CJC	
A LEWIS CONTRACT	

Catholic Junior College JC2 Preliminary Examinations Higher 2

CANDIDATE NAME

MARK SCHEME

CLASS

PHYSICS

Paper 2 Structured Questions

9749/02 23 August 2024 2 hours

Candidates answer on the Question Paper.

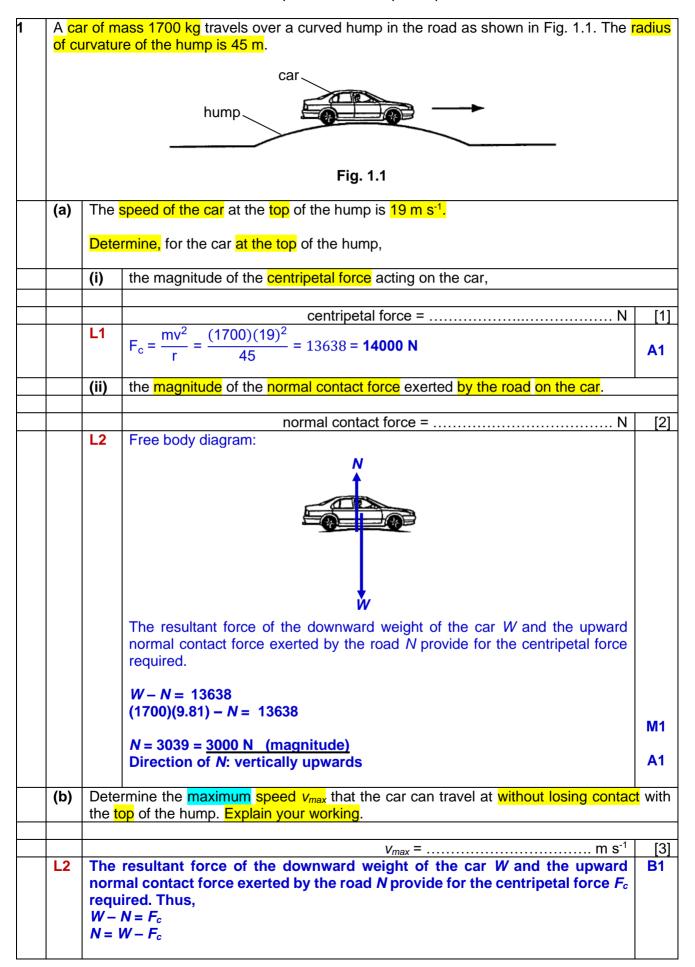
READ THESE INSTRUCTIONS FIRST

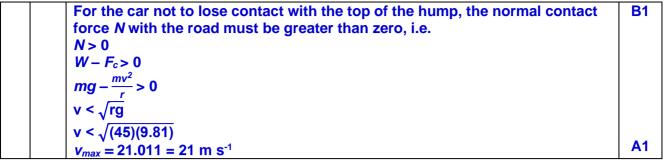
Write your name and class in the spaces at the top of this page. Write in dark blue or black pen on both sides of the paper. You may use an HB pencil for any diagrams or graphs. Do not use staples, paper clips, glue or correction fluid.

The use of an approved scientific calculator is expected, where appropriate. Answer **all** questions.

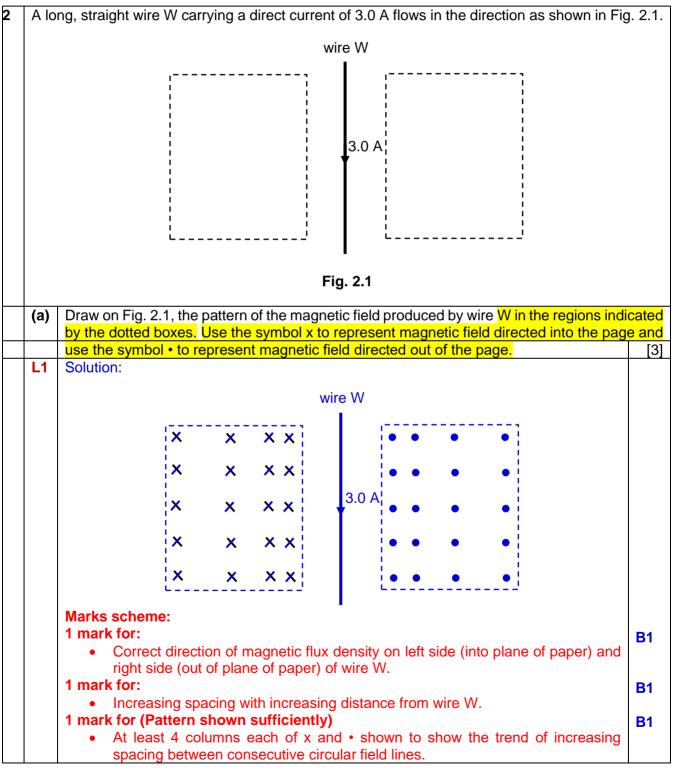
The number of marks is given in brackets [] at the end of each question or part question.

FOR EXA	MINER'S USE	
Q1	/6	
Q2	/ 12	
Q3	/ 5	
Q4	/ 5	
Q5	/7	
Q6	/ 11	
Q7	/ 8	
Q8	/6	
Q9	/ 20	
PAPER 2	/ 80	


DATA

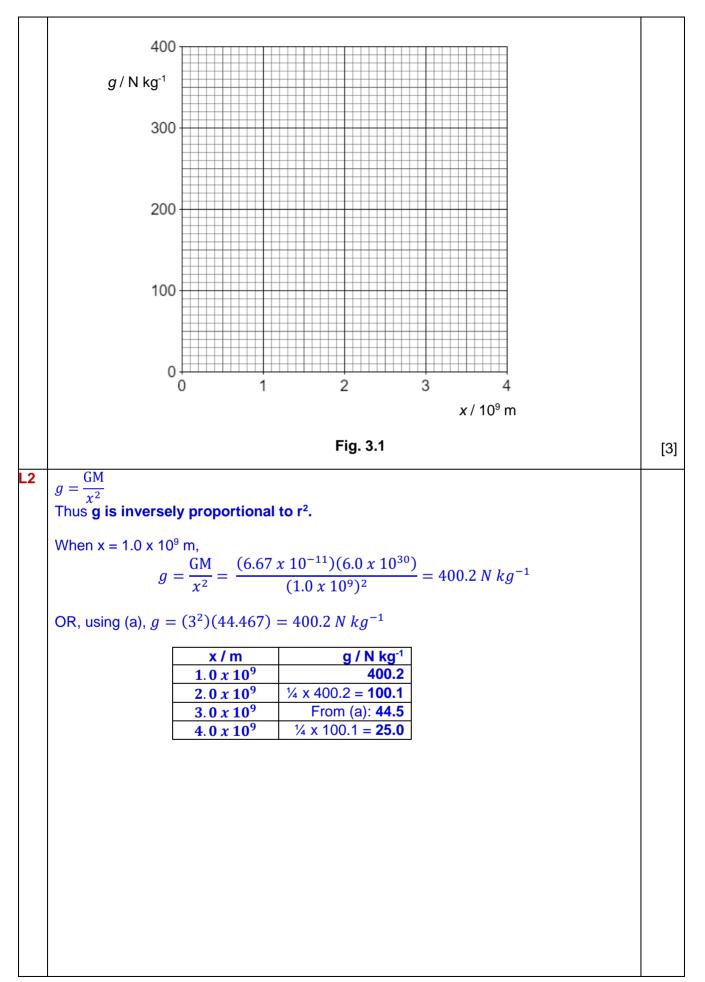

speed of light in free space	С	=	3.00 x 10 ⁸ m s ⁻¹
permeability of free space	μ_0	=	4π x 10 ⁻⁷ H m ⁻¹
permittivity of free space	E0	=	8.85 x 10 ⁻¹² F m ⁻¹
			(1/(36π)) x 10 ⁻⁹ F m ⁻¹
elementary charge	е	=	1.60 x 10 ⁻¹⁹ C
the Planck constant	h	=	6.63 x 10 ⁻³⁴ J s
unified atomic mass constant	и	=	1.66 x 10 ⁻²⁷ kg
rest mass of electron	m _e	=	9.11 x 10 ⁻³¹ kg
rest mass of proton	m _P	=	1.67 x 10 ⁻²⁷ kg
molar gas constant	R	=	8.31 J K ⁻¹ mol ⁻¹
the Avogadro constant	NA	=	6.02 x 10 ²³ mol ⁻¹
the Boltzmann constant	k	=	1.38 x 10 ⁻²³ mol ⁻¹
gravitational constant	G	=	6.67 x 10 ⁻¹¹ N m ² kg ⁻²
acceleration of free fall	g	=	9.81 m s ⁻²

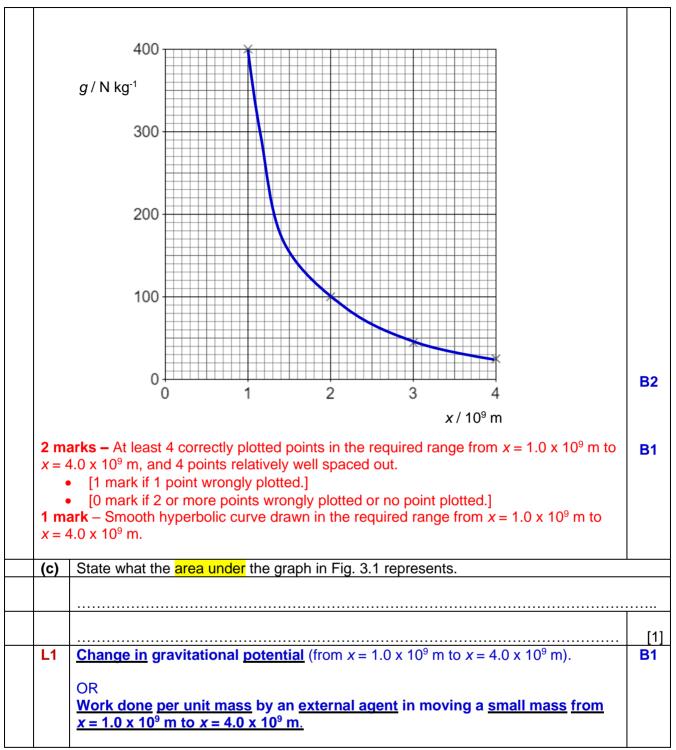
FORMULAE


uniformly accelerated motion	S V ²	=	u t + ½ a t² u² + 2as
work done on / by a gas	W	=	р∆V
hydrostatic pressure	р	=	hogh
gravitational potential	ϕ	=	$-\frac{Gm}{r}$
temperature	T/K	=	7 / °C + 273.15
pressure of an ideal gas	p	=	$\frac{1}{3}\frac{Nm}{V}\langle C^2 \rangle$
mean translational kinetic energy of an ideal gas molecule	E	=	$\frac{3}{2}kT$
displacement of particle in s.h.m.	x	=	$x_0 \sin \omega t$
velocity of particle in s.h.m.	V		$v_0 \cos \omega t$
		=	$\pm \omega \sqrt{{\boldsymbol{x}_0}^2 - {\boldsymbol{x}}^2}$
electric current	Ι	=	Anvq
resistors in series	R	=	$R_1 + R_2 +$
resistors in parallel			$1/R_1 + 1/R_2 + \dots$
electric potential	V	=	Q 4πε _o r
alternating current / voltage	x	=	x₀ sin ωt
magnetic flux density due to a long straight wire	В	=	$\frac{\mu_o I}{2\pi d}$
magnetic flux density due to a flat circular coil	В	=	μ _o NI 2r
magnetic flux density due to a long solenoid	В	=	µ _o nI
radioactive decay	x	=	$x_0 exp(-\lambda t)$
decay constant	λ	=	$\frac{\ln 2}{t_{\frac{1}{2}}}$

Answer all questions in the spaces provided.

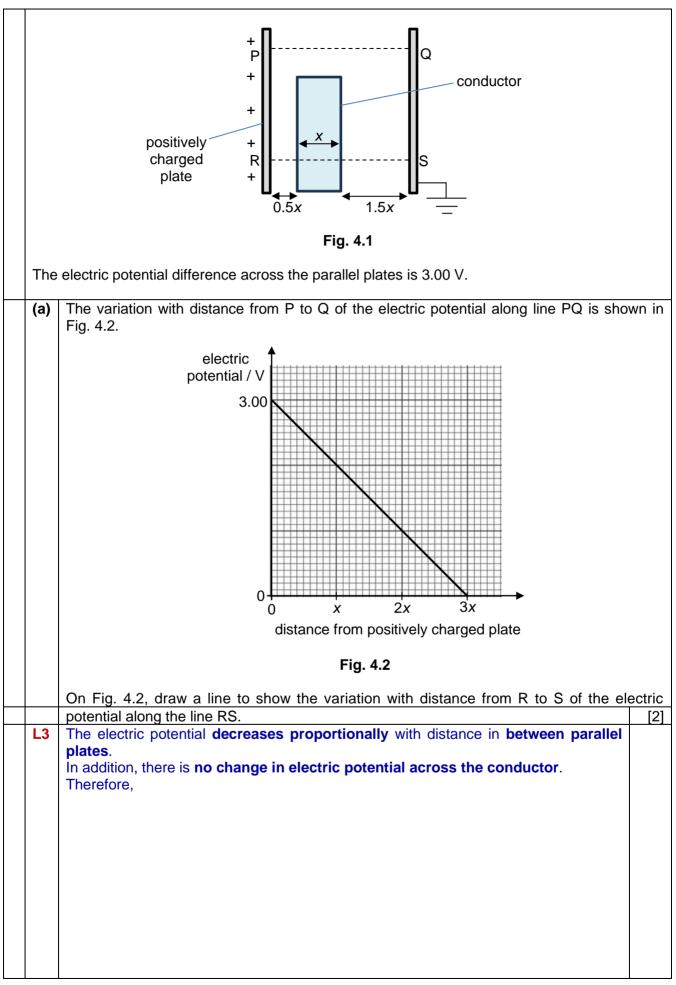
[Total: 6]

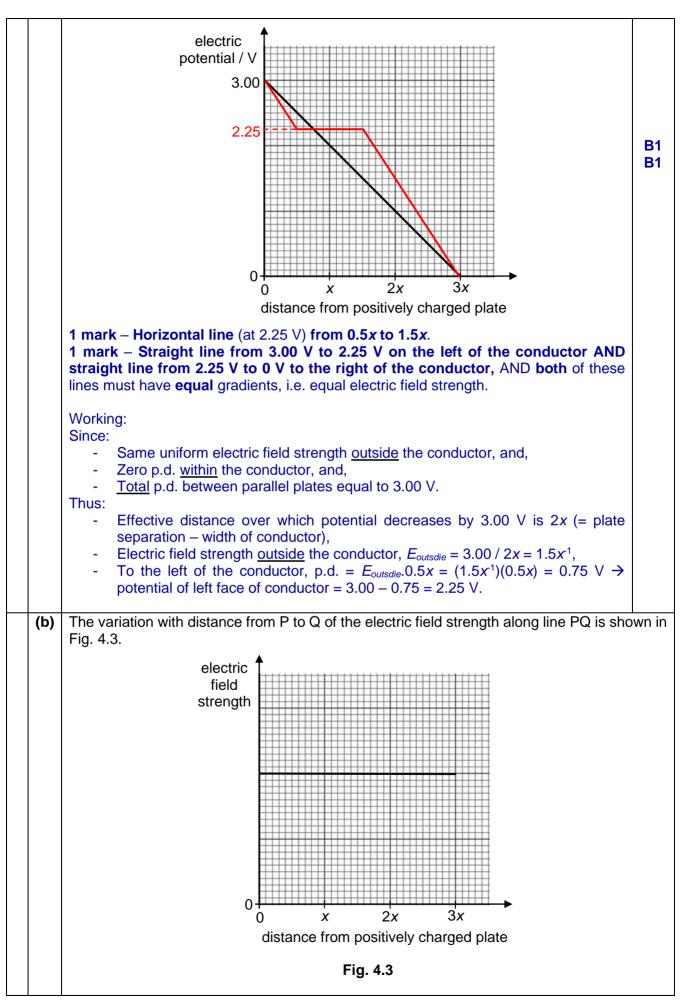

	•	At least 3 rows each of x and • shown to show the trend of equal spacing parallel to the wire.	
(b)		nilar wire Y is placed parallel to wire W, separated by a distance of 40.0 cm as sho 2.2. Initially, there is no current in wire Y.	wn in
		wire W wire Y 40.0 cm 3.0 A	
		Fig. 2.2	
	(i)	Show that the magnetic flux density at wire Y due to the current in wire 1.5×10^{-6} T.	W is
			[1]
	L1	Magnetic flux density $B = \frac{\mu_0 I}{2\pi d}$ where <i>I</i> is the current in wire W and <i>d</i> the distance of Y from W.	
		$B = \frac{(4\pi \times 10^{-7})(3.0)}{2\pi (40.0 \times 10^{-2})}$	M1
		$= 1.5 \times 10^{-6} \text{ T} \text{ (Shown)}$	A0
	(ii)	A current of 1.0 A is now switched on in wire Y and flows in the opposite direction the direction of current flow in wire W.	<mark>on</mark> as
		Use your answer in (b)(i) to calculate the force per unit length acting on wire Y.	
		force per unit length = N m ⁻¹	[2]
	L2	Magnetic force $F_{on Y} = B_{at Y due to W} I_{in Y} L_{of Y} \sin \theta$ where $\theta = 90^{\circ}$ since <i>B</i> and <i>I</i> are perpendicular. $\frac{F}{L} = BI$	
		$\frac{F}{L} = (1.5 \times 10^{-6})(1.0)$ = 1.5 × 10 ⁻⁶ N m ⁻¹	M1 A1
	(iii)	Explain why the force that the two wires exert on each other is repulsive.	
			<u></u>
			<u></u>

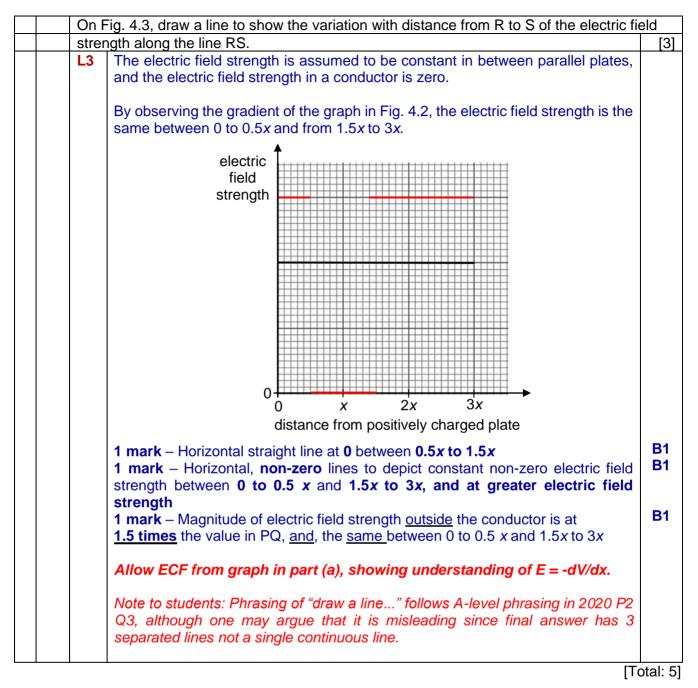

			[3]
	L2	By Right Hand Grip Rule (<i>or</i> , using Fig. 2.1), the magnetic field produced by the current in wire W acts <u>perpendicular</u> to wire Y and <u>out of</u> the plane of paper.	M1
		By Fleming's Left Hand Rule, the direction of the magnetic force <u>on Y by</u> <u>W</u> acts <u>to the right</u> / away from wire W.	M1
		By Newton 3 rd law of motion, the direction of the magnetic force <u>on W</u> by <u>Y</u> is opposite to that on wire Y / towards the left / away from wire Y. [OR, Apply Fleming's Left Hand Rule a second time to determine the force on W.]	M1
		Therefore there is a repulsive force acting between the two wires.	A0
	(iv)	Determine a possible position, other than at infinity, where the resultant magneti density due to the magnetic fields of both wires is zero.	<mark>c flux</mark>
		nonition:	[2]
	L2	position:First, consider directions of the two fields in different regions:• Net B cannot be zero between W and Y, since their fields point in the same direction.• On the left of both wires, and, on the right of both wires, their fields point in opposite directions.Secondly, consider magnitude of B:• Since $ B = \frac{\mu_0 l}{2\pi d} \Rightarrow B \propto \frac{l}{d}$. Hence Net B can only be zero on the side further away from the larger current. Thus, Net B is zero on the right side of wire Y.Let y be the distance to the right of wire Y.	[3] M1
			M1

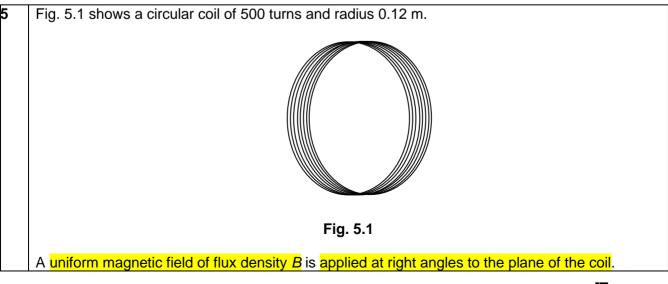
$\begin{aligned} B_{due to Y} &= B_{due to W} \\ \frac{\mu_0 (1.0)}{2\pi y} &= \frac{\mu_0 (3.0)}{2\pi (40.0 \times 10^{-2} + y)} \\ \frac{(1.0)}{y} &= \frac{(3.0)}{(40.0 \times 10^{-2} + y)} \\ 40.0 \times 10^{-2} + y &= 3.0y \\ 2.0y &= 40.0 \times 10^{-2} \\ y &= 20.0 \times 10^{-2} \text{ m} = 20.0 \text{ cm} \end{aligned}$	A1
position: 20.0 cm to the <i>right</i> of wire Y. (For marking: 'right' of wire Y can be stated either in the final answer space, or, working. Award A1 mark as long as this understanding that it must be right of Y be seen.)	

[Total: 12]

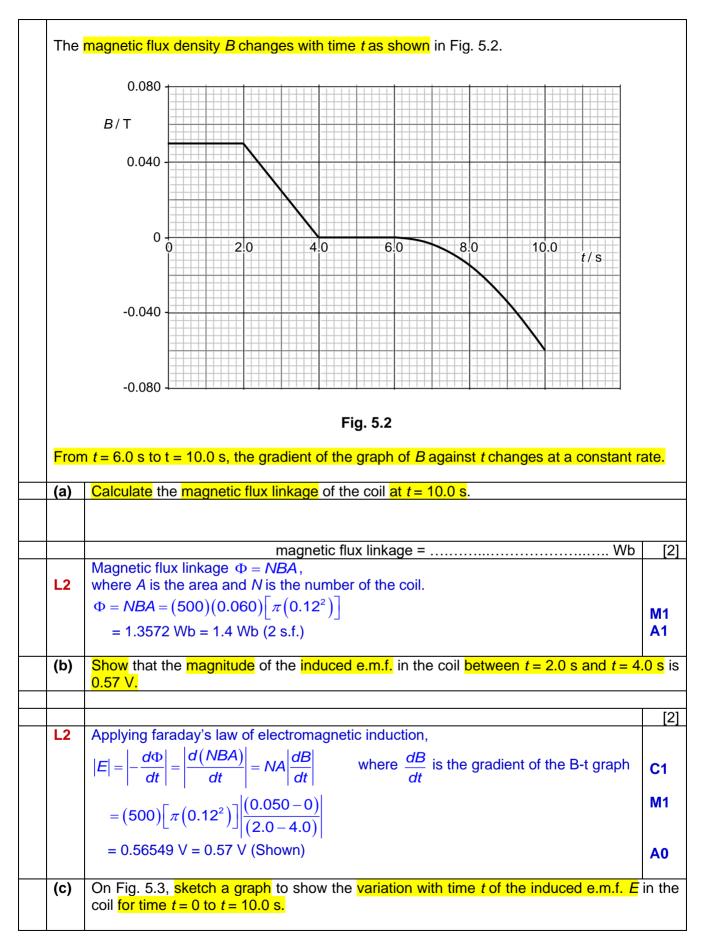

3	A uniform spherical star has a mass of 6.0 x 10 ³⁰ kg. The mass of the star may be assumed be a point mass at the centre of the star.							
	The star may be considered to be isolated in space.							
	(a) Show that the gravitational field strength at a point 3.0×10^9 m from the centre of spherical star is 44.5 N kg ⁻¹ .							
	L1	[1]						
		$g = \frac{\text{GM}}{r^2} = \frac{(6.67 x 10^{-11})(6.0 x 10^{30})}{(3.0 x 10^9)^2}$ M1						
		$= 44.467 = 44.5 Nkg^{-1}$ A0						
	(b)	The radius of the star is 1.0 x 10 ⁹ m.						
		On the axes of Fig. 3.1, sketch a graph to show the variation with distance x from the centre of the star of the gravitational field strength g of the star for values of x from $x = 1.0 \times 10^9$ m to $x = 4.0 \times 10^9$ m.						

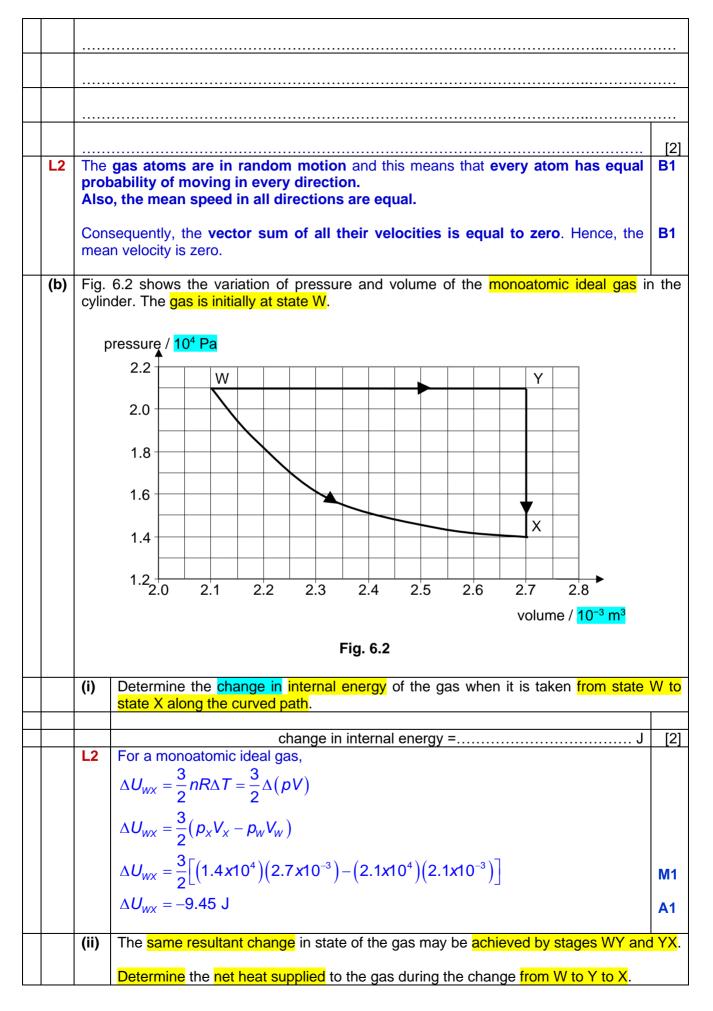


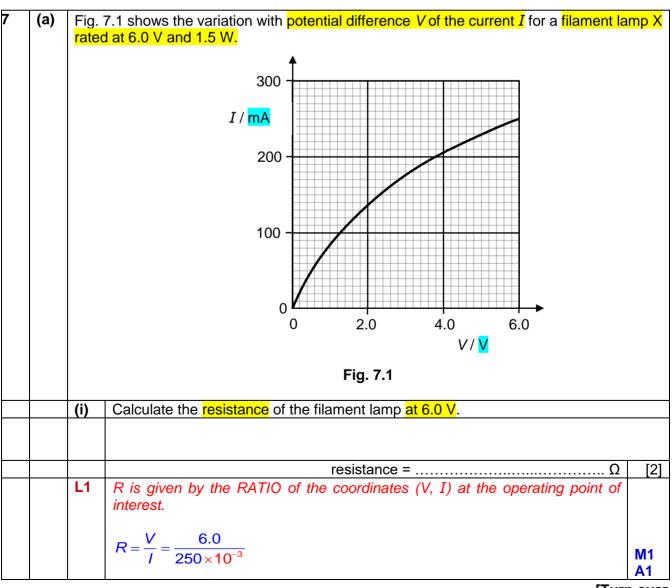


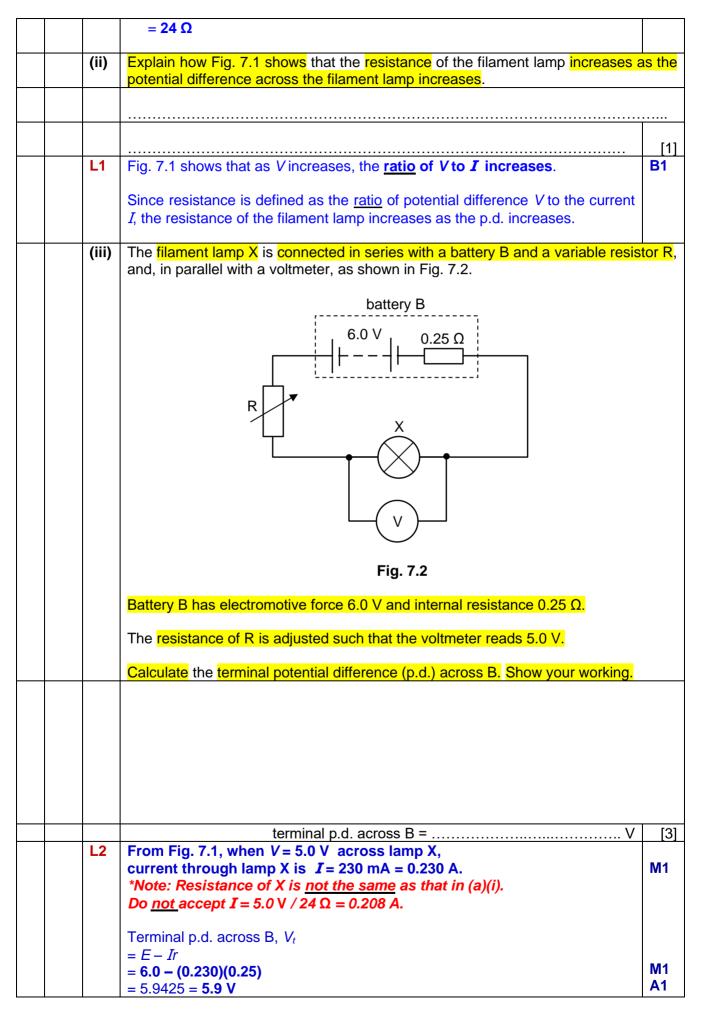

[Total: 5]

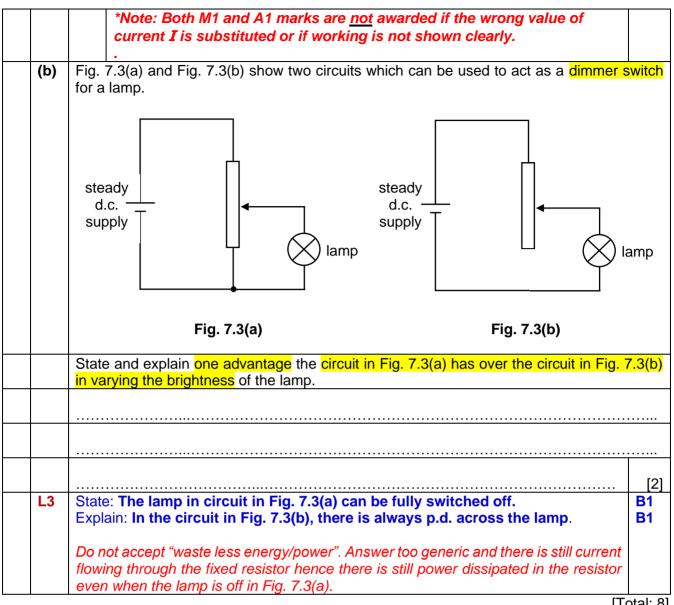
Two parallel plates are in a vacuum. One plate is positively charged and the other plate is earthed.
 A rectangular conductor of width *x* is placed in between the plates so that one of its faces is at a distance 0.5*x* from the positively charged plate and the opposite face is at 1.5*x* from the earthed plate as shown in Fig. 4.1.

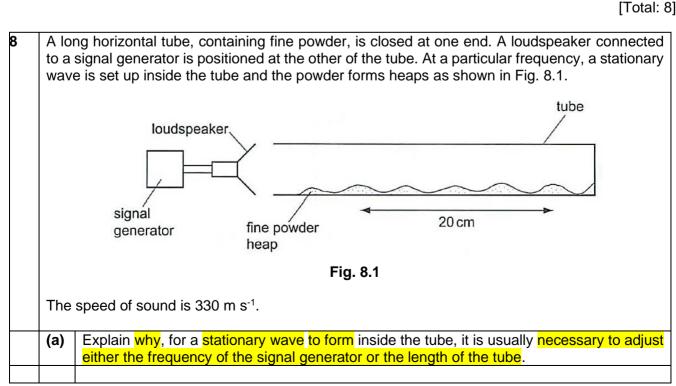



[Turn over


	0.60							
	0.60 ·							
	E/V							
	0.40 -							
	0.40							
	0.20 -							
	0 -			4.0			10.0	
		0	2.0	4.0	6.0	8.0	10.0	t/s
	-0.20 -							
	-0.40 -							
	-0.60 ·							
L3	Colution			Fig.	5.3			
LJ	Solution:							


6	Асу	rlinder that contains a fixed amount of an ideal gas is shown in Fig. 6.1.	
		cylinder piston	
		Fig. 6.1	
	The	cylinder is fitted with a piston that moves freely.	
	(a)	Use the kinetic theory of gases to explain	
		(i) the origin of the pressure of the gas in the cylinder,	
			[3]
	L2	Gas atoms are in constant random motions, and they continually collide with the walls of the cylinder. When a gas atom collides with the wall of the cylinder, it rebounds and its velocity changes direction, hence there is a change in momentum of the gas atom.	B1
		By Newton's second law of motion, there is a resultant force exerted by the wall on the gas atom which is proportional to the <u>rate of</u> change in momentum.	B1
		By Newton's third law, the gas atom exerts a force of equal magnitude and opposite direction on the wall. The pressure exerted by the gas is the <u>total force per unit area of the container</u> walls exerted by <u>all</u> the gas atoms on the walls of its container.	B1
		**An answer referring to kinetic theory of gases (i.e. referring to the movement of the gas atoms) is expected. No mark awarded if candidate explains with reference to macroscopic properties.	
		(ii) why the mean velocity of the atoms of the gas is zero.	




L2	same.	[4] C1
	$\Delta U_{WX} = \Delta U_{WYX} = -9.45 \text{ J}$ Using Fig. 6.2, work done by the gas = $(2.1 \times 10^4)(2.7 - 2.1) \times 10^{-3} = 12.6 \text{ J}$	M 1
	Using first law of thermodynamics, $\Delta U_{WYX} = Q + W_{WYX}$ -9.45 = Q + (-12.6) Q = +3.15 J	M1 A1

19

[[]Turn over

	Enclose a substance of the first state of the first	[2]
L2	For stationary wave to form inside the tube, the boundary conditions at both ends of the air column in the tube must be always satisfied: a displacement node must form at the closed-end and a displacement antinode must form at the open-end.	B1
	This implies that the tube length must be equal to an odd integer multiple of one-quarter-of-a-wavelength .	B 1
	Thus, to achieve this, either the frequency of the sound wave (which affects wavelength), or, the tube length must be adjusted.	
(b)	With reference to the motion of the air molecules in the tube, explain why the powder h form at the displacement nodes.	neaps
		[2]
L2	Displacement <u>nodes</u> are where the <u>air molecules</u> in the tube <u>remain at rest</u> . <u>At all other positions</u> , the air molecules <u>vibrate/oscillate parallel</u> to the tube- <u>axis</u> , with <u>maximum amplitude</u> of vibration occurring at the displacement <u>antinodes</u> .	B1
	The air molecules <u>on either side of a displacement node</u> vibrate in <u>antiphase</u> , whereas <u>between any two successive nodes</u> the air molecules vibrate <u>in</u> <u>phase</u> .	B1
	Thus the motion of the <i>air molecules</i> causes the powder to be pushed away from the displacement antinodes and settle at the displacement nodes.	
(c)	Using Fig. 8.1, calculate the frequency of the sound wave in the tube.	
	frequency =Hz	[2]
 L1	"heaps" are the locations of the displacement nodes. Distance between two successive nodes in a stationary wave = $\frac{1}{2}$ wavelength	
	From Fig. 8.1, 2 wavelengths = 20 cm 1 wavelength = 10 cm	
	$v = f\lambda$	

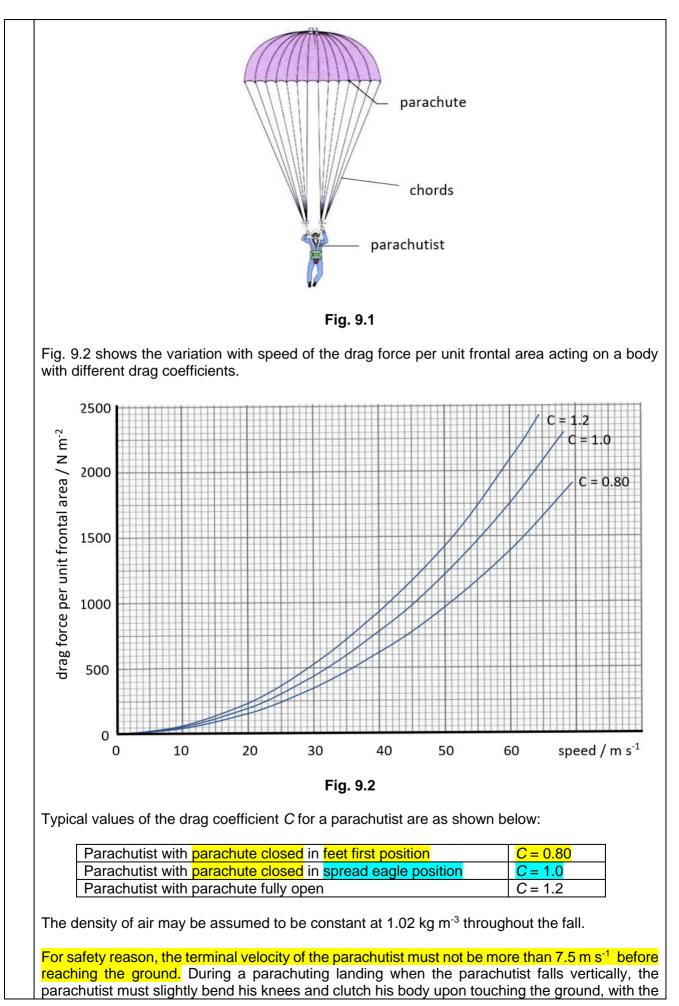
330 = f (10 x 10 ⁻²) f = 3300 Hz	C1
f = 3300 Hz	A1
	[Total: 6

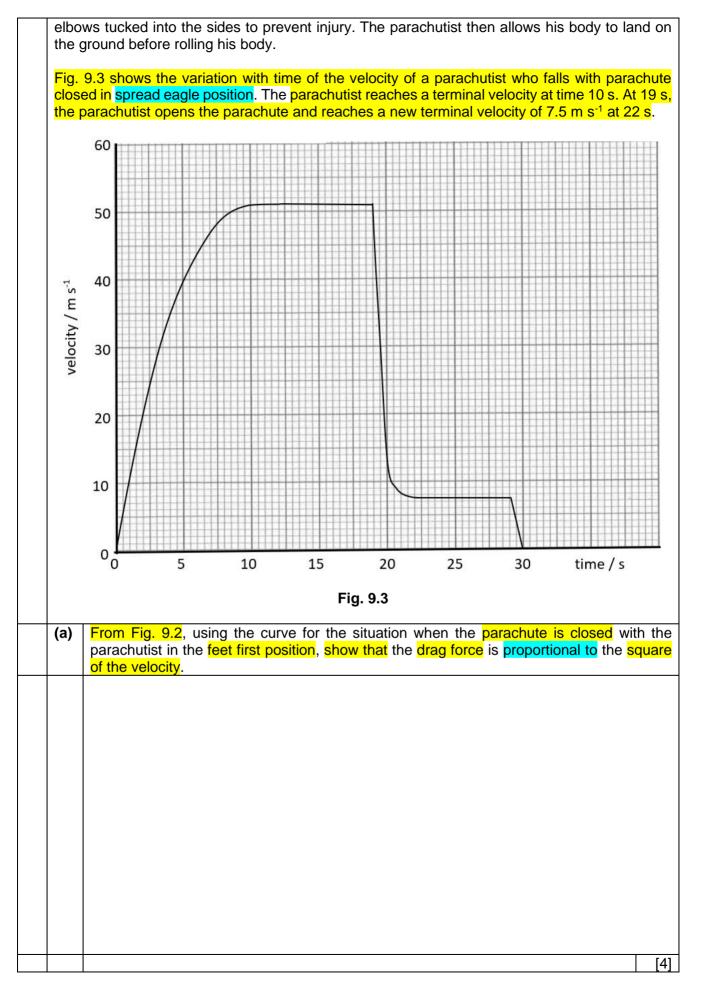
When an object is moving in a fluid such as air and water, it experiences a force known as drag force which always opposes the motion of the object. The drag force on an object is dependent on a few factors such as the velocity of the object relative to the fluid, the drag coefficient, the frontal area of the object and the density of the fluid. When taking into accounts these factors, the drag force is given by $D = kC\rho Av^2$ where *k* is a constant; C is the drag coefficient; ρ is the density of the fluid; A is the frontal area of the object: v is the velocity of the object relative to the fluid. The frontal area A is the cross-sectional area of the object that passes through the fluid. The drag coefficient C is a dimensionless quantity with no unit. It is dependent largely on shape of the object and to a small extent on the velocity of the object relative to the fluid. In most cases, the drag coefficient may be considered to be independent of the speed of the object relative to the fluid.

Read the passage below and answer the questions that follow.

a

A parachute is an inflatable device which is used to slow down the speed of an object. Parachutes come in different shapes and sizes. Parachutes are made from strong and light weight nylon that has been treated to be less porous so that it does not let as much air through especially at high speeds. This allows the open parachute to create more air resistance and to achieve a lower terminal speed just before reaching the ground.

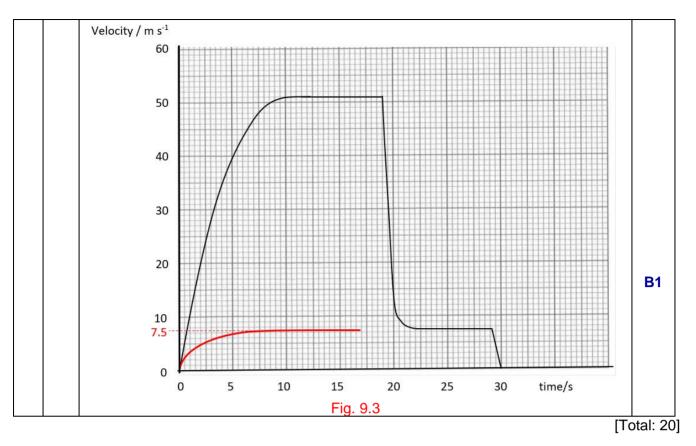

The parachute is packed into a single backpack called the container. In a particular parachuting jumping, a parachutist with his parachute in the container leaps off from a helicopter. We may consider he falls straight down from rest when his initial horizontal speed is small and there is no wind which causes a horizontal motion.


During the first few seconds of the fall, the parachutist falls under the action of gravity with his parachute in the container. His velocity increases from zero to a constant value known as the terminal velocity. The terminal velocity is dependent on the total mass of the parachutist and the parachute, the drag coefficient, the density of the air and the frontal area of the falling parachutist with his parachute.

The parachutist may fall with his body vertical (known as feet first position) or with his body horizontal (known as spread eagle position). The frontal area of the parachutist depends on whether the parachutist is falling with feet first position or spread eagle position. In the feet first position, the frontal area is approximately 0.18 m² while the frontal area in the spread eagle position is about 4 times that of the feet first position.

At a suitable altitude, he triggers the parachute to open by pulling on the ripcord and the velocity decreases rapidly. The parachutist will reach a lower terminal velocity before reaching the ground.

Fig. 9.1 shows the arrangement of the parachute with the parachute fully open.



		<u></u>
		<u></u>
(c)	Explain how Fig. 9.3 shows that the drag force increases with the velocity during the 10 s of the motion.	e <mark>II</mark>
(-)	acceleration = net force/mass = weight/mass = acceleration due to gravity ≈ 10 m s ⁻² .	0 6
L2	At $t = 0$, velocity of the parachutist = 0, thus drag force = 0 and hence the net force = weight = mg,	B 1
	·····	
(b)	Explain why the acceleration of the parachutist is approximately 10 m s ⁻² when $t = 0$.	
	Since the values of A is the same for the same start position (feet first), D is proportional to the square of the speed.	В
	D/A is proportional to the square of the speed.	В
	Calculation of k, i.e. ratio of D/A to v ² : M1 Since the value of k remains constant,	Μ
	with range optimised/maximised (20 to 60 m s ⁻¹): M1	М
	Read values of v and D/A from curve C = 0.80 for at least 3 points, and	
	When v = 60 m s ⁻¹ , v ² = 60 ² = 3600 m ² s ⁻² , drag force per unit area = 1400 N m ⁻² k = 1400 / 3600 = 0.39 N s ²	
	When v = 50 m s ⁻¹ , v ² = 50 ² = 2500 m ² s ⁻² , drag force per unit area = 975 N m ⁻² k = 975 / 2500 = 0.39 N s ²	
	When v = 40 m s ⁻¹ , v ² = 40 ² = 1600 m ² s ⁻² , drag force per unit area = 625 N m ⁻² k = 625 / 1600 = 0.39 N s ²	
	When v = 30 m s ⁻¹ , v ² = 30 ² = 900 m ² s ⁻² , drag force per unit area = 350 N m ⁻² k = 350 / 900 = 0.39 N s ²	
	k = 150 / 400 = 0.38 N s ²	
	Using Fig. 9.2, for curve C = 0.80, When v = 20 m s ⁻¹ , v ² = 20 ² = 400 m ² s ⁻² , drag force per unit area = 150 N m ⁻²	
	drag force per unit area, $D/A = k v^2$	

	During the first 10 s, <u>gradient of the v-t graph</u> decreases, which shows that (downward) acceleration decreases. Hence by Newton's 2 nd law of motion, for a body of constant mass, the <u>downward net force</u> on the parachutist decreases.	M1
	Downward net force, F _{net} = (Downward weight, W) – (Upward drag force, D) Since W remains constant, F _{net} decreases implies that D increases.	M1 M1 A0
	OR Gradient of v-t graph decreases, implies that acceleration decreases. Net force = mass (m) x acceleration	
	Weight (mg) – Drag (D) = mass (m) x acceleration Since m and g are constants → D increases	
(d)	A parachutist falls with parachute closed from spread eagle position. Calculate the total mass of the parachutist and the parachute.	
L3	total mass =	-
L3	From Fig. 9.3,	C
L3	From Fig. 9.3, At terminal velocity (with parachute is still closed), $v = 51 \text{ m s}^{-1}$ From the passage, In the spread eagle position, $C = 1.0$ and $A = 4 \times 0.18 = 0.72 \text{ m}^2$ From Fig 9.2, for $C = 1.0$ and $v = 51 \text{ m s}^{-1}$, $D/A = 1250 \text{ N m}^{-2}$ $D = 1250 \times 0.72 = 900 \text{ N}$	C [.]
L3	From Fig. 9.3, At terminal velocity (with parachute is still closed) , $v = 51 \text{ m s}^{-1}$ From the passage, In the spread eagle position, C = 1.0 and A = 4 x 0.18 = 0.72 m ² From Fig 9.2, for C = 1.0 and v = 51 m s ⁻¹ , D/A = 1250 N m ⁻²	C C M
L3 (e)	From Fig. 9.3, At terminal velocity (with parachute is still closed), $v = 51 \text{ m s}^{-1}$ From the passage, In the spread eagle position, $C = 1.0$ and $A = 4 \times 0.18 = 0.72 \text{ m}^2$ From Fig 9.2, for $C = 1.0$ and $v = 51 \text{ m s}^{-1}$, $D/A = 1250 \text{ N m}^{-2}$ $D = 1250 \times 0.72 = 900 \text{ N}$ At terminal velocity, no net force, so D = mg m = D / g = 900 / 9.81 = 92 kg From time 19 s to 20 s, when the parachute is opened but before it is fully open, the vertice of the second	[C C C M A
	From Fig. 9.3, At terminal velocity (with parachute is still closed), $v = 51 \text{ m s}^{-1}$ From the passage, In the spread eagle position, $C = 1.0$ and $A = 4 \times 0.18 = 0.72 \text{ m}^2$ From Fig 9.2, for $C = 1.0$ and $v = 51 \text{ m s}^{-1}$, $D/A = 1250 \text{ N m}^{-2}$ $D = 1250 \times 0.72 = 900 \text{ N}$ At terminal velocity, no net force, so D = mg m = D / g = 900 / 9.81 = 92 kg From time 19 s to 20 s, when the parachute is opened but before it is fully open, the vertex of the second s	C [.] C [.] M
	From Fig. 9.3, At terminal velocity (with parachute is still closed), $v = 51 \text{ m s}^{-1}$ From the passage, In the spread eagle position, $C = 1.0$ and $A = 4 \times 0.18 = 0.72 \text{ m}^2$ From Fig 9.2, for $C = 1.0$ and $v = 51 \text{ m s}^{-1}$, $D/A = 1250 \text{ N m}^{-2}$ $D = 1250 \times 0.72 = 900 \text{ N}$ At terminal velocity, no net force, so D = mg m = D / g = 900 / 9.81 = 92 kg From time 19 s to 20 s, when the parachute is opened but before it is fully open, the vertice of the second	C [.] C [.] M

		$= -38 \text{ m s}^{-2}$	M1 A1
		(Accept read-off of v at 20 s as $\frac{11 \text{ m s}^{-1}}{10 \text{ m s}^{-1}}$ to 15 m s ⁻¹ .)	
		Negative sign not marked for.	
	(ii)	Explain why drag force remains constant from 19 s to 20 s.	
			[2
		Acceleration is constant from 19 s to 20 s. (Given.)	B0
	L2	Since	
	LZ	Acceleration upward = net force / mass	B1
		= (D - mg) / m	
		= D/m – g	
		And since m and g are constants, therefore drag force D remains constant.	B1
		OR	
		Acceleration upward = net force / mass = (D – mg)/m = D/m – g Where D = k C ρ A v ²	
		The area A of the parachute increases as it opens, while the velocity v decreases.	
		When rate of <i>increase</i> in A equals the rate of <i>decrease</i> in v^2 , the product of A and v^2 remains constant.	
		Since $D \propto Av^2$, drag force D remains constant.	
(f)	For s	safety reasons, when the parachutist falls vertically,	
	(i)	suggest a modification to the design of the parachute if the parachutist car heavy load,	ries
		· · · · · · · · · · · · · · · · · · ·	
			<u></u>
			[1
	L2	He must not fall at a terminal velocity larger than 7.5 m s ⁻¹ .	'
		To ensure that the terminal velocity is not larger than 7.5 m s ⁻¹ ,	
		EITHER:increase the area of the parachute; OR	B1
		 improve the design to increase the drag coefficient; OR 	
		• use material which is not so porous to increase the drag	
		coefficient; OR	
		• decrease the mass of the parachute using a less dense material.	
		Reason:	

	1	On the improvement the protocol of the sector of the secto
		So to increase the retardation, increase D and/or reduce total mass m which includes the parachute's mass.
	(ii)	explain why the parachutist needs to bend his knee and body upon touching the ground during landing and then roll his body.
	L2	[1]To lengthen the time of impact with the ground so that the rate of change of momentum of the body and hence the net force on the parachutist is reduced. So the force of impact is reduced and the parachutist land without injuring his body.B1Reason: net force = impact force - mg; impact force = net force + mg; when net force is reduced, impact force is reduced.
		OR
		This increases the displacement moved by the body during the touch down. The work done by the impact force = average force x displacement moved. Work done by impact force to reduce the body's translational kinetic energy to zero is fixed for a given jump, so with a larger displacement moved, the average force is reduced. By rolling, the work done by the impact force is also reduced because part of the translational kinetic energy is converted into rotational kinetic energy.
(g)	imme	same parachutist with the parachute attempts to trigger the parachute to open ediately after he leaps off the hovering helicopter.
		Fig. 9.3, sketch a graph to show the expected variation with time of the velocity of the chutist.
L3	The V (Tern uncha to pro	velocity will increase from zero and <u>reach a terminal velocity of 7.5 m s⁻¹</u> . ninal velocity is still 7.5 m s ⁻¹ because at terminal velocity D = mg. Since mg anged, D unchanged. And since D = $kCpAv^2$, where $kCpA$ is constant, speed v oduce the same D is unchanged at 7.5 m s ⁻¹ .) <u>rate of change of velocity</u> <u>at the start</u> is the <u>same</u> as that when he falls y with the parachute in the container before he triggers it 10 seconds later.
	Due befoi	to the larger drag force, the <u>rate of increase of speed</u> is now <u>lower than</u> re.
		The time to reach the terminal velocity is not possible to be compared from the given.
	Solu	tion:

END OF PAPER