HWA CHONG INSTITUTION (COLLEGE SECTION) 2015 JC2 H2 BIOLOGY PRELIMINARY EXAMINTION PAPER 3 MARK SCHEME

Question 1

(a) Explain what is meant by the term *palindromic*.

[2]

- 1. The base sequence of one strand reads the same as its complementary strand
- 2. When both strands are read in the 5' to 3' direction
- (b)(i) Complete Table 1.1 to show the number of restriction sites in pUC and recombinant pUC. [1]

	in pUC	in recombinant pUC
number of <i>Eco</i> RI sites	1	2
Number of <i>Bam</i> HI sites	2	3

- (b)(ii) Indicate the positions of *Eco*RI and *Bam*HI restriction sites on the recombinant pUC by drawing in Fig. 1.3. Show the size of each fragment in kb. [2]
 - 1. Relative positions of BamHI and EcoRI
 - 2. Correct size of each fragments with appropriate units

Fig. 1.3

- (b)(iii) Identify which restriction enzyme, *Eco*RI or *Bam*HI, is suitable for use to clone gene X. Give a reason for your answer.
 - [2]
 - 1. *Eco*RI
- © [¥] Hwa Chong Institution 2015

- 2. The restriction site occurs only once within the entire plasmid so that restriction digestion does not result in fragmentation of the plasmid / plasmid is linearised
- (c)(i) Explain the significance of the use of mature mRNA in step 1. [3]
 - 1. Mature mRNA does not contain intron, thus no need for additional step of removing introns
 - 2. mRNA acts as a template for the synthesis of cDNA for the gene of interest
 - 3. Continuous coding sequence to produce functional human insulin hormone
- (c)(ii) Suggest why additional noncoding sequences are added in step 3. [1]
 - 1. Linkers / adapters containing the desired restriction sites is cleaved to generate sticky ends for ligation
- (c)(iii) Suggest an advantage of treating diabetics with human insulin produced by RDT. [1]
 - 1. Identical to that produced by body. Hence, activity is the same / fast response / no immune response.
 - 2. No need for animal insulin. For religious / ethical reasons.
 - 3. Uncontaminated / pure. Thus, no risk of disease.
 - 4. Production of insulin is very efficient / always available / mass production while extraction from animals is costly / complex / limited by supply of animals.

[Total: 12]

Question 2

(a)	Outline a mutation that results in RPE65 deficiency.	[2]

- 1. Ref. to base-pair substitutions / insertions / deletions
- 2. Ref. to changes in codon sequence
- 3. Ref. to changes in amino acid sequence and function of protein Accept: ref. to point mutation in promoter
- (b) Explain why the normal *RPE65* allele was obtained from a genomic DNA library instead of a cDNA library. [2]
 - 1. Photoreceptor cells are eukaryotic cells and introns can be spliced out
 - 2. Ref. to *RPE65* genomic promoter to ensure specific expression
- (c) AAV is a non-enveloped virus. Suggest how the normal *RPE65* allele enters the photoreceptor cell.
 - 1. Ref. to binding of glycoproteins on the capsid of AAV and receptor proteins on the cell membrane of photoreceptor cells
 - 2. Ref. to receptor-mediated endocytosis

(d) Suggest why it is not necessary to include selectable markers in this study.	[1]
--	-----

- 1. Ref. to improved vision as a well-defined phenotype
- (e) Suggest why one eye was left untreated.

9648 H2 Biology / Preliminary Exams / Paper

[2]

- 1. Ref. to differences in retinal sensitivity amongst participants
- 2. Ref. to baseline subtraction
- (f) Describe and explain how the results differ between the two participants. [3]
 - 1. Ref. to lower dose, no loci with significant improvement in retinal sensitivity throughout the 36 months
 - 2. Ref. to higher dose, number of loci with significant improvement increased to a peak of 45 at 12 months before decreasing
 - 3. Ref. to insufficient RPE65 protein produced to result in significant improvement in participant 1
 - 4. Ref. to normal RPE65 allele not being integrated into the participants' chromosome / undergoing transient expression
- (g) Suggest how stem cell therapy may be useful in the repair of the retina. [3]
 - 1. Ref. to stem cell being capable of long-term self-renewal
 - 2. Ref. to stem cell being unspecialised and can undergo differentiation
 - 3. Ref. to photoreceptor cell being able to integrate with the host retina without rejection

[Total: 15]

Question 3

- (a) Outline a procedure for growing orchids from cells in tissue culture. [4]
 - 1. Establish cells under sterile / aseptic conditions in culture medium for callus formation.
 - 2. Multiplication of microshoots by increasing cytokinin concentration in culture medium and subsequent subculturing to new multiplication media.
 - 3. Root formation of microcuttings in test-tube containing in the presences of increased auxin and reduced cytokinin to form plantlets.
 - 4. The microplant undergoes transplanting into a soil medium and acclimatization to the outdoor environment takes place.
- (b) Contrast the processes of tissue culture to the traditional cultivation of orchids. [2]

Tissue culture	Traditional breeding
1a. Tissue culture is carried out in sterile environment and requires aseptic technique	1b. traditional breeding is carried out in non-sterile environment does not requires aseptic technique
2a. Any cells from the orchid / shoot meristem is the starting material	2b. Seeds from sexual reproduction is required to start the cultivation
3a. Soilless / Culture medium contains organic compounds / respiratory substrate	3b. Soil is used and no added organic compound / respiratory substrate
4a. Microcutting allows a callus to be divided into many pieces to give rise to many plants	4b. No microcutting / One seed gives rise to one plant eventually
5a. Acclimatisation required	5b. No acclimatisation required
6a. Shorter time is required	6b. Longer time is required

- (c) Explain why this GM orchid is considered "true blue".
 - 1. Ref to permanent inheritance of the *flavonoid 3',5'-hydroxylase (FH)* gene.
 - 2. The enzyme flavonoid 3',5'-hydroxylase can be continuously produced in the flowers and catalyse the formation of the blue pigment delphinidin.

[2]

(d) Suggest how PCR can be used to distinguish the "true blue" GM orchid in (c) from the dyed blue orchids.

[2]

- 1. Design specific primers flanking part of *flavonoid 3',5'-hydroxylase gene*.
- 2. DNA only amplified for the "true blue" GM orchid in (g), but not the dyed orchid.
- (e) Suggest why farmer Y might be concerned about the possibility of his crop being fertilised by pollen from farmer X's crop. [1]
 - 1. Farmer Y may lose some of his markets if he cannot state that his crops are GM free.
- (f) Describe the relationship between cross-pollination and the gap between plots of land. [2]
 - 1. The greater the gap between plots of land, the lower the chance of cross-pollination in general with supporting data.
 - 2. Increasing distance does not decrease the chance of cross-pollination at the edge of non-GMO beyond 5 m. As the gap increases from 5 m to 7 m, the percentage of cross-pollination remains the same at 1 % at the edge of non-GM crop.

Question 4

- 1. Bacteriophages transfer bacterial genes / DNA between bacterial cells.
- 2. Successfully transduced *E. coli* cells will be resistant / able to survive when exposed to ampicillin to form colonies.
- 3. Using a micropipette tip, transfer 100 µL of *E. coli* cells into a microfuge tube.
- 4. Using another micropipette tip, add 10 μ L of T4 phage suspension the tube with *E. coli* cells.
- 5. Incubate the tube for 15 minutes as timed using a stopwatch.
- 6. Using a micropipette tip, transfer 100 μL of the *E. coli* cell / phage suspension in the tube to the LB/amp plate.
- 7. Repeat Steps 3 6 for the LB plate.
- 8. Incubate both plates overnight at 37 °C in the incubator oven.
- 9. Perform a control experiment except that the *E. coli* cells are not mixed with T4 phage suspension and plated on LB/amp plate.
- 10. Count the number of colonies on the LB/amp plate and LB plate.
- 11. Transduction efficiency is number of colonies on LB/amp plate divided by number of colonies on LB plate x 100%.
- 12. Wear disposable gloves throughout the experiment to prevent any infection from bacterial cultures.
- 13. AVP

Question 5

(a) Outline the process of nucleic acid hybridisation and explain how it can be used to detect and analyse restriction fragment length polymorphism (RFLP). [8]

- A <u>Nucleic Acid Hybridization Process</u>
- 1. Alkali denaturation is carried out
- 2. causing DNA to become single stranded/ denatured
- 3. by disrupting the hydrogen bonds between complementary nucleotide bases
- 4. Fluorescently / radioactively labelled probes are then used to anneal to the ssDNA
- 5. via complementary base pairing (@ref complentary probes)
- 6. for visualisation via autoradiography (@ref visualisation using X-ray film)

B How it is used to detect and analyse RFLP

- 1. In RFLP analysis, DNA is first cut/ cleaved by a restriction enzyme
- 2. Gel electrophoresis is carried out to separate DNA fragments by size
- 3. And then transferred onto a nitrocellulose membrane via Southern blotting for visualisation
- 4. Due mutations which change RE sites/ fragment size
- 5. Thus bands of various sizes would appear
- 6. Resulting in a unique pattern characteristic of each RFLP allele
- 7. Resulting in a **unique pattern** characteristic of each RFLP allele
- (b) Outline the process of nucleic acid hybridisation and explain how it can be used to detect and analyse restriction fragment length polymorphism (RFLP). [7]

Process of genetic fingerprinting

- 1. DNA is cut by restriction enzymes
- 2. on samples containing variable number tandem repeats (VNTR) alleles
- 3. DNA fragments are then separated by gel electrophoresis
- 4. and transferred onto nitrocellulose membrane via Southern blotting
- 5. for and bound to complementary radioactively labelled probes

Analysis of results

- 6. DNA is isolated from both parents and their child
- 7. and several VNTR alleles at multiple loci of interest are studied
- 8. A unique banding pattern of the parents and children can then be compared
- 9. The child will be related if some bands match those in the father
- 10. while the remaining bands match those found in the mother
- (c) Suggest why some disease alleles can only be detected by linkage analysis. [5]
 - 1a. When the nucleotide sequence of the disease-causing gene is not known
 - 1b. When there are no existing restriction sites (RS) present in the wild-type / normal allele
 - Mutation of the normal allele to the disease allele causes no changes to the RS, ie it does not destroy / create RS / shift the position of RS, due to insertion and deletion mutations
 - Restriction digestion is unable to generate variation in lengths of restriction fragments. Thus, RFLP fragments from the disease allele cannot be distinguished from the normal alleles

3

- 4. A genetic marker with known location / highly polymorphic eg. RFLP, VNTR is located very close / tightly linked to the disease-causing gene locus
- 5. The disease-causing gene locus is almost always inherited together / co-inherited. Thus, presence of genetic marker indicates presence of diseased allele. However, linkage is not absolute, since crossing over can occur