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1 A triangle with a base of ( )3 2+ cm has an area of ( )12 7 3+ cm2. Find the 

perpendicular height of the triangle, leaving your answer in the form ( )3a b+ cm, where 

a and b are integers. 

 
 
 
[4] 

 
 

 ( )1 3 2 12 7 3
2

h+ × = +  

1 12 7 3 3 2
2 3 2 3 2

h + −
= ×

+ −
 

1 12 3 24 7(3) 14 3
2 3 4

h − + −
=

−
 

1 2 3 3
2 1

h − −
=

−
 

1 3 2 3
2

h = +  

6 4 3h = +  

 
  

M1 

M1 

M1 

A1 
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2 (a) The equation of a curve is 2 4 16y px x p= − + . Find the range of values of p given 
that the curve lies completely above the x-axis. 
 
Discriminant = 2( 4) 4( )(16 )p p− −  

                     = 216 64 p−     

 
216 64 0p− <  
216 64 p<  

2 1
4

p >  

 

1
2

p < −      ,     1
2

p >  

(reject as p > 0)  

 
 

 
[3] 

    
 (b) Find the value of h for which the line 2y x h= +  is a tangent to the curve 

22 6 5y x x= − + . 
 

2y x h= +  --- (1) 
22 6 5y x x= − +   --- (2) 

 

 
[4] 

  Sub (1) in (2): 22 2 6 5x h x x+ = − +   

   22 6 2 5 0x x x h− − + − =  

   22 8 5 0x x h− + − =  

 

 Discriminant = 2( 8) 4(2)(5 ) 0h− − − =  

            64 40 8 0h− + =  

3h = −  

M1 

A1 

A1 
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 Given that 5tan

12
A =  and 3sin

5
B = − , and that A and B are in the same quadrant, without 

using a calculator, calculate the values of  
 

 

 (a) cos ec ( )A− , 
 
 
 
 
 
 
 

)sin(
1)(eccos

A
A

−
=−

    - M1 

     
Asin

1
−

=       

     1
5

13

=
− − 

 

 

          13
5

=      - A1 

 

[2] 

 (b) sin 2B , 
 

sin 2 2sin  cosB B B=  
3 4 24sin 2 2
5 5 25

B   = − − =  
  

    - A1 

 
 
 
 

[1] 

 (c) tan( )A B+ . 
 
 

BA
BABA

tantan1
tantan)tan(

−
+

=+

       

                   

5 3
12 4

5 31
12 4

   +   
   =
   − ×   
   

    - M1  

                 56
33

=      - A1 

 

[2] 

    

3 

13 

y 

−12 x 
A 

−5 
5 

y 

−4 x 
B 

−3 
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4 (a) Solve the equation ( ) 0212172 12 =+−+ xx . 
 

( ) 0212172 12 =+−+ xx  

( ) ( )2 12 2 17 2 21 0x x× − + =  

Let 2xu = , 
22 17 21 0u u− + =  

(2 3)( 7) 0u u− − =  
3
2

u =      ,     7u =  

32
2

x =     ,    2 7x =  

3lg 2 lg
2

x  =  
 

    ,    lg 2 lg 7x =  

3lg
2

lg 2
x

 
 
 =          ,     lg 7

lg 2
x =  

 
0.585x =           ,       2.81x =  

 
 
 
 

[4] 

  

M1 

M1 

M1 

A1 
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Explain why the equation ( )2 12 17 2 0x x p+ − + =  has no solution if 136
8

p > . 

 

 

  Discriminant = 2( 17) 4(2)( )p− −  
                      = 289 8 p−  
 

Since 136
8

p >  ,  8 289p− < −  

                            289 8 0p− <  
                             ∴Discriminant < 0 
 

Hence, the equation has no solution if 136
8

p > . 

 
 
 
 
 

 

  

(b) [2] 

Let 2xu = , 22 17 0u u p− + =  
 
D < 0,  ( )217 4(2)( ) 0p− − <  
                   289 8 0p− <  

                    136
8

p >  

 

Hence, the equation has no solution if 136
8

p > . 

 

M1 

A1 

A1 

M1 



Page 8 of 24 
 

 
 

5 The mass, m grams, of a radioactive substance remaining, t days after being measured is 
given by 0.0110 0.2tm e−= + . 
 

 

 (a) Find the initial mass.  
 
Initial mass = 0.01(0)10 0.2e− +  
                    = 10.2 g 
 
 
 
 
 
 
 
 
 
 

[1] 

 (b) Sketch the graph 0.0110 0.2tm e−= +  for t ≥  0.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[2] 

A1 

m 

t 
0 

0.2 

10.2 

0.0110 0.2tm e−= +  

B1 – Correct shape 
B1 – Correct intercept 
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 (c) Find the least number of days it takes before the amount of substance is reduced to 

5% of its initial mass.  
 

0.0110 0.2 0.05(10.2)te− + <  
0.0110 0.2 0.51te− + <  
0.0110 0.31te− <  

0.01 0.031te− <  

0.01 ln(0.031)t− <  

347.37t >  

 

Least number of days = 348 

 
 
 
 
 
 
 
 
 
 

 
[3] 

 (d) Explain why the mass of the radioactive substance can never be less than 0.2 g.  [2] 
 
 
 Since 0.01 0te− >  

 0.0110 0te− >  
0.0110 0.2 0.2te− + >  

 

Therefore, the mass of the radioactive substance can never be less than 0.2g.  

M1 

M1 

A1 

A1 

A1 
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6 The polynomial baxaxx +−− 232 23  has a factor 12 −x  and leaves a remainder of  –8 
when divided by 1x − .  
 

 

 (a) Find the values of a and of b. 
 

3 21 1 1 12 3 2 0
2 2 2 2

f a a b       = − − + =       
       

 

1 3 0
4 4

a a b− − + =  

7 4 1a b− =    -- (1)  
 

(1) 2 3 2 8f a a b= − − + = −  
5 10a b− =  

5 10b a= −    -- (2)  
 
Sub (2) in (1): 
7 4(5 10) 1a a− − =  
7 20 40 1a a− + =  

13 39 0a− + =  
3a =  

 
5(3) 10b = −  

   = 5 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[4] 

  

M1 

M1 

M1 

A1 
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(b) 

 
Using the values of a and b in part (a), factorise the polynomial completely.  
 
 
 
 
 
 
 
 
 
 
 
 
 

 
3 2 22 3 6 5 (2 1)( 4 5)x ax x x x x− − + = − − −  

                               = (2 1)( 5)( 1)x x x− − +  

 
 
 
 
 
 
 

 
[3] 

  

M1 

M1 

A1 
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7 A circle, 1C  has a diameter AB where A is the point (6, –2) and B is the point (12, 6).  

 

 

 (a) Find the equation of 1C . 
 
 

Centre = 6 12 2 6,
2 2
+ − + 

 
 

 = ( )9,2  

 

Radius = 2 2(9 6) (2 2) 5− + + =  
 
Eqn of C1: 2 2( 9) ( 2) 25x y− + − =      or     2 2 18 4 60 0x y x y+ − − + =  
 
 
 
 
 
 
 
 

[2] 

 (b)  Show that the equation of the tangent to the circle at A is 4 3 10y x+ = . 
 
 

Gradient of AB = 6 2 4
12 6 3
+

=
−

 

 

Gradient of tangent = 3
4

−  

 

At (6, –2), 32 ( 6)
4

y x+ = − −  

                  4 3 10y x+ =  

 
 
 
 
 
 
 
 
 
 
 

[2] 

A1 

M1 for either 1 

A1 

M1 
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 (c) 
Another circle, 2C , has its centre at A. Given that the area of 2C  is 1

9
 that of 1C , 

find the equation of 2C .  
 

Area of 2C = 1
9
× area of 1C  

Radius of 2C = 1
3
× radius of 1C  

                     = 5
3

 

 

Hence, Eqn of 2C : 2 2 25( 6) ( 2)
9

x y− + + =  

 
 
[2] 

  

M1 

A1 
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8 The function 1 0.5cos( )y bx= −  is defined for 0 x π≤ ≤  and b is a positive integer. 

 
 

 (a) State the amplitude.  
 
Amplitude = 0.5 
 
 
 
 
 

[1] 

 (b) 
It is given that the period of y is 2

3
π . Find the value of b.  

 
2 2

3b
π π
=  

 
b = 3 
 
 
 

[1] 

 (c)  Using your answer in part (b), sketch the graph of 1 0.5cos( )y bx= − , for 0 x π≤ ≤ . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[3] 

  

B1 

A1 

y 

x 

0.5 

1.5 

3
π  2

3
π  π  0 

Correct shape – A1 
Correct number of cycles – A1 
Correct labels on axes – A1  
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 (d) Hence, explain how the solutions of the equation cos( ) 3 0bx xπ + =  can be obtained 

from the graph sketched in part (c). 
 
[3] 

  
 
 cos(3 ) 3 0x xπ + =  
 3 cos(3 )x xπ= −  

 3 1 cos(3 )
2 2

x x
π
= −  

3 11 1 cos(3 )
2 2

x x
π
+ = −  

 
  

Draw the line 3 1
2

xy
π

= +  

 
The solutions to cos(3 ) 3 0x xπ + =  are the x-coordinates of the points of intersections  
between the line and the curve.   

A1 

M1 

A1 
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9 Solve 23cos 2 2sin 2x x=  for 0 360x° °≤ ≤ . [5] 
 

23cos 2 2(1 cos 2 )x x= −  
23cos 2 2 2cos 2x x= −  

22cos 2 3cos 2 2 0x x+ − =  

(2cos 2 1)(cos 2 2) 0x x− + =  

2cos 2 1 0x − =                         or                     cos 2 2 0x + =  

1cos 2
2

x =                                                           cos 2 2x = −  

60α =                                                               ∴There are no solutions.  

2 60 ,300 ,420 ,660x =      

30 ,150 ,210 ,330x =      

 

  

M1 

M1 M1 

A1 

A1 
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Given that 
3 4

xy
x

=
−

, find d
d
y
x

. 

 

2

d (3 4)(1) 3
d (3 4)
y x x
x x

− −
=

−
 

      2

4
(3 4)x

= −
−

 

 
 
 
 
 

 
[2] 

 
 
 
 
 

   

 (b) Hence, show that y is a decreasing function for all real values of x. [2] 
 

For all real values of x, 2(3 4) 0x − >  

   2

1 0
(3 4)x

>
−

 

   2

4 0
(3 4)x

−
<

−
 

d 0
d
y
x

∴ <  

 

 Since d 0,
d
y
x
< y is a decreasing function for all real values of x.  

10    (a) 

M1 

A1 

M1 

A1 
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11  

 
  

 
 
 
 
 
 

 

In the diagram below, the length, L cm, of a spring at time, t seconds is given by the 

equation 20 3sin 4
2

L t π = + − 
 

.  

 
 
 
 
 
 
 
 
 

 

 (a) Show that the shortest length of the spring is 17 cm.  

 

 

Shortest length occurs when sin 4 1
2

t π − = − 
 

 

min 20 3( 1) 17L cm∴ = + − =  

 

 

1 sin 4 1
2

t π − ≤ − ≤ 
 

 

3 3sin 4 3
2

t π − ≤ − ≤ 
 

 

17 20 3sin 4 23
2

t π ≤ + − ≤ 
 

 

 

min 17L cm∴ =  

 

 

 

 

 

 

 

 

[2] 

L cm 

M1 

A1 

A1 

M1 
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 (b) Find the time when the spring first reaches 22 cm.  [3] 
  

22 20 3sin 4
2

t π = + − 
 

 

2 3sin 4
2

t π = − 
 

 

 

2 sin 4
3 2

t π = − 
 

 

0.72972α =  
 

4 0.72972
2

t π
− = , … 

0.5751t = , … 
 

0.575t∴ = sec  A1 

M1 

M1 
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12 The diagram below shows a semicircle with diameter PQ, with the point R on the 
circumference of the semicircle. A rectangle STUV is drawn within the triangle PQR 
where ST lies on PQ. U and V are points on QR and PR respectively. It is given that  
PR = 8 cm and QR = 6 cm.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 (a) Find the perpendicular distance from R to PQ. 
 

Since 90PRQ∠ =  (∠ in a semicircle), 2 28 6 10PQ cm= + =  
 

Area 21 6 8 24
2

PRQ cmΛ = × × =  

Perpendicular Distance = 24 4.8
0.5 10

cm=
×

 

 
 
 
 
 
 
 
 
 
 

[2] 

  

P Q 

R 

S T 

U V 

x cm 

8 cm 
6 cm 

A1 

M1 
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 (b) It is given that SV is x cm. Show that the area of rectangle STUV, A m2 is given by

22510
12

A x x= − . 

 

Since RVUΛ is similar to RPQΛ , 1

2

hVU
PQ h

=  

                                                       4.8
10 4.8
VU x−

=  

                                                       2510
12

VU x= −  

 

Area = 2510
12

x x − 
 

 

        = 22510
12

x x= −     (shown)  

 
 
 
 
 
 
 

 
[3] 

 (c) Calculate the value of x for which A has a stationary value.  [2] 
 
 

 dA 5010
d 12

x
x
= −  

  

 Since dA 0,
dx

=   5010 0
12

x− =  

12
5

x =   

A1 

M1 

M1 

A1 

M1 
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13 A function f (x) is defined for all real values of x such that 2''( ) 4 xf x e−= . It is given that 
the gradient of the curve y = f (x) is 3 when x = 0 and the curve passes through the  
point ( )4,2 −e .  
 

 

 (a) Find an expression for f (x). 
 

2''( ) 4 xf x e−=  
24'( )

2

xef x c
−

= +
−

 

043
2
e c= +
−

 

5c =  
 

2'( ) 2 5xf x e−= − +  
2

1( ) 5xf x e x c−= + +  
4 2(2)

15(2)e e c− −= + +  

1 10c = −  
 

2( ) 5 10xf x e x−∴ = + −  
 
 
 
 
 

[5] 

 (b) Find the coordinates of the stationary point of the curve and determine the nature of 
this stationary point.  

 
[4] 

  
 2'( ) 2 5 0xf x e−= − + =  

 52 ln
2

x  − =  
 

 

0.45814x = −  
 

2(0.45814)''( ) 4f x e−=    (> 0)  
 

( 0.458, 9.79)∴ − −  is a minimum point.   

M1 

M1 

M1 

A1 

A1 

A1 

M1 

M1 
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14 A particle moves in a straight line such that, t seconds after leaving a fixed point O, its 
velocity, v ms-1, is given by 562 +−= ttv . The particle comes to instantaneous rest, 
firstly at A and then at B.  
 

 

 (a) Find an expression, in terms of t, for the distance of the particle from O at time t.  
562 +−= ttv  

2( 6 5)s t t dt= − +∫  

   = 
3

23 5
3
t t t c− + +  

s = 0, t = 0, c = 0 
 

3
23 5

3
ts t t∴ = − +  

[2] 

 (b) Find the total distance travelled by the particle in the first 5 seconds after passing O.  
 
v = 0 

2 6 5 0t t− + =  

( 5)( 1) 0t t− − =  

1t =      ,      5t =  

12
3

s =   ,     18
3

s = −  

                        

Distance travelled = 
1 12 2 8
3 3

 × + 
 

 

                              = 13m 

 

 
 

[4] 

 (c) Given that C is a point at which the particle has zero acceleration, determine, with 
working, whether C is nearer to O or to B.  

 
[3] 

   
Max speed  a = 0 

 

  dv
dt

a =   

  2 6 0t − =   
  3t =   
  9 27 15 3s = − + = −   

At t = 3, distance from B = 16
3

 

Hence, C is nearer O.  
 

A1 

M1 

M1 

M1 

A1 

A1 

M1 

M1 

M1 
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