppt aqueous bromine.	
	(i)	Suggest the structure for compound C .	[1]
		OH O Accept 1,2 and 1,3 isomers.	
	The v	various reactions of compound C can be represented as follows: $\begin{array}{c} D + E \\ I_2, \text{ NaOH} \\ C & Br_2 (aq) \\ RaOH (aq) \\ G \end{array}$	

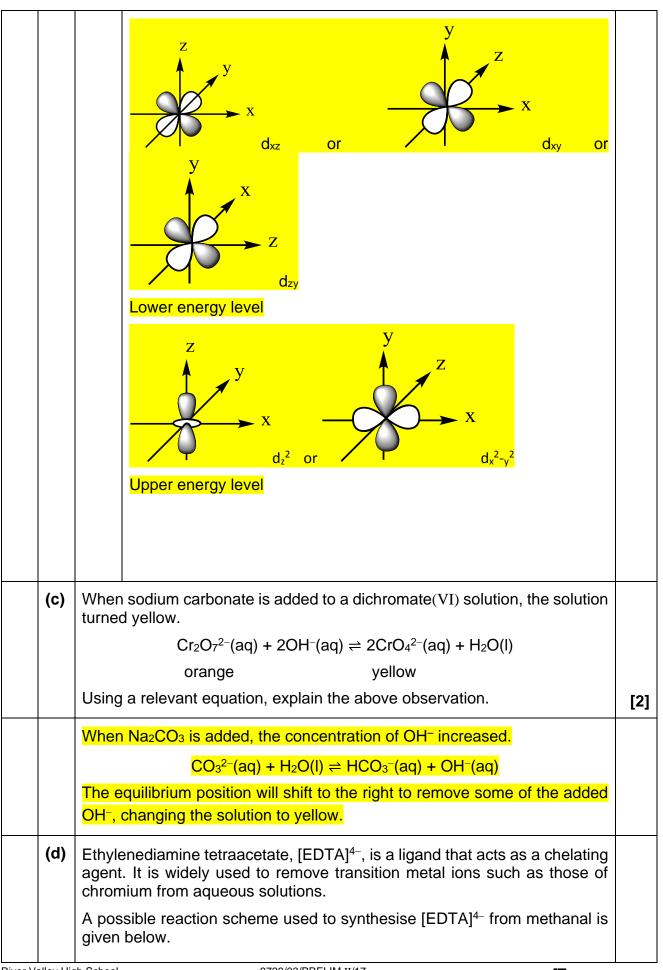

9729/03/PRELIM II/17

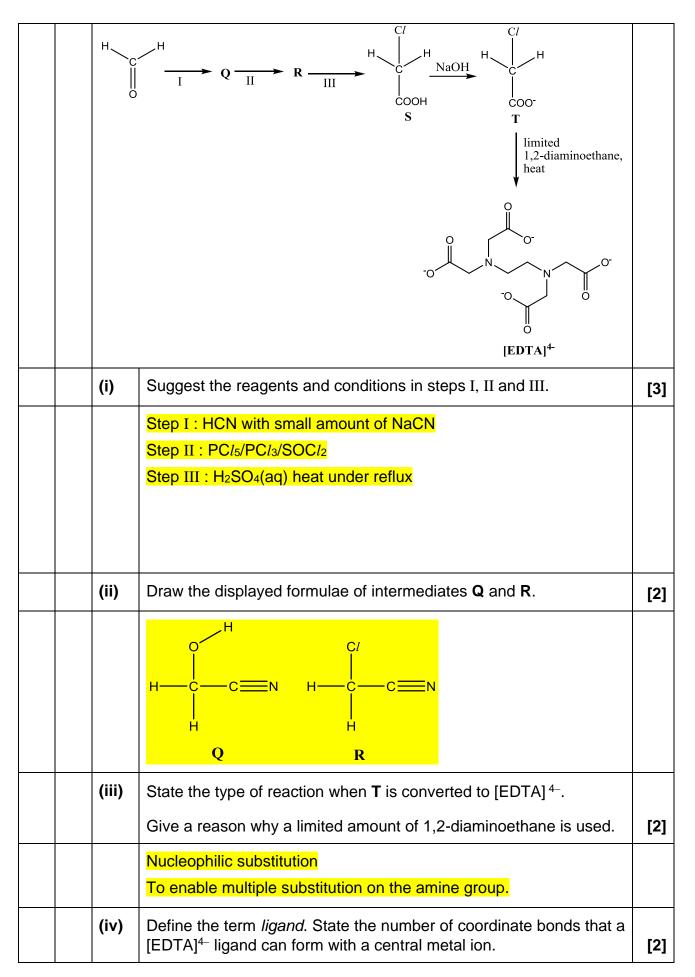
(ii)	Suggest the struct	ures for D to G .		[4]
	O ⁻ Na ⁺	<mark>CHI</mark> ₃	D and E are interchangeable.	
	D	E		
Br	OH Br	O ⁻ Na ⁺		
	F	G		
Acce	pt 1,2- and 1,3 iso	ners for all.		
Com	pound H , as shown	below, is another structu	ral isomer of B.	
It has	a ether functional g	group whose general forn	nula is R–O−R'.	
	pound H can be oxide ion and an alk		between a substituted	


In the late 1940s, Willard Libby developed the radiocarbon dating method for determining the age of an object containing organic material by using the properties of radiocarbon (¹⁴C), a radioactive isotope of carbon. The principle of carbon dating is as such:
 During its life, a plant or animal is exchanging carbon with its surroundings, so the carbon it contains will have the same proportion of ¹⁴C as the atmosphere. Once it dies, it ceases to acquire ¹⁴C, but the ¹⁴C within its biological material at that time will continue to decay, and so the ratio of ¹⁴C to ¹²C in its remains will gradually decrease.
 Because ¹⁴C decays with first order kinetics, the proportion of radiocarbon can be used to determine how long it has been since a given sample stopped exchanging carbon – the older the sample, the less ¹⁴C will be left.

(a)	analy	The ple of carbon dioxide gas (that contained both $^{12}CO_2$ and $^{14}CO_2$) was sed to determine the proportion of $^{14}CO_2$ found within. Analysis results ed that there is one $^{14}CO_2$ molecule for every 10^{12} CO ₂ molecules.	
	(i)	Calculate the number of ¹⁴ CO ₂ molecules in a 10.0 dm ³ carbon dioxide gas sample, measured under s.t.p.	[2
		Number of moles of CO ₂ = $\frac{10}{22.7}$ = 0.441 mol	
		Number of ¹⁴ CO ₂ molecules = $0.441 \times \frac{6.02 \times 10^{23}}{10^{12}}$	
	(ii)	$= 2.65 \times 10^{11} \text{ molecules}$ Calculate the mass of ¹⁴ CO ₂ in the 10.0 dm ³ sample.	[1
		Mass of ¹⁴ CO ₂ = $\frac{2.65 \times 10^{11}}{6.02 \times 10^{23}} \times (14.0 + 16.0 \times 2)$ = 2.03 × 10 ⁻¹¹ g	
	(iii)	Hence, explain why it would be difficult to determine the proportion of ¹⁴ CO ₂ by means of mass measurement.	[1
		The amount/mass of ¹⁴ CO ₂ is too small to be accurately measured.	
(b)	the gi	pre accurately determine the proportion of 14 C in a sample of graphite, raphite is vaporised and ionised to C ⁺ (g) ions. These ions were then ed through 2 electric plates.	
		that H ⁺ is deflected with an angle of 8.4°, what is the angle of ction for ¹⁴ C ⁺ ions under the same experimental set-up?	[1
	¹⁴ C+ c	deflected by $\left(\frac{1}{14}\right)(8.4) = 0.60^{\circ}$	
(c)		alf-life of ¹⁴ C is 5730 years. Determine the time that has elapsed for ce of wood from a dead tree to contain 30.0% of its original ¹⁴ C.	[2
	$\frac{30.0}{100} = \frac{lg}{n}$ $n = \frac{lg}{n}$ $n = 1.$	$\frac{1}{100} \left(\frac{30.0}{100}\right)$	
(d)	The a	age of crude oil is far older than what could be determined from carbon dating.	
1			

River Valley High School 2017 Preliminary Examination II 9729/03/PRELIM II/17


(e)	Benzene is obtained from the fractional distillation of crude oil. It can be converted to a series of different useful chemicals such as phenylamine. The formation of phenylamine involves the direct reaction of nitrobenzene and hydrogen gas in the presence of a heterogeneous catalyst. A series of experiments were carried out at a specific temperature to investigate the kinetics of this reaction: Experiment [nitrobenzene] / [H ₂] / mol dm ⁻³									
		_xperiment	mol dm ⁻³		mol dm ^{-3} s ^{-1}					
		1	0.010	0.010	4.50 × 10 ^{−5}					
		2	0.015	0.010	6.74 × 10 ^{−5}					
		3	0.020	0.020	1.80 × 10 ⁻⁴					
		4	0.030	x	4.05 × 10 ⁻⁴					
	(i)	Define the	e term heterogened	ous catalyst.		[2]				
		providing <u>energy</u> , a	an <u>alternative rea</u> and is <u>regenerate</u> eous catalyst is or	action pathway of ed at the end o	<u>rate of reaction</u> by lowered activation of the reaction. A same phase as the					
	(ii)	Determine hydrogen.		ction with respect	to nitrobenzene and	[2]				
	Comparing experiment 1 and 2, when [nitrobenzene] is increased to 1.5 times, the reaction rate is increased to 1.5 times. Hence, it is first order with respect to nitrobenzene. Let the rate equation be: Rate = k[nitrobenzene][H ₂] ^a Comparing experiment 2 and 3: $\frac{6.74 \times 10^{-5}}{1.80 \times 10^{-4}} = \frac{k(0.015)(0.01)^a}{k(0.02)(0.02)^a}$ $\frac{(6.74 \times 10^{-5})}{1.80 \times 10^{-4}} = \frac{(0.012)(0.01)^a}{(0.02)(0.02)^a}$ $a = 1$									
	(iii)	Calculate	the rate constant,	stating its units.		[1]				
		Using exp	eriment 1:							



	NH	
	[Tota	l: 20]

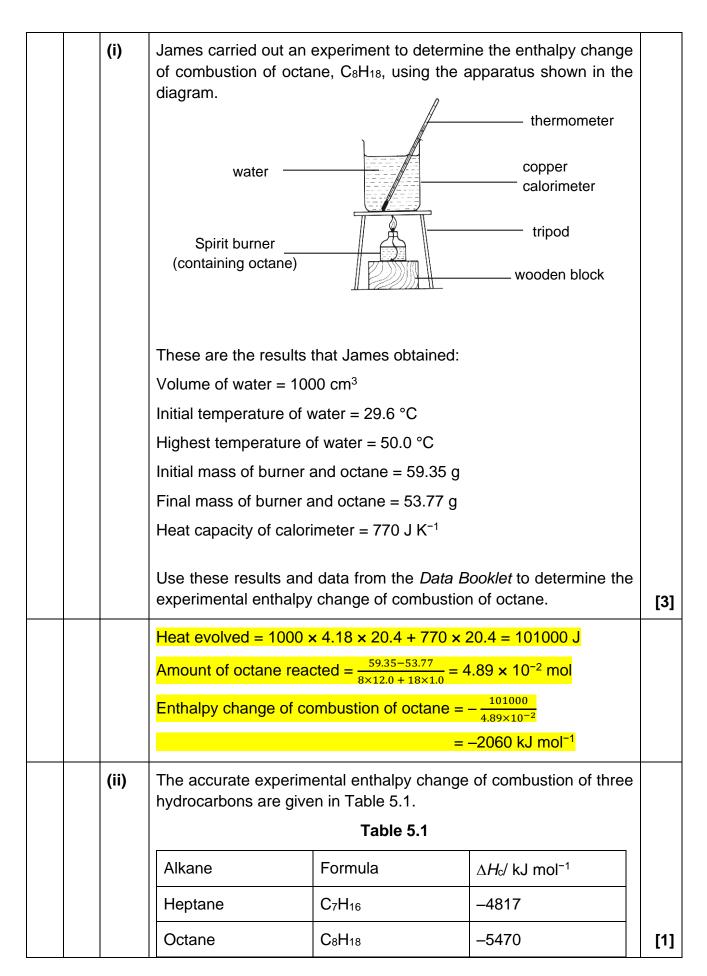
3			is a transitio	on meta	l commo	only fou	nd in the	e earth's	s crust. I	lt is usua	ally	
		Period Elemer	Ti	V	Cr	Mn	Fe	Со	Ni	Cu		
		Atomic radius /	0 132	0.122	0.117	0.117	0.116	0.116	0.115	0.117		
	(a)	Expla const	in why the ant.	atomic	radius 1	for trans	sition el	ements	remain	s relativ	ely	[2]
		<u>effect</u> There <u>attrac</u>	cross the transition elements, <u>nuclear charge increases</u> but <u>screening</u> ffect also increases due to <u>electrons added to the inner 3d subshell</u> . herefore, the effective nuclear charge is approximately the same. The ttraction between the nucleus and the valence electrons remain about <u>ne same</u> . Thus, atomic radius remains almost constant.									
	(b)	(i)	Write the e	electroni	c config	uration	for Cr ³⁺	ion.				[1]
			<mark>Cr³⁺ : 1s²2</mark>	s²2p ⁶ 3s	² 3p ⁶ 3d ³							
		(ii)	ii) Chromium forms octahedral complexes with the general formula CrCl ₃ .6H ₂ O. One of them dissolves in water to form a violet solution which turned green upon warming. An excess of aqueous silver nitrate was added separately to solutions containing 0.0100 mol of each complex. The violet complex gave 1.50 g of precipitate, while the green complex gave 4.40 g of precipitate.									
			Deduce the	e formu	lae of th	e two co	omplex i	ons.				[3]

	Write the equation for the conversion of the violet complex to the green complex.	
	Amt of chloride from the green complex = 4.40 / 143.5	
	= 0.0306 mol Ratio of chloride: complex = 3:1	
	Formula of green complex: [Cr(H ₂ O) ₆] ³⁺	
	Amt of chloride from violet complex = 1.50 / 143.5 = 0.0105 mol	
	Ratio of chloride : complex = 1:1 Formula of violet complex: [Cr(H ₂ O) ₄ (C <i>l</i>) ₂] ⁺	
	$\frac{[Cr(H_2O)_4(Cl)_2]^{+}(aq) + 2H_2O(l) \rightarrow [Cr(H_2O)_6]^{3+}(aq) + 2Cl^{-}(l)}{[Cr(H_2O)_4(Cl)_2]^{+}(aq) + 2Cl^{-}(l)}$	
(iii)	Using the Cartesian axes, like those shown below,	
	x	
	draw fully-labelled diagrams of the following :	
	 One of the d orbital at the lower energy level in an octahedral complex. Label this diagram "Lower energy level". One of the d orbital at the upper energy level in an octahedral complex. Label this diagram "Upper energy level". 	[2]

	A ligand is an ion or molecule which contains at least one atom bearing a lone pair of electrons which can be donated into the low-lying vacant orbital of the central metal atom or ion forming a co- ordinate (dative) bond. 6 coordinate bonds.	
	[Total	l: 19]

Section B

Answer **one** question from this section.


4	This	This question concerns the chemistry of the oxides of some elements.					
	(a)	The oxides of Period 3 show different reactions with water. Describe the reactions, if any, of the oxides SiO ₂ and SO ₃ with water. Include the approximate pH value of any resulting solutions, and write equations for any reactions that occur.	[3]				
		SiO ₂ <u>does not react with water/is insoluble</u> in water. Hence, pH remains at 7. SO ₃ <u>reacts/hydrolyse</u> with water to give <u>acidic solutions (pH = 2)</u> . SO ₃ (I) + H ₂ O(I) \rightarrow H ₂ SO ₄ (aq)					
	(b)	Carbon combusts in oxygen to form two common oxides, CO and CO ₂ . These oxides are also formed when solid magnesium oxalate, MgC ₂ O ₄ , is heated strongly.					

(i)		Write an equation, with state symbols, to represent the thermal decomposition of solid magnesium oxalate.					
	MgC ₂ C	$MgC_2O_4(s) \rightarrow MgO(s) + CO_2(g) + CO(g)$					
(ii)	i) Explain why magnesium oxalate decomposes at a lower temperature than barium oxalate, BaC ₂ O ₄ .						
	Mg^{2+} is smaller/has a smaller ionic radius and has a higher charge density, and hence a greater polarising power, than Ba^{2+} . It weakens the bonds in the $C_2O_4^{2-}$ anion to a greater extent and hence MgC_2O_4 is less thermally stable.						
selen	Carbon also forms compounds with other Group 16 elements like sulfur and selenium. The properties of some of these compounds, along with CO ₂ , are given in Table 4.1.						
			Table 4.1				
Com	npound	Structure	Dipole moment	Boiling point / °C			
(CO ₂	O=C=O	0	sublimes			
(CS ₂	S=C=S	0	46			
C	cos	S=C=O	0.71	-50			
С	OSe	Se=C=O	0.73	-22			
(iii)		n, in terms of st point of CS ₂ and		, the difference in the	[2]		
	Both CS ₂ and COS have <u>simple molecular structures</u> . CS ₂ has a <u>larger number of electrons</u> (or larger electron cloud) than COS. More energy is required to overcome the <u>stronger instantaneous dipole-induced dipole interactions between CS₂ molecules than the permanent dipole-induced dipole interactions between COS molecules. Hence, CS₂ has a higher boiling point.</u>						
(iv)	 Explain why CO₂ has no overall dipole moment. 						
	COSe has a greater dipole moment than COS.				[2]		
	 CO₂ is <u>linear</u> and hence the <u>dipoles cancel out</u>. <u>C=S bond is more polar than C=Se</u> (since S is more electronegative than Se). There is smaller difference between 						

			the dipole moment of C=O and C=S than that between C=O and C=Se.					
((c)	Aside from the common oxides, carbon forms a series of reactive oxocarbons. One such compound is tricarbon monoxide, C_3O , a reactive molecule found in space.						
		(i)	Suggest a structure of tricarbon pairs present.	Suggest a structure of tricarbon monoxide. Indicate clearly any lone pairs present.				
			<mark>:c==c==ö:</mark>					
			rbon monoxide is isoelectronic to ogen contains a C–C single bone	to cyanogen, (CN) ₂ . The molecule of d.				
		(ii)	•	m of cyanogen. In your diagram, you ns originating from each of the two he two nitrogen atoms.	[1]			
			■ N ■ X C × C ■ X N X	N X C X C X N X				
		(iii)	Suggest the shapes of tricarbo	Suggest the shapes of tricarbon monoxide and cyanogen.				
			They are both <u>linear</u> .					
((d)	heatir	Another oxycarbon is pentacarbon dioxide, C_5O_2 . It can be obtained by neating compound X , $C_6H_6O_3$, at a high temperature. X exists in equilibrium with its isomer, Y .					
		with 2 reacted	K does not react with aqueous bromine. X also gives an orange precipitate with 2,4-DNPH but does not give a silver mirror with Tollens' reagent. When eacted with limited bromine under ultraviolet light, X produced only one mono-brominated compound.					
		Y rea Z.	cts with dilute nitric acid to form	only one mono-nitrated compound,				
		Sugg	est the structures of compounds	X , Y and Z . Explain your reasoning.	[7]			
		<mark>Info</mark>	rmation/Reaction	Deduction				
		X/Y	has <u>C:H ratio of 1:1</u>	X/Y might contain a <u>benzene ring</u> .				
		subs	oes not undergo <u>electrophilic</u> stitution nor electrophilic tion with Br₂(aq)	X does not contain a phenol nor a C=C.				
		<mark>2,4-I</mark>	X undergoes <u>condensation</u> with 2,4-DNPH but does not undergo <u>oxidation</u> with Tollens' reagent.					

		subsone one Y ur subs	ndergoes <u>free-radia stitution</u> with Br ₂ to monobromo comp ndergoes <u>electroph</u> stitution with HNO one mono-nitrate	<u>symmetrical</u> . nol. ighly symmetrical.					
		<mark>Struc</mark>	ctures:	tures:					
		0		НО	ОН	OH Br HO OH			
			X	Y		Z			
	[[Tota	l: 20]		
5	(a)	-	oformylation is an alkenes.	industrial pro	cess for th	e formation of aldehydes			
		H ₃ C—	$_{0}C \xrightarrow{H} CH_{2} + CO + H_{2} \xrightarrow{H} H_{3}C \xrightarrow{H} H_{4}C \xrightarrow{H} H_{4$						
		(i)	Determine the oxidation numbers of carbon-1, carbon-2 and carbon-4 in butanal.						
			C1: +1 C2: -2 C4: -3						
		(ii)	The hydroformylation of propene can result in the formation of two isomeric products. Given that the mechanism of hydroformylation resembles the electrophilic addition of alkenes, suggest the structure of the other isomer apart from butanal.						

	(iii)	Write the K_{p} expression for the reaction above, stating its units.							
		$K_{\rm p} = \frac{P_{\rm CH_3CH_2CH_2CH_2}}{P_{\rm CH_3CH=CH_2}P_{\rm CO}P_{\rm H_2}} \qquad \text{Units: atm}^{-2} / \rm Pa^{-2}$							
	(iv)	When an equimolar mixture of propene, CO and H_2 at an initial pressure of 120 atm was allowed to reach equilibrium at 550 K, the partial pressure of butanal was found to be 38.5 atm.							
		Calculate a value of $K_{\rm p}$ at 550 K.	[2]						
		C₃H6 + CO + H2							
		Initial partial 40 40 40 0 pressure / Pa 40–38.5 40–38.5 40–38.5 38.5 pressure / Pa 1.5 = 1.5 = 1.5							
		$K_{\rm p} = \frac{38.5}{1.5 \times 1.5 \times 1.5} = 11.4 \ {\rm Pa}^{-2}$							
	(v)	Hence, predict the sign of ΔG for the reaction. Explain your reasoning taking into account the thermodynamic considerations of the reaction.							
		ΔG is negative due to $K_{\rm P}$ is large (greater than 1) and position of equilibrium lies very much to the right.							
(b)	solvei biofue	important use of hydrocarbons include fuels, plastics, paints and hts. In some countries, where crude oil is either scarce or expensive, ils such as ethanol are also increasingly being used for fuels instead procarbons.							

		Nonane	C ₉ H ₂₀	-6125				
		Suggest what the regular increase in the values of ΔH_c given in the table represents.						
		The regular increase combustion of the –Ch		J mol ^{−1}) is due to the				
	(iii)	Draw a pair of enantio	mers of heptane.		[1]			
		CH ₂ CH ₂ CH ₃ C CH ₂ CH ₃ CH ₃						
	(iv)	Alkanes are also used in dry cleaning of clothing and textiles. Dry cleaning involves soaking the clothes in a solvent other than water. Recently, the use of supercritical carbon dioxide as a dry cleaning solvent has also been gaining popularity. Supercritical carbon dioxide is a fluid state of carbon dioxide which is maintained at or above its critical temperature. Suggest two possible reasons why supercritical carbon dioxide is a better solvent than organic solvents like hexane.						
		CO2 is: cheap non-flammable readily available easily vaporise safe/non-toxic. odourless		high temperature				
(c)	instru	any modern methods of chemical analysis rely on the use of sophisticated struments. For many years, scientists relied on traditional laboratory paratus for chemical analysis.						
	-	lany qualitative tests and some volumetric analysis used depended on an oplication of the principles of solubility product.						
	Data f	Data for use in this question are given in Table 5.2.						
		Table 5.2						

·	r <u></u>		1		1	r	
			Colour	Solubility/ mol dm ⁻³	K _{sp} (25 °C)		
	AgCl		White	1.42 × 10 ^{−5}	2.02 × 10 ^{−10}		
	AgI		Yellow	8.95 × 10 ⁻⁹	8.01 × 10 ⁻¹⁷		
	Ag ₂ 0	CrO ₄	Red	9.10 × 10 ^{−5}	3.01 × 10 ⁻¹²		
	(i)	Cl ⁻ (a mus I: Ag	aq) or 0.0100 r t be present to		ntaining 0.100 mol dm ⁻³ hat concentration of Ag ⁺ of	[2]	
				= 2.02 × 10 ⁻⁹ mol dm ⁻³ - - = 1.73 × 10 ⁻⁵ mol dm ⁻³			
	(ii)	 Standard solutions of silver nitrate can be used in volumetric analysi to determine the concentration of chloride ions in a sample of wate When the titration is carried out, AgNO₃(aq) of known concentratio is added slowly to the solution that contains Cl⁻ ions. A small quantit of aqueous potassium chromate(VI), K₂CrO₄ (0.01 mol dm⁻³) is als added as an indicator. Using the data given in Table 5.2 and your answers in (c)(i), predicusing calculations what you would see at the beginning of the titratio and at the end-point and explain why K₂CrO₄(aq) can be used as a indicator in this titration. 			ons in a sample of water.) of known concentration Cl^{-} ions. A small quantity D_4 (0.01 mol dm ⁻³) is also answers in (c)(i) , predict beginning of the titration	[4]	
		<mark>At th</mark>	<mark>le beginning, a</mark>	white ppt AgCl is observ	ved		
		<mark>At th</mark>	At the end point, a red ppt of Ag ₂ CrO ₄ is observed				
		<mark>= [</mark> A	When all AgC <i>l</i> is precipitated, $[Ag^+] = 1.42 \times 10^{-5}$ when IP of Ag ₂ CrO ₄ = $[Ag^+]^2[CrO_4^{2^-}] = (1.42 \times 10^{-5})^2(0.01) = 2.02 \times 10^{-12}$ which is lower than K_{sp} of Ag ₂ CrO ₄ .				
			at the end poir ipitated.	nt, Ag ₂ CrO ₄ only precipit	tates when all AgC <i>l</i> has		
					[Tota	l: 20]	
	•	•					

9729/03/PRELIM II/17