General QA Skills

Observation Type	Things to Note	
General Guidelines	 Keep your bench and apparatus clean to prevent contamination. Make sure droppers, reactant bottles, litmus paper, universal indicator paper, etc. do not touch the side of the test tubes to prevent contamination. 	
	 When not in use, keep any droppers inside the reagent they are used to add. 	
	 4) Regardless of whether you are adding a solid, adding a reagent, heating, etc., always do it slowly first to prevent missing subtle observations. a) For reagents, add dropwise before adding in excess. b) For solids, add one small spatula before adding in excess. c) For heating, heat gently (on and off the flame) before heating strongly. 	
	5) Record any observations immediately because the degrees of change may be required.	
	6) Write in the margins the ions that you expect to be in the test tube based on your observations.	
	 Note down the condition for the observation (e.g. heating, adding what reagent) in the answer booklet. 	
	 If you know an observation must happen by theory or if the question tells you that it will happen, record the observation even if you don't see it. 	
Initial Colour	 Whenever a new reagent or solid is introduced, note down the colour in the answer booklet. Refer to the solid or reagent as "(colour) solid" or "(colour) solution" throughout the series of tests. It is insufficient to just identify its colour once. 	
	Additionally, for solids, if it is a distinctive feature, identify if the solid is shiny, a powder or a crystal.	
Precipitation	 Use a small amount of the unknown reagent to prevent dissolution of ppt. Whenever you see the solution becoming opaque, cloudy or have specks, you should note down precipitation. For the complex ion test, you must add only a few drops of acid. Even then, you will only see small specks. For the CO₂ test, you must add a very small volume of Ca(OH)₂. The ppt. is not very obvious. Frequently, a colour change will be observed. Do not discard the test tube if you don't see any change yet. Instead, set it aside. 	

Solubility	 Whenever a solid is added to a liquid or solution, note down the solubility of the solid in the answer booklet. You have to identify the liquid or solution added, and the colour of the resultant solution. "Soluble in excess NaOH (aq) giving a colourless solution" "Soluble in excess" Whenever testing for solubility, make sure to tap the test tube against the palm of your hand for a sufficiently long time to dissolve solids which may not be very soluble. If there is a lot of precipitate in the test tube, or the solute is not very soluble, decant the solution into the sink so that there is less ppt. in the test tube, and continue shaking.
	When you expect to test for solubility in excess reagent, add less of the reagent that produces a ppt. so that it is the limiting reagent and you will be able to see the solid dissolve.
Gases	 Before you carry out any test, always consider what gas might be produced and prepare the relevant gas tests. Normally, gases are produced when these tests are carried out: adding acids, metal strips, powders or heating. You will never be testing for SO₂ or NO₂ because these are toxic. If you did not get the expected observation, you did the test wrong. If you expect a gas to be observed, you should add more of the reagent or solid that gives you the gas so that you can see observations more clearly. Some gases may not be produced in a high concentration. Hence, the observations may be very faint. Here are two common examples: CO₂: Use limited Ca(OH)₂ because if not the ppt. is too faint to see. Cl₂: heat the mixture of KMnO₄ and Cl⁻.
Decomposition	 Whenever you are heating a solid directly: Add a small amount so you don't have to wait forever if the solid decomposes completely. E.g. (NH₄)₂CO₃ Hold the tube in an almost horizontal position to speed up heating. Note down in the answer booklet if water droplets appear at the mouth of the test tube. This typically happens for crystalline solids. When you are heating a liquid or solution directly: Heat gently first before heating strongly to prevent the test tube from cracking. Take the test tube off the flame when you start to see bubbles to prevent spurting. The test-tube should not be held in a fixed position all the time. Remove it from the flame every now and then and shake gently.

Colour Changes	 Whenever you start to see that there is a colour change, note it down immediately. Even if it is small or gradual, note down every step that you can. Do not only note down the initial and final colour. It is always safer to record more than less. Always leave a sample of an unknown substance aside to allow for change in colour to be seen if it happens after a while. The colour change can be seen more clearly if you look from the top of the test tube when placed against a white tile. 	
Filtration	Tear off a small piece of the filter paper to allow for better filtration.	
рН	Whenever possible, note down both the colour of the indicator <u>and</u> the exact pH in the answer booklet.	
Organic QA	 exact pH in the answer booklet. It is <u>extremely</u> important to add small amounts to prevent excess addition. When colour change is expected, add only a few drops of the coloured reagent. When precipitation is expected, add a few drops of the unknown liquid to prevent dissolution. And add the reagent in excess. When hydrolysis is being used, the reaction mixture has to be placed in a hot water bath for at least 5 minutes If there is an immiscible aqueous and organic layer <u>that needs to be mixed</u>, then tap against the palm of your hand to mix. 	

Frequently Tested Inorganic QA Tests

Inorganic QA Test	Interpretation and Inference	Observation
Add NaOH (aq). Heat.	Cation test. Prepare moist red litmus paper. Consider preparing another sample of the test to check for colour change over time. This is important if the initial sample is used for another test.	ppt., in excess NaOH (aq) Rapidly turning brown on contact with air Turning brown on contact with air To give a solution Colourless and pungent gas which turns moist red litmus paper blue produced on heating. Gas is NH ₃ $2Ag^+ + 2OH^- \rightarrow Ag_2O + H_2O$ (Dark) brown ppt Ag ₂ O is formed if Ag ⁺ is present, insoluble
Add NaOH (aq), add Al foil/Zn, heat	Davarda's Alloy test. i.e. NO ₂ ⁻ and NO ₃ ⁻ test. Prepare moist red litmus paper.	in excess NaOH (aq). 8AI + 5OH ⁻ + 18H ₂ O + 3NO ₃ ⁻ \rightarrow 8AI(OH) ₄ ⁻ + 3NH ₃ 2AI + OH ⁻ + 5H ₂ O + NO ₂ ⁻ \rightarrow 2AI(OH) ₄ ⁻ + NH ₃ 4Zn + 7OH ⁻ + 6H ₂ O + NO ₃ ⁻ \rightarrow 4Zn(OH) ₄ ²⁻ + NH ₃ 3Zn + 5OH ⁻ + 5H ₂ O + NO ₂ ⁻ \rightarrow 3Zn(OH) ₄ ²⁻ + NH ₃ Grey Al foil/Zn dissolves. On heating, vigorous effervescence of colourless, pungent gas which turns damp red litmus paper blue. Gas is NH ₃ .
Add NH₃ (aq).	Cation test, with exception of NH ₃ .	ppt., in excess NH ₃ (aq) Rapidly turning brown on contact with air Turning brown on contact with air To give a solution

		$\begin{array}{l} NH_3 + H_2O \rightleftharpoons NH_4^+ + OH^-\\ 2Ag^+ + 2OH^- \to Ag_2O + H_2O\\ Ag^+ + 2NH_3 \rightleftharpoons [Ag(NH_3)_2]^+\\ \textbf{(Light)} \text{ brown ppt } Ag_2O \text{ is formed if } Ag^+ \text{ is present, Soluble}\\ \text{ in excess } NH_3 \text{ (aq).} \end{array}$
	Silver halide dissolution test. Shaking for a longer duration is expected.	White ppt. is soluble in excess NH_3 (aq) to form a colourless solution. ppt. is AgCl.
		Cream ppt. is partially soluble in excess NH_3 (aq) ppt is AgBr.
		Yellow ppt. is insoluble in excess NH ₃ (aq). ppt is Agl.
Add concentrated NH ₃ .	Silver halide dissolution test. Shaking for a longer duration is expected.	White ppt. is soluble in excess concentrated NH_3 to form a colourless solution. ppt. is AgCl.
		Cream ppt. is soluble in excess concentrated NH ₃ to form a colourless solution. ppt is AgBr.
		Yellow ppt. is insoluble in excess concentrated NH_3 . ppt is Agl.
Add $Ba(NO_3)_2$ (aq) or $BaCl_2$ (aq).	SO ₄ ²⁻ , SO ₃ ²⁻ , CO ₃ ²⁻ test.	White ppt.
Add HCl (aq)/HNO ₃ (aq)	SO_3^{2-} , CO_3^{2-} test. Prepare a small volume of Ca(OH) ₂ (aq).	White ppt. soluble in acid to form a colourless solution.
		Effervescence of colourless, odourless gas which forms white ppt. with $Ca(OH)_2$ (aq). Gas is CO_2 .
		Effervescence of colourless, pungent gas which decolourises purple KMnO ₄ (aq). Gas is SO ₂ .

Add H ₂ SO ₄ (aq)	Ba ²⁺ test. Check other tests.	White ppt., insoluble in excess H_2SO_4 .
	Metals test. Prepare a lighted splint.	Grey solid dissolves.
		Effervescence of colourless, odourless gas which extinguishes a lighted splint with a 'pop' sound. Gas is H_2 .
	$SO_3^{2^-}$, $CO_3^{2^-}$, NO_2^{-} test. Check other tests. Prepare a small volume of $Ca(OH)_2$ (aq).	Effervescence of colourless, odourless gas which forms white ppt. with Ca(OH) ₂ (aq). Gas is CO_2 .
		Effervescence of colourless, pungent gas which decolourises purple KMnO ₄ (aq). Gas is SO ₂ .
		Effervescence of brown, pungent gas. Gas is NO ₂ .
	Complex ion test. I.e. test for Al ³⁺ , Zn ²⁺ , Cr ³⁺ , Cu ²⁺ . Check other tests.	ppt.
		Soluble in excess H ₂ SO ₄ (aq), giving a solution.
Add HCl (aq),	Metals test. Prepare a lighted splint.	Grey solid dissolves.
		Effervescence of colourless, odourless gas which extinguishes a lighted splint with a 'pop' sound. Gas is H_2 .
	$SO_3^{2^-}$, $CO_3^{2^-}$, NO_2^{-} test. Check other tests. Prepare a small volume of	Effervescence of colourless, odourless gas which forms white ppt. with Ca(OH) ₂ (aq). Gas is CO_2 .
	Ca(OH) ₂ (aq).	$2H^* + SO_3^{2-} \rightarrow SO_2 + H_2O$ Effervescence of colourless, pungent gas which decolourises purple KMnO ₄ (aq). Gas is SO ₂ .
		$2H^+ + NO_2^- \rightarrow NO + H_2O$

		$NO + \frac{1}{2}O_2 \rightarrow NO_2$ Effervescence of brown, pungent gas. Gas is NO_2 .
	Complex ion test. I.e. test for Al ³⁺ , Zn ²⁺ , Cr ³⁺ , Cu ²⁺ . Check other tests.	$[Cu(H_2O)_6]^{2+} + 4Cl^- \rightleftharpoons CuCl_4^{2-} + 6H_2O$ Dark blue solution turns yellow-green.
		ppt.
		Soluble in excess HCl (aq), giving a solution.
Heat.	Ag ⁺ , Pb ²⁺ test. Check other tests.	White ppt.
		Soluble in excess NH_3 (aq), giving a colourless solution.
	Oxidising agent test. Check other tests, especially for H_2O_2 . If H_2O_2 is present, top observation still holds	On heating, effervescence of greenish-yellow, pungent gas which turns moist blue litmus paper red, then bleaches it. Gas is Cl ₂ .
	but no additional observation. Prepare moist blue litmus paper.	Purple solution (KMnO ₄) decolourises
		Yellow solution (Fe ³⁺) turns pale green (Fe ²⁺)
		Orange solution ($Cr_2O_7^{2-}$) turns green (Cr^{3+})
Add HNO ₃ (aq).	Metals test. Prepare a lighted splint.	Grey solid dissolves.
		Effervescence of colourless, odourless gas which extinguishes a lighted splint with a 'pop' sound. Gas is H_2
	$SO_3^{2^-}$, $CO_3^{2^-}$, NO_2^{-1} test. Check other tests. Prepare a small volume of $Ca(OH)_2$ (aq).	Effervescence of colourless, odourless gas which forms white ppt. with Ca(OH) ₂ (aq). Gas is CO ₂ . Effervescence of colourless, pungent gas which decolourises purple KMnO ₄ (aq). Gas is SO ₂ .

	Complex ion test. I.e. test for Al ³⁺ , Zn ²⁺ , Cr ³⁺ , Cu ²⁺ . Check other tests.	Effervescence of brown, pungent gas. Gas is NO ₂ . ppt. Soluble in excess H ₂ SO ₄ (aq), giving a solution.
Add Al foil/Zn	Davarda's Alloy test. I.e. NO ₂ and NO ₃ test. Check other tests. Prepare moist red litmus paper.	Al foil/Zn dissolves in NaOH (aq). On heating, vigorous effervescence of colourless, pungent gas which turns damp red litmus paper blue. Gas is NH ₃ .
	Acids test. I.e. HCl, HNO ₃ , H ₂ SO ₄ , Cr ³⁺ , Fe ³⁺ , Al ³⁺ . Prepare a lighted splint. Check other tests.	Effervescence of colourless, odourless gas which extinguishes a lighted splint with a 'pop' sound. Gas is H ₂ .
Add AgNO₃ (aq)	Reducing agent test (Fe ²⁺ , H ₂ O ₂). Prepare a glowing splint.	Grey ppt. formed. Ag Pale green solution (Fe ²⁺) turns yellow (Fe ³⁺) Effervescence of colourless, odourless gas, which relights a glowing splint. Gas is O ₂ . (from H ₂ O ₂)
Add AgNO ₃ (aq) Add NH ₃ (aq)/ Add concentrated NH ₃ (aq)	Halides test.	 White/Cream/Yellow ppt. White ppt. is soluble in excess NH₃ (aq) and concentrated NH₃ to form a colourless solution. ppt. is AgCl. Cream ppt. is partially soluble in excess NH₃ (aq) and soluble in concentrated NH₃ to form a colourless solution. ppt is AgBr. Yellow ppt. is insoluble in excess NH₃ (aq). and

		concentrated NH_3 . ppt is Agl.
Add KI (aq)	Oxidising agent test. Check other tests.	Purple solution (KMnO ₄) turns brown (I_2)
		Yellow solution (Fe ³⁺) turns brown (colour of I_2 is darker than pale green Fe ²⁺)
		Orange solution ($Cr_2O_7^{2-}$) turns brown (colour of I_2 is darker than green Cr^{3+})
		Black solid (solid I_2) formed in a brown solution on adding excess KI (if applicable)
	Ag ⁺ / Pb ²⁺ test.	Yellow ppt.
		Yellow ppt. is insoluble in excess NH $_3$ (aq) and concentrated NH $_3$. ppt. is Agl/Pbl $_2$
Add Na_2CO_3 (aq) or $NaHCO_3$ (aq)	Acids test. I.e. HCl, HNO ₃ , H ₂ SO ₄ , Cr ³⁺ , Fe ³⁺ , Al ³⁺ . Check other tests. Prepare a small volume of Ca(OH) ₂ (aq).	$2[M(H_2O)_6]^{3+} + 3CO_3^{2-} \rightarrow 2M(OH)_3(H_2O)_3 + 3CO_2 + 3H_2O$ Effervescence of colourless, odourless gas which forms white ppt. with Ca(OH)_2. Gas is CO_2.
	(04).	ppt.
Add NaOH (aq)/NH₃ (aq)		ppt in excess NaOH (aq)/NH₃ (aq) to give a solution
Add HCl (aq) / H_2SO_4 (aq) / HNO_3 (aq)		ppt in excess acid to give a solution
Add excess H_2SO_4 (aq).	Reducing agent test (Fe^{2+} , H_2O_2 , Cl^- ,	Purple KMnO₄ decolourised.

Add KMnO₄ (aq).	I ⁻). Prepare a glowing splint. Prepare moist blue litmus paper.	 Pale green solution (Fe²⁺) turns yellow (Fe³⁺) Effervescence of colourless, odourless gas, which relights a glowing splint. Gas is O₂. (from H₂O₂) On heating, greenish-yellow pungent gas which turns moist blue litmus paper red, then bleaches it evolved. Gas is Cl₂. Colourless solution (KMnO₄) turns brown (I₂)
Add Cl₂ (aq) Add Hexane or CCl₄	Halide test. Check other tests.	 CI: Solution remained pale yellow When hexane/CCl₄ is added, 2 separate layers form Br: Solution turns orange on addition of Cl₂ (aq) When hexane is added, top hexane layer is orange-red and aqueous layer is orange When CCl₄ is added, bottom CCl₄ layer is orange-red and aqueous layer is orange I: Solution turns brown on addition of Cl₂ (aq) When hexane is added, top hexane layer is purple and aqueous layer is brown When CCl₄ is added, bottom CCl₄ layer is purple and aqueous layer is brown

Add H ₂ O ₂ (aq)	Reducing agent test (Fe ²⁺ , Cl ⁻ , l ⁻).	Pale green solution (Fe ²⁺) turns yellow (Fe ³⁺) Colourless solution (I ⁻) turns brown (I ₂)
		On heating, greenish-yellow pungent gas which turns moist blue litmus paper red, then bleaches it evolved. Gas is Cl ₂ .
	Oxidising agent test. Prepare a glowing splint.	Effervescence of colourless, odourless gas which relights a lighted splint. Gas is O_2 .
		Purple solution (KMnO₄) decolourises.
		Yellow solution (Fe ³⁺) turns pale green (Fe ²⁺)
		Orange solution $(Cr_2O_7^{2-})$ turns green (Cr^{3+})
Add Fe ²⁺ (aq)	Oxidising agent test. Check other tests.	Pale green (Fe ²⁺) solution turns yellow (Fe ³⁺)
		Purple solution (KMnO ₄) turns yellow (Fe ³⁺)
		Orange solution $(Cr_2O_7^{2-})$ turns green (colour of Cr^{3+} is darker than yellow Fe^{3+})
Add $Na_2S_2O_3$ (aq)	Oxidising agent test. Check other	Purple solution (KMnO ₄) turns colourless
	tests.	Yellow solution (Fe ³⁺) turns pale green (Fe ²⁺) Orange solution (Cr ₂ O ₇ ²⁻) turns green (Cr ³⁺)
		Brown solution (I_2) turns colourless (I^-)
Add Fe ³⁺ (aq)	Reducing agent test $(H_2O_2, Fe^{2+}, \Gamma)$. Prepare a glowing splint.	Effervescence of colourless, odourless gas which relights a lighted splint. Gas is O_2 .

		Pale green solution (Fe ²⁺) turns yellow (Fe ³⁺)
		Colourless solution (I^{-}) turns brown (I_{2})
	CO_3^{2-} , HCO_3^{-} test	Effervescence of colourless, odourless gas which forms white ppt. with Ca(OH) ₂ (aq). Gas is CO_2 .
Heat strongly over flame	Decomposition test	$\begin{split} M(NO_3)_2(s) &\to MO(s) + \frac{1}{2} O_2(g) + 2NO_2(g) \\ &= Brown pungent gas evolved. Gas is \mathsf{NO_2.} \\ &= Colourless, odourless gas which relights a glowing splint evolved. Gas is \mathsf{O_2.} \\ &= \ solid turns \ (where applicable) \\ \\ MCO_3(s) &\to MO(s) + CO_2(g) \\ &= Colourless odourless gas which forms white ppt. with \mathsf{Ca(OH)_2 evolved. Gas is CO_2. \\ &= \ solid turns \ (where applicable) \\ \\ \\ M(OH)_2(s) &\to MO(s) + H_2O(\underline{g}) \\ &= Water droplets form on mouth of the test tube. \\ &= \{_} solid turns \ (where applicable) \\ \\ \\ (NH_4)_2CO_3(s) &\to 2NH_3(g) + H_2O(g) + CO_2(g) \\ &= Colourless, pungent gas which turns damp red litmus paper blue evolved. Gas is \mathsf{NH_3 \\ &= Colourless odourless gas which forms white ppt. with \mathsf{Ca(OH)_2 evolved. Gas is CO_2. \\ &= White solid completely decomposes. \\ \end{aligned}$
	Water of Crystallisation test	IDK.xH ₂ O (s) \rightarrow IDK (s) + xH ₂ O (g) Water droplets form on the mouth of the test tube.
		crystals turn (where applicable)

Add Cu ²⁺ , then add KI (aq) Add Na ₂ S ₂ O ₃ (aq)	Cu ²⁺ characteristic test	$\begin{array}{l} Cu^{2^{+}}+2I^{-}\toCuI+1_{2}'I_{2}\\ Blue \ solution \ turns \ brown\\ White \ ppt. \ in \ brown \ solution \ (I_{2)}\\ \bullet The \ ppt \ may \ not \ be \ visible \ as \ it \ is \ blocked \ by \ I_{2}\\ Brown \ solution \ decolourises, \ leaving \ white \ ppt.\\ Cu^{+}+2S_{2}O_{3}^{2^{-}}\to[Cu(S_{2}O_{3})_{2}]^{3^{-}}\\ White \ ppt. \ Dissolves \ in \ excess \ Na_{2S_{2}O_{3}} \end{array}$
Add ClO [–] (aq) aka bleach	Chlorine gas test	greenish-yellow pungent gas which turns moist blue litmus paper red, then bleaches it evolved. Gas is Cl ₂ .

Frequently Tested Organic QA Tests

Organic QA Test	Interpretation and Inference	Observation
Add Br ₂ (aq)/ in CCl ₄ dropwise	Test for alkenes, phenols, phenylamines.	Orange/orange-red Br ₂ (aq) decolourises/ remains orange/orange-red
	Add 2-3 drops only. If Br ₂ is added in excess, it will not decolourise.	White ppt. formed (if applicable)/no ppt.
Add H ₂ SO ₄ (aq)	Test for alkenes, alkyl benzenes, 1° or 2° alcohols, aldehydes, esters	Purple KMnO ₄ decolourises/remains purple
Add KMnO₄ (aq) dropwise	(unless the alkoxy part is a phenoxy group).	Effervescence of colourless, odourless gas which forms white ppt. with Ca(OH) ₂ (aq). Gas is CO ₂ ./no effervescence
Warm.	Prepare a small volume of Ca(OH) ₂ (aq).	
Add NaOH (aq)	Test for alkenes, alkyl benzenes, 1° or 2° alcohols, aldehydes, esters	Purple KMnO ₄ decolourises/remains purple
Add KMnO₄ (aq) dropwise	(unless the alkoxy part is a phenoxy group).	Brown ppt. MnO ₂ formed/no ppt.
Warm.	8.00P).	
Add NaOH (aq)	Test for alkenes	Purple KMnO ₄ decolourises/remains purple
Add KMnO₄ (aq) dropwise		Brown ppt. MnO ₂ formed/no ppt.
Add NaOH (aq)/ethanolic, warm	Test for halogenoalkanes, test for acyl halides.	White/Cream/Yellow ppt. (can be determined by the rate of formation of ppt.)
Let cool, add excess HNO_3 (aq)		
Add AgNO₃ (aq)	Warm in hot water bath for 5 mins.	(Partially) soluble/insoluble in excess NH_3 (aq)/conc. NH_3

Add NaCO ₃ / NaHCO ₃ (aq)	Carboxylic acid test Prepare a small volume of Ca(OH) ₂ (aq).	Effervescence of colourless, odourless gas which forms white ppt. with $Ca(OH)_2$ (aq). Gas is CO_2 ./no effervescence
Add neutral FeCl ₃ (aq)	Phenol test	Yellow/Colourless solution turns violet (depending on whether you add phenol to FeCl₃ or vice versa)./remains yellow/colourless
Add AgNO ₃ (aq)	Aldehyde test	
Add NaOH (aq) Add NH ₃ (aq) until the precipitate dissolves. Warm.	* The addition of NaOH may not be included in some QA questions, but if you are required to propose the test, you need to include it. The silver mirror may appear as	Brown ppt. Brown ppt. dissolves in excess NH_3 (aq) $[Ag(NH_3)_2]^{2+} + RCHO + 3OH^- \rightarrow RCOO^- + 2H_2O + 2Ag + 4NH_3$
	precipitate if you did not carry out the test properly. Record 'silver mirror formed' anyway	Silver mirror formed/no silver mirror
Add CuSO₄ (aq) Add sodium tartrate dissolved in NaOH (aq) Warm	Aldehyde test excluding benzaldehyde The heating will generally take a very long time as this reaction is slow.	Pale blue ppt. Soluble in excess to give a dark blue solution Brick-red ppt. In blue solution/no brick red ppt. Blue solution decolourises/remains blue (if applicable)
Add 2,4-DNPH aka Brady's reagent dropwise	Carbonyl compound test. Add 2-3 drops only. If 2,4-DNPH is added in excess, it will not form a ppt.	Orange ppt. in orange solution./ no ppt.

Test with moist red litmus paper	Amine test	Moist red litmus paper turns blue.
	This is unlikely to come out	
Add NaOH (aq)	Methyl carbinol test, methyl carbonyl test.	Yellow ppt in brown/colourless solution (depending on what you see)/no yellow ppt.
Add I ₂ (aq) Warm	Warm in hot water bath for 5 mins.	Brown solution decolourises. (depending on what you see)/remains brown
Add NaOH (aq) Warm	Amine salts test, amide test. Prepare moist red litmus paper You might have to warm for a significant period of time while holding litmus paper above the test tube. Do not let the litmus paper touch the mouth of the test tube.	Colourless, pungent gas which turns moist red litmus paper blue evolved./no gas evolved. Moist red litmus paper remains red.
Add H_2SO_4 (aq) Add $K_2Cr_2O_7$ (aq)	Aldehyde test, alcohol test You will not have to carry out this test	Orange $K_2Cr_2O_7$ turns to green Cr^{3+} /remains orange.
warm		
Add Na (s)	Alcohols test, carboxylic acids test, phenols test You will not have to carry out this test	Na dissolves to form a colourless solution Vigorous effervescence of colourless, odourless gas which extinguishes a lighted splint with a 'pop' sound.
Add any aqueous solution	Acyl chloride test	White fumes of HCl/no white fumes

Add anhydrous PCl ₅ /anhydrous PCl ₃ /	Alcohol test, Carboxylic acid test.	White fumes of HCI/no white fumes
anhydrous SOCl ₂		

Colours of QA

Factors to Consider for whether you should realistically study this

- 1. What grade you want to get matters. Only study this if you want an A or A1 grade. This is the most important factor. If you don't want an A or A1 grade, please focus on something more efficient like practice papers. This is useless for you.
- 2. Cambridge sets a QA question every year (almost every year for 'O' Levels). So you can and will secure the QA marks if you do study this.
- 3. Cambridge <u>can and have</u> tested ions which are not provided in their data booklet. If you do not know what colour it is and assume it is an ion provided in the data booklet and write the corresponding colour, you will not get the mark for that question.
 - Theoretically you can answer all questions if you've 'mastered the QA skills', but if your 'QA skills' are shit, then at least you can use this.
- 4. This is **extremely** excessive. More than half of the chemicals provided here are not required knowledge for the 'A' Levels, and those in red font are chemicals which will not be tested due to their negative health impacts.
- 5. The time period in which you study this matters. If you study this before your school covers QA in practical lessons, then during the actual practical lessons, it will help you focus on learning the 'QA skills', rather than trying to cross check the data booklet for what colour it is. Do not study this when your school covers QA in practical lessons, because it will only confuse you. You may study this nearing the 'O' levels or 'A' levels to make sure you're prepared for anything Cambridge throws at you, but only after you've studied everything else.

Cu(OH) ₂ Pale blue	[Cu(NH ₃) ₄ (H ₂ O) ₂] ²⁺ Dark Blue	Fe(OH)₂ Green	Fe(OH)₃ Reddish-Brown
Cr(OH)₃ Grey-green	[Cr(OH) ₆] ^{3–} Dark Green	Mn(OH) ₂ Off-white	Mn(OH)₃ Brown
A DELECTION			
75	C/- Br- I-		
Non-transition metal hydroxides ⇒ White	СГ Вг I ⁻ Карана АдСl, AgBr, AgI White, Cream, Yellow	I ₂ (aq)/ I ₂ (org) Brown & purple	Br ₂ (aq)/ Br ₂ (org) Orange & Orange-red
	AgCl, AgBr, AgI		

*Pbl ₂ Yellow	ZnO hot and cold Yellow & white	*K ₂ Cr ₂ O ₇ and Cr ³⁺ Orange and Green	CrO_4^{2-} Pale Yellow
[Cr(H₂O) ₆] ³⁺ Purple/Green ¹	[Cr(NH₃) ₆]³+ Purple	[Co(H₂O) ₆]²⁺ Pink	[CoCl₄] ²⁻ Dark Blue
Co(OH) ₂ (top is pure, bottom has some [Co(NH ₃) ₆] ²⁺ Dark Blue	Co(OH)₃ Pale Brown	[Co(NH₃) ₆]²+ Brown	CoCO₃ or CoHCO₃ Pink

¹ It appears green because it is $[CrCl_2(H_2O)_4]^*$. But you can pretend the green solution is $[Cr(H_2O)_6]^{3*}$ in our syllabus.

		And	
[Co(H ₂ O) ₆] ³⁺ Blue green	[Ni(H ₂ O) ₆] ²⁺ Green	[Ni(NH ₃) ₆] ²⁺ Blue	[Ni(CN) ₆] ⁴⁻ Yellow/Orange
VO₂⁺/VO₃⁻ Pale Yellow	VO ²⁺ (top has some VO ₂ ⁺ , bottom is pure) Green/Blue	V ³⁺ (top has some VO ²⁺ , bottom is pure) Dark Blue/Green	V ²⁺ (top has some V ³⁺ , bottom is pure) Purple
[Fe(S ₂ O ₃) ₃] ^{2–} Violet	[Fe(CN) ₆] ⁴⁻ , [Fe(CN) ₆] ³⁻ Blue & Greenish-blue respectively	FeO4 ²⁻ Red-purple	[Cu(NO ₂) ₄] ^{2–} Green

[Mn(H ₂ O) ₆] ³⁺	MnO ₄ ^{2–} , MnO ₄ ^{3–}	CHI₃	[Fe(Ph-O) ₆]³-
Red/Orange	Dark green, Dark blue	Yellow	Violet
Ag (s) Tollen's Reagent	Cu ₂ O Fehling solution	2,4-DNPH	
Silver mirror	Brick red	Orange	