Right-Angled Triangle									
Area of Triangle		$1/2 \times base \times height$							
Pythagoras' Theore	em	$a^2 + b^2 = c^2$							
Trigonometry TOA CAH SOH (Right-Angled Triangle)									
$\tan \theta = \frac{O}{A}$									
$\cos\theta = \frac{A}{H}$		Opposite (O) a b b b b b b b b b b b b b b b b b b							
$\sin\theta = \frac{O}{H}$		β Adjacent (A)							
Non-Right-Angled Triang	le (Given)	1							
Area of Triangle		$\frac{1}{2}ab\sin c$							
Sine Rule		$\frac{\sin A}{R} = \frac{\sin B}{R} = \frac{\sin C}{R}$ or vice versa							
Cosine Rule		$a^{2} = b^{2} + c^{2} - 2bc \cos A$							
Straight-Line Graphs									
Gradient of Line		$\frac{y_2 - y_1}{x_2 - x_1}$							
Length of Line		$\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$							
		m = gradient							
y = mx + c		c = y-intercept							
Acute, Obtuse and Reflex	k Angles	T							
Acute Angle		$0^{\circ} < \theta < 90^{\circ}$							
Obtuse Angle		$90^{\circ} < \theta < 180^{\circ}$							
Reflex Angle		$180^\circ < \theta < 360^\circ$							
Bearings	Destine								
	Bearings	s always have up t	to nundreds place $\rightarrow 030^{\circ}$						
Standard Form		Nomo	CI Drofin	Cumbal					
Powers or 10	-	Name	Si Pretix	Symbol					
10 - 2		Pillionth	PICO-	p					
10		Millionth	NdIIO-	11					
10^{-3}	Tł	ousandth	Milli-	μ m					
10 ⁰		One							
10^{-10}	L T	Thousand	Kilo-	k					
10 ⁶		Million	Mega-	M					
109		Billion	Giga-	G					
10 ¹²		Trillion	Tera-	Т					
Completing the Square									
$ax^2 + bx + c$	$a(x^2 +$	$\frac{b}{a}x + \frac{c}{a}$ a	$\left[(x+\frac{b}{2a})^2 - \left(\frac{b}{2a}\right)^2 + \frac{c}{a}\right]$	$a(x+h)^2 + k$					
Coefficient of x^2 must be +1 $a(x - h)^2 + k$									
$ax^2 - bx + c$	$a(x^2 -$	$-\frac{b}{a}x + \frac{c}{a}$ a	$\left[(x - \frac{b}{2a})^2 - \left(\frac{b}{2a}\right)^2 + \frac{c}{a} \right]$						
Turning point = $(-h, k)$									

Interest								
Simple Interest				$Interest = Principal \times \frac{Rate}{100} \times Number of Times$				
Compound Interest (Given)		$Total amount = Principal \left(1 + \frac{Rate}{100}\right)^{Number of Times}$						
Congruent Triangles								
	Proof			Explanation				
	SSS (Side-Side-Sid	le)	All three corresponding sides are equal					
A	SA (Angle-Side-Ar	ngle)	Two corresponding angles and the line between them are equal					
SAS (Side-Angle-Side)		Two corresponding sides and the angle between them are equal						
RHS	6 (Right-angled Tri	angle,	Right-angled triangle, when hypotenuse and one corresponding side					
	Hypotenuse, Sid	e)		are equal				
Similar	^r Triangles							
				Proofs				
1			Tw	o corresponding angles are eq	qual			
2		R	atio o	f three corresponding sides a	re equal			
3	Rat	io of 2 corr	espor	nding sides and the angle betw	veen them are equal			
Similar	^r Figures							
	Length			1	: 5			
	Area			1:5 ² -	→ 1:25			
	Volume / Mass			1:53 -	→ 1:125			
Arc Ler	ngth and Sector A	rea		_				
			Degree		Radian (given)			
	Arc Length		$\frac{\theta^{\circ}}{360}^{\circ} \times 2\pi r$		rθ			
Sector Area		$\frac{\theta^{\circ}}{360^{\circ}} \times \pi r^2$		$\frac{1}{2}r^2 heta$				
Convei	rsion of Degrees t	o Radian						
		T		$\pi rad = 180^{\circ}$				
Deg	rees to Radian		$\frac{\theta^{\circ}}{180^{\circ}} \times \pi rad$					
Radian to Degrees			$\frac{\theta \ rad}{\pi \ rad} imes 180^{\circ}$					
Angle I	Properties							
	Property	/	Abbreviation		Example			
	· · ·			Parallel Lines				
Sum of co – interior angles = 180°		(co-int ∠s)	\rightarrow θ \rightarrow α					
Alternate angles are equal		(alt∠s)	$\xrightarrow{\alpha \qquad \theta}$					
Corresponding angles are equal		(Corresp ∠s)	$\rightarrow \qquad \alpha \qquad $					
Polygon								
		Sum of in	terior	angles in a polygon = $(n - 2)$) × 180°			
Sum of exterior angles in a polygon $= 360^{\circ}$								

Chords of Circle							
Perpendicular bisector of a chord of a centre of the cir	(⊥	bisector of chord)					
Perpendicular line from centre of circle t	(⊥ fror	n centre bisects chord)					
Equal chords of a circle are equidistant from the centre of the circle			ual chords, equidistant from centre)				
Properties of Circle							
Property	Short form		Example				
Angle at centre = 2 x Angle at circumference	(∠ at centre = 2 ∠ at circumference)		А 60° 240° С				
Angle in a semicircle is a right angle	(∠ in a semicircle)						
Angles in the same segment are equal	(∠s in the same segment)						
Sum of angles in the opposite segments is 180°	(∠s in opp. segments)						
Tangent to circle is perpendicular to radius	(tangent⊥to radius)						
Tangents from external point are equal Line joining exterior point and centre of circle bisects angle between tangents (OB bisects ∠ABC)	(tangents from ext. points)		A O. MathBits.com				