COORDINATE GEOMETRY PRACTICE

1. Given the equation of a straight line 2x + 4y = 24, find

(a) the gradient of the line	[2]
(b) the y-intercept of the line	[1]

2. If a point R (m, -2m) lies on the line 3x - y = 5, find the coordinates of R. [3]

3. Given the points P (2, 3), Q (-1, -1) and R (-6, -1)

(a) write down the coordinates of S such that PQRS forms a parallelogram	[1]
(b) find the distance between points P and Q	[2]

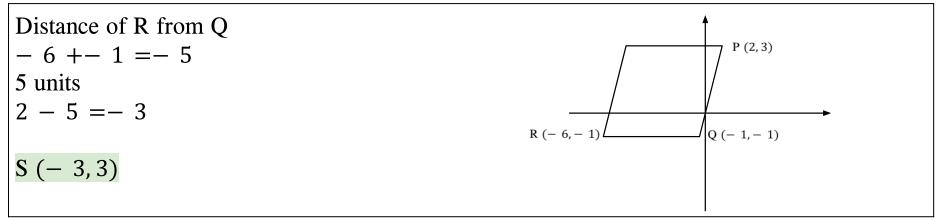
1. Given the equation of a straight line 2x + 4y = 24, find

(a) the gradient of the line

2x + 4y = 24 4y = 24 - 2x y = mx + c, where *m* is the gradient and *c* is the y-intercept when x = 0. $y = 6 - \frac{1}{2}x$ $m = -\frac{1}{2}$

(b) the y-intercept of the line

sub
$$x = 0$$
 to $y = 6 - \frac{1}{2}x$
 $y = 6$


[1]

[2]

2. If a point R (m, -2m) lies on the line 3x - y = 5, find the coordinates of R.

R (m, -2m)R (x, y) $3x - y = 5 \rightarrow 3x - 5 = y$ Sub x = m, y = -2m to 3x - 5 = y -2m = 3m - 5 -5m = -5 m = 1Coordinates of R (1, -2) 3. Given the points P (2, 3), Q (-1, -1) and R (-6, -1)

(a) write down the coordinates of S such that PQRS forms a parallelogram

(b) find the distance between points P and Q

P (2,3), Q (-1, -1)
Distance formula =
$$\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

Distance = $\sqrt{(2 - (-1))^2 + (3 - (1))^2}$
Distance = 5 units