CANDIDATE NAME

SUBJECT CLASS REGISTRATION NUMBER

NATIONAL JUNIOR COLLEGE SH2 PRELIMINARY EXAMINATION

CHEMISTRY

Paper 2 Structured Questions

8873/02 Tuesday 24 August 2021 2 hours

Candidates answer on the Question Paper. Additional Materials: Data Booklet

Higher 1

READ THESE INSTRUCTIONS FIRST

Write your name, index number, form class, tutorial class and subject tutor's name on all the work you hand in.

Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs or rough working. Do not use staples, paper clips, glue or correction fluid.

The use of an approved scientific calculator is expected, where appropriate.

Section A

Answer all the questions.

Section B

Answer one question.

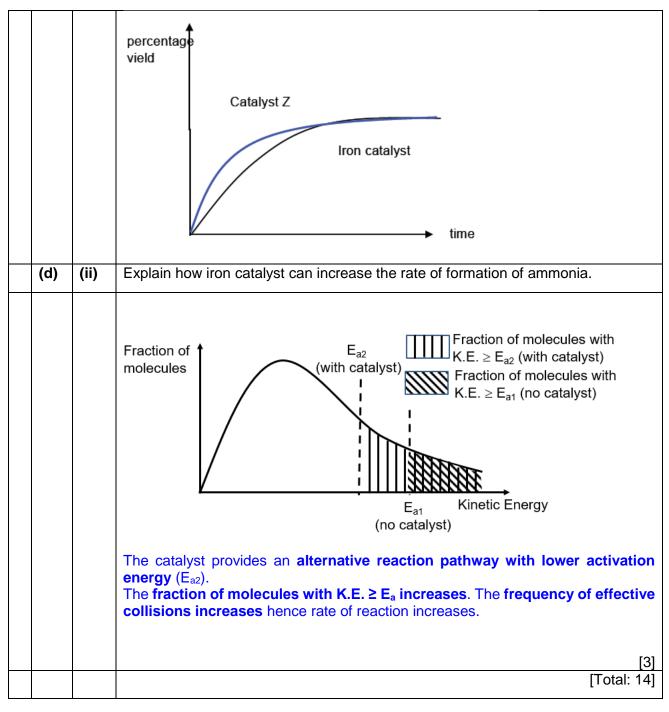
At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use				
Question no.	Marks			
Section A				
B7				
B8				
TOTAL	/80			

This document consists of xx printed pages and xx blank pages.

Section A

Answer **all** the questions in this section in the spaces provided.

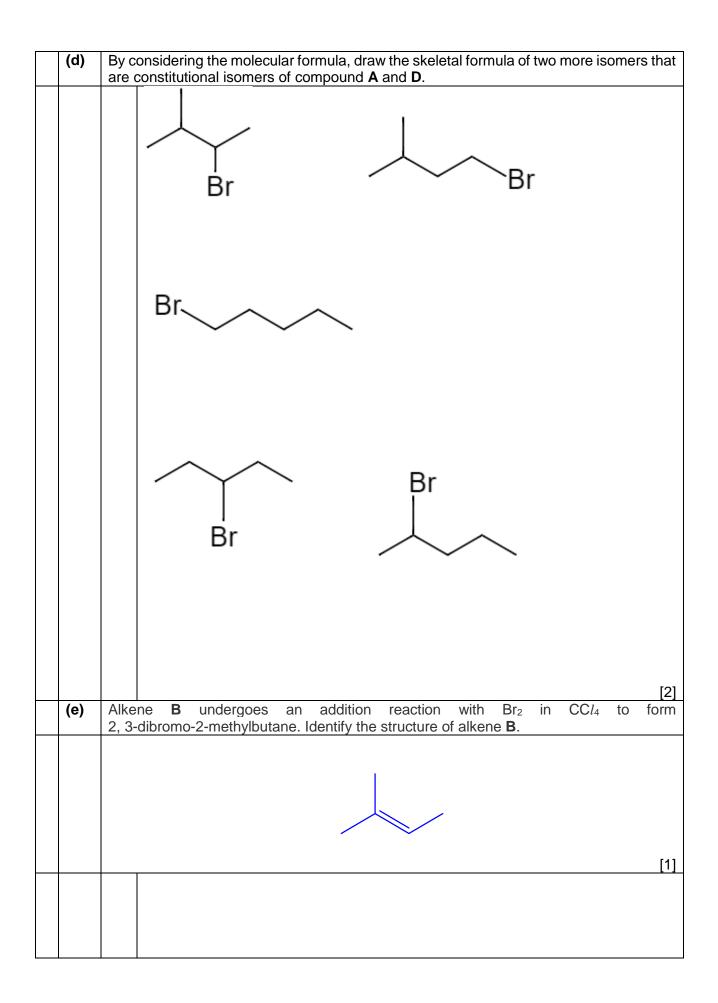

1	(a) Sulfur reacts with an element A to form a compound with empirical formula SA percentage by mass of A in SA ₂ is 83.2%.				
		(i)	Assuming the relative atomic mass of A to be y . Find the number of moles of A and S respectively in terms of y .		
			Element A S		
			No. of moles/ mol $\frac{83.2}{y}$ $\frac{\frac{100-83.2}{32.1}}{0.523}$ or		
			[1]		
		(ii)	Hence, find the value of y .		
			Mole ratio of A : S = 2 : $1 = \frac{83.2}{y} : \frac{100 - 83.2}{32.1}$ No. of moles of A atoms = 2 × no. of moles of S atoms $\frac{83.2}{y} = 2 \times \frac{100 - 83.2}{32.1}$ y = 79.5		
			[1]		
		(iii)	Element A is from Group 17. Hence, identify Element A using your answer in a(ii) .		
			Bromine [1]		
			21 unstable isotopes. Among these isotopes, the one with the longest half-life of ³⁵ S isotope.		
	(b)	(i)	Suggest the time taken for ³⁵ S to decrease to 6.25% of its initial amount.		
			100% → 50% → 25% → 12.5% → 6.25% Time taken = 85 x 4 = 340 days		
			[2]		

	(ii)	When an atom of ⁴⁰ Ar collides with a high-speed neutron, ³⁵ S and another product is produced. State the identity of this product, including its mass and protonumber.			
		$^{40}_{18}\text{Ar}$ + $^{1}_{0}\text{n}$ \longrightarrow $^{35}_{16}\text{S}$ +			
		⁶ ₂ He			
		(conservation of protons and mass number)			
		Left side Right side			
		Mass number $40 + 1 = 41$ $35 + x = 41$ $x = 6$			
		x = 6 No. of protons $18 + 0 = 18$ $16 + y = 18$ y = 2 y = 2			
		Hence the product's mass number is 6 and number of protons is 2. From the Periodic Table, the element that has 2 protons is He.			
		[1]			
(c)	warfa Iran-	sulfur dichloride, S_2CI_2 , is an important precursor of the extremely toxic chemical rfare agent sulfur mustard. It was widely used during the First World War and the n–Iraq conflict.			
	0201	l_2 can be synthesized at 200 °C as shown in the reaction below. CS_2 (g) + 3 Cl_2 (g) $\longrightarrow CCl_4$ (g) + S_2Cl_2 (g)			
	(i)	Given the structural formula of disulfur dichloride, S_2Cl_2 is $Cl-S-S-Cl_2$. Draw the 'dot-and-cross' diagram of S_2Cl_2 and state the $Cl-S-S$ bond angle.			
		$: \overset{xx}{\underset{xx}{\bigcirc}} \cdot \cdot \overset{xx}{\underset{xx}{\bigcirc}} \cdot \cdot \overset{xx}{\underset{xx}{\bigcirc}} \cdot \overset{xx}{\underset{xx}{\bigcirc}} \overset{xx}{\underset{xx}{\bigcirc}} :$			
		C/–S–S bond angle = 104.5°			
		[2			

(ii)	In terms of structure a CCl_4 and S_2Cl_2 .	and bonding, predic	t the differ	ence in boiling poin	t between
		Compound	Mr	Boiling Point/ °C	
		CCl ₄	154.0	77	
		S_2Cl_2	135.2	138	
	Both CCI ₄ and S ₂ CI ₂ e Less energy is require dipole between CCI between S ₂ CI ₂ molec	ed to overcome the v 4 molecules than	weaker in:	stantaneous dipole	nt dipole
 					[2]
					[Total: 10]

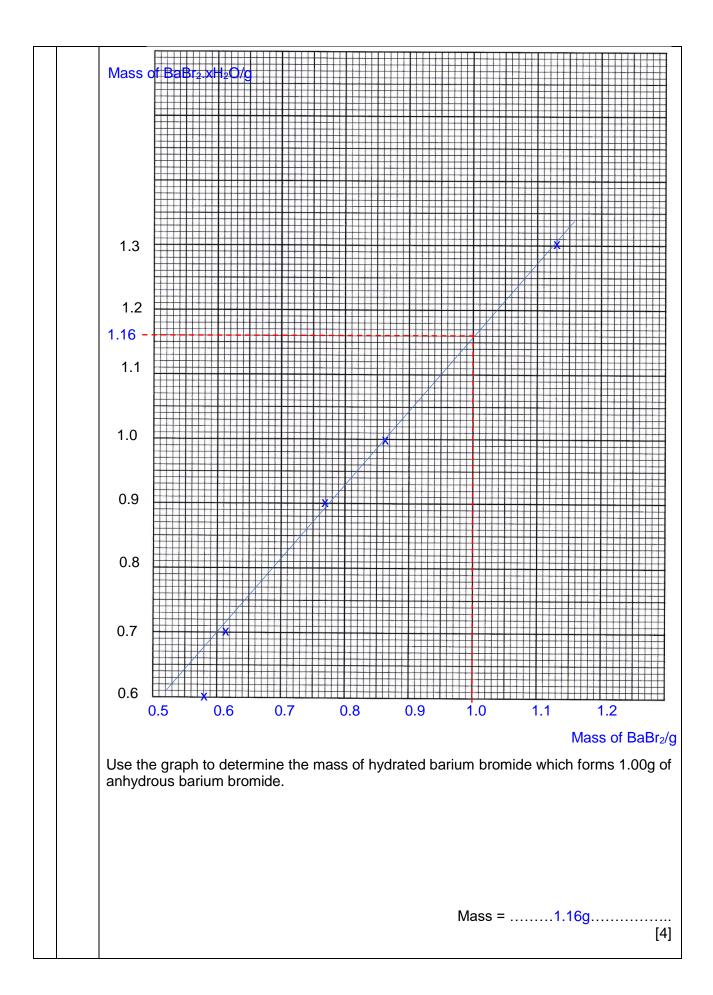
2	(a)	In the Haber Process, nitrogen reacts with hydrogen to form ammonia in the presence of iron catalyst. This reaction is reversible and exothermic.						
		Write	a balanced equation	for the Haber Pr	roces	S		
			$N_2 + 3H_2 \Longrightarrow 2N$	H ₃				
	(b)	A 20	cm ³ vessel containin	a 0.833 mol of 1	N ₂ wa	s connected	with anoth	[1] er 80 cm ³ vessel
	(-)	conta	ining 3.33 mol of H ₂ . C. At equilibrium, 0.29	The reaction mix	xture	was heated a		
		(i)	Write the <i>K</i> _c express	sion for the Habe	er Pro	ocess. State i	ts units.	
			$K_c = \frac{[NH3]^2}{[N2][H2]^3}$ mol ⁻	² dm ⁶				[2]
		(ii)	Use the information	given, calculate	the v	value of K_c .		
				1	-	1	1	
			luitial and	N ₂	+	3H ₂		2NH ₃
			Initial amt Change	0.833	+	3.33		0+0.298
			Onlange	$-\frac{1}{2} \times 0.298$		$-\frac{3}{2} \times 0.298$		10.200
			Equilibrium amt	= -0.149 0.684		= -0.447 2.883		0.298
			Equilibrium conc	$\frac{0.684}{0.1} = 6.84$		2.883		$\frac{0.298}{0.1} = 2.98$
				0.1 - 0.04		^{0.1} = 28.83		0.1 - 2.00
			$K_c = \frac{(2.98)^2}{(6.84)(28.83)^3} = 5.42 \times 10^{-5}$					
								[2]

		(iii)	By using La Chatelier's Principle, explain why the Haber Process needs to be conduced at an optimal temperature of 500 °C.				
			A low temperature will favour the exothermic reaction to produce some heat. The equilibrium position will shift to the right to produce more ammonia. However, at lower temperatures, rate of reaction is slower . [1]				
	(c)	State value	nd explain the effect, if any, on how a change to the following will affect the K_c				
			I: Increase in temperature				
			ncrease in temperature will favour endothermic reaction/ backward rxn/ position of equilibrium shift left. <i>K</i> _c will decrease.				
			II: Increase in concentration of N ₂				
			Increase in $[N_2]$ will not affect K_c as there is no change in temperature.				
			[3]				
	(d)	(i)	The graph below shows how the percentage yield of ammonia varies over time by using iron as the catalyst. percentage yield A new catalyst Z was introduced and results showed that it can increase the rate of reaction better than that of iron. Sketch on the graph for the new catalyst Z on the same axes shown above. [2]				



3	(a)		noic acid, HCOOH, being a weak acid, is the simplest carboxylic acid and is an ant intermediate in chemical synthesis.
		experi	energy content of methanoic acid can be determined by means of calorimetric ments. These experiments are usually carried out using polystyrene cup in a normal I laboratory. The standard enthalpy change of neutralisation can also be determined.
		(i)	Define what is meant by the standard enthalpy change of neutralisation.
			Energy evolved when 1 mole of water is formed when an acid is completely neutralised by alkali under standard conditions.
			[1]

	(ii)	Write a balanced equation for the neutralisation of methanoic acid with potassium	า			
		hydroxide. [1]			
		HCOOH + KOH → HCOO ⁻ K ⁺ + H ₂ O				
	(iii) How would you expect the enthalpy change of neutralisation in a(ii) to comp with the enthalpy change of neutralisation of nitric acid with potassi hydroxide? Explain your answer.					
	The enthalpy change of neutralisation in a(ii) will be less exothermic . Some of the heat evolved is absorbed to fully dissociate the methanoic acid. Hence less heat is evolved.					
	(iv) Suggest a suitable indicator for the titration between methanoic acid a potassium hydroxide.					
		[1] Phenolphthalein / thymol blue	1			
(b)	Study	the energy cycle and answer the questions that follow.				
	Na	$2O(s) + 2HCl(aq) + H_2O(l) \longrightarrow 2NaOH(aq) + 2HCl(aq)$ $\Delta H_2 \qquad \qquad \Delta H_3$				
		$2NaCl(aq) + 2H_2O(l)$				
	(i)	When 7.0 g of Na ₂ O(s) is dissolved in 200 cm ³ of 1.5 mol dm ⁻³ HC <i>l</i> (aq), the temperature of the solution increased by 15 °C. Calculate ΔH_2				
		$Na_2O(s) + 2HCl(aq) \longrightarrow 2NaCl(aq) + H_2O(l)$				
		Amount of Na ₂ O = $\frac{7.0}{2(23.0)+16.0}$ = 0.1129 mol				
		Amount of HC $l = \frac{200}{1000} \times 1.5 = 0.3$ mol				
	Limiting reagent is Na ₂ O					
		Hence amount of water formed = 0.1129 mol				
		Heat evolved = $(200)(4.18)(15) = 12540J$				
		$\Delta H = -\frac{12540}{0.1129} = -111 \text{ kJ mol}^{-1}$				
		[3	5]			


	(ii)	By making use of the energy cycle and your answer to b(i) , calculate ΔH_1 . Given ethalpy change of neutralisation between NaOH(aq) and HC <i>l</i> (aq) is -57.0 kJ mol ⁻¹ .
		$\Delta H_1 = -111 - 2(-57.0)$ = +3 kJ mol ⁻¹ [2]
		[Total: 9]

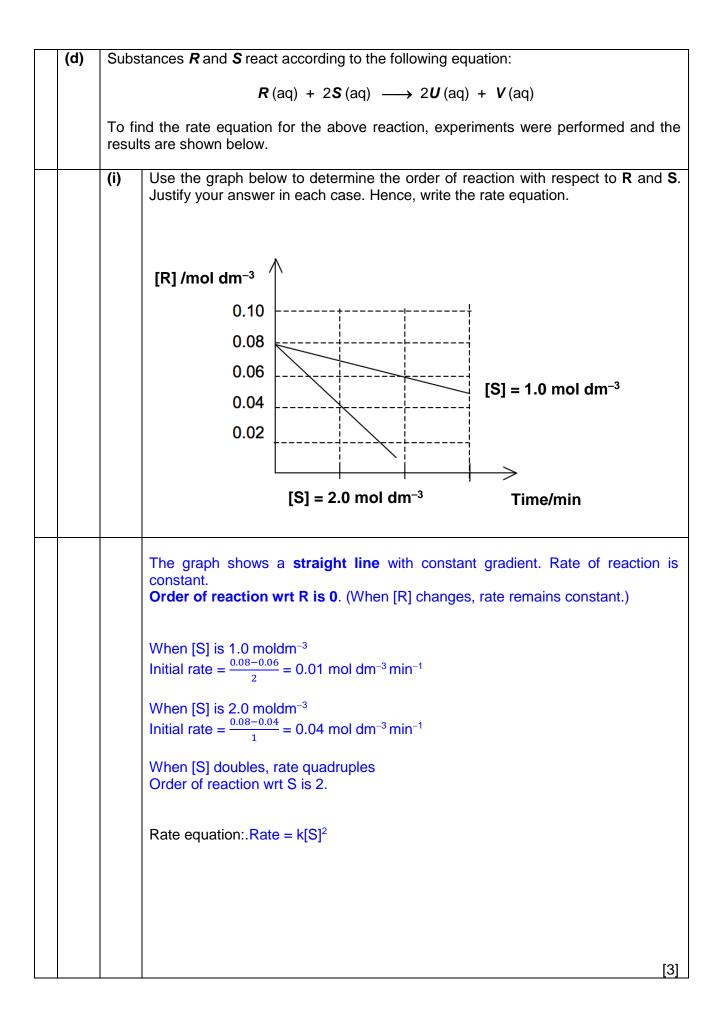
4		The following reaction scheme involves a series of reactions involving different organic compounds							
		$\begin{array}{c c} Step 1 \\ \hline \\ Br \end{array} \end{array} \xrightarrow{Step 2} alkenes B and C$							
			(Compound A					
	(a)	State the name of o	compound A	λ.					
		2-bromo-2methylbu	utane			[1]			
	(b)	State the reagents	and condition	ons required for Ste	eps 1 and 2 .				
		Step 1: (limited) Br	2, UV light						
		Step 2: Ethanolic	NaOH, heat			[2]			
	(-)	In addition to comm		is formed at the ar	d of Ctop 4	word D which is an			
	(c)	isomer of compour				ound D , which is an isomer D .			
			Structure	Br	Br				
				Compound A	Compound D				
		Ratio 1 6							
			LI						
						[1]			

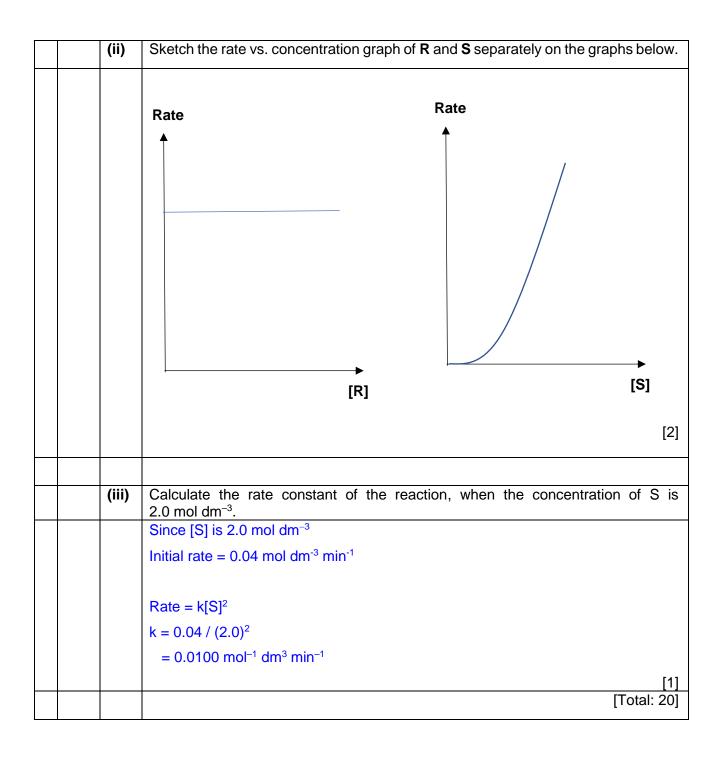


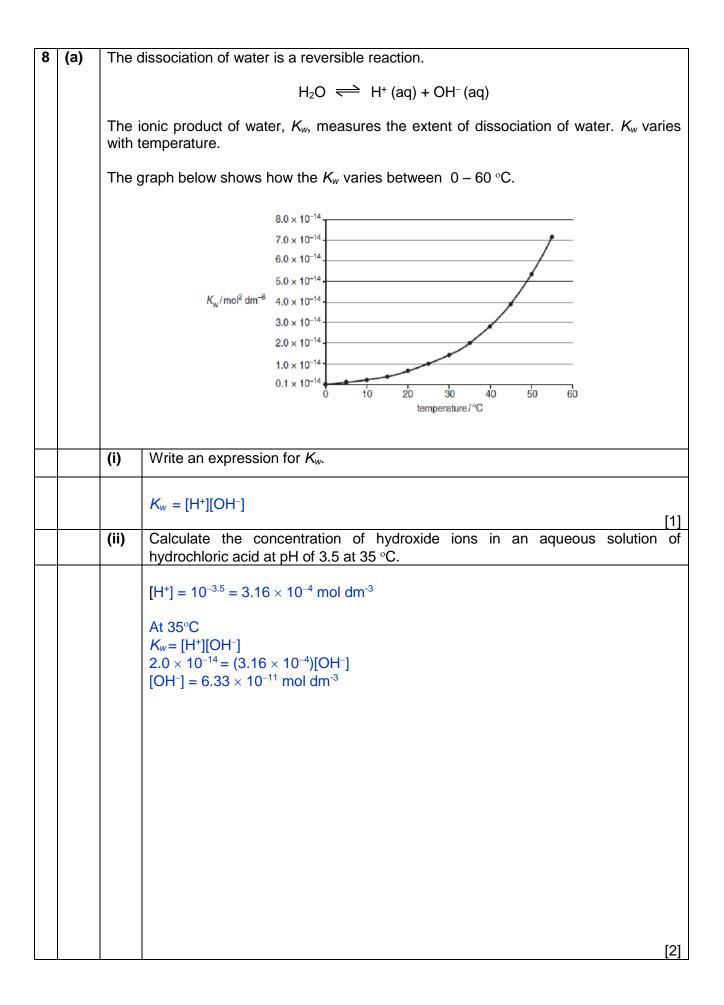
(f)	Suggest a simple chemical test to distinguish between compound A and compound B .
	Test: Add Br₂ (aq) to both compounds. Observation: Compound B will decolourise orange Br ₂ , while compound A will remain orange .
	OR
	Test: Add Br ₂ in CC <i>I</i> ₄ Observation: Compound B will decolourise orange-red Br ₂ , while compound A will remain orange-red .
	OR
	Test: Add NaOH (aq) , and heat both compounds. Acidify with HNO₃ (aq) . Then add AgNO₃ (aq) .
	Observation: Compund A will give cream ppt, while compound B does not give any ppt.
	[2] [Total: 9]

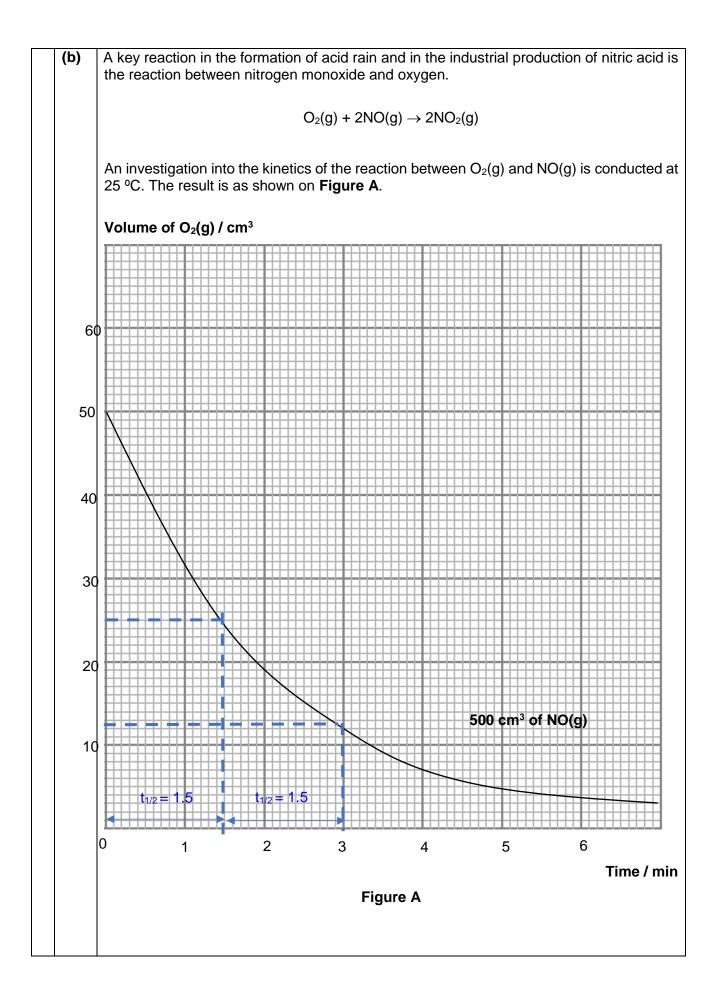
5	The	water	of crystallisation	in hydrated barium bromide, Ba	Br ₂ .xH ₂ O is lost when heated	l.	
			В	aBr₂.xH₂O (s) BaBr₂ (s) + xH ₂ O (g)		
				()	, _ (0,		
	deter of hy	The varying mass samples of hydrated barium bromide are heated in the experiment. To determine the number of molecules of H_2O in hydrated barium bromide, a graph of the mass of hydrated barium bromide against the mass of anhydrous barium bromide left after heating is plotted.					
	cruci	ble ar		of hydrated barium bromide and vere heated until a constant ma			
	each	expe	riment the studer	xperiment using different massent recorded the original mass of um bromide left after heating.			
	The	results	s are shown below	<i>w</i> :			
	Resu	ılts					
			Experiment	Mass of BaBr ₂ .xH ₂ O / g	Mass of BaBr ₂ / g		
			1	0.60	0.58		
			2	0.70	0.61		
			3	0.90	0.77		
			4	1.00	0.86		
		5 1.30 1.13					
	(a) Plot on the grid below, a graph of the mass of hydrated barium bromide on the y-axis, against the mass of the anhydrous barium bromide on the x-axis.						
		Drav	w the most appro	priate line.			

(b)	Calculate the number of moles of BaBr ₂ present in 1.00 g of anhydrous barium bromide.
	No. of moles of BaBr ₂ = $\frac{1.00}{137.3 + 2(79.9)}$ = 3.37 × 10 ⁻³ mol [1]
(c)	Using your answer from (a) and (b), calculate the M_r of hydrated barium bromide.
	No. of moles of BaBr ₂ .xH ₂ O = No. of moles of BaBr ₂ M _r of BaBr ₂ .xH ₂ O = $\frac{1.16}{3.37 \times 10^{-3}}$ = 344.6
	[1]
(d)	Hence calculate the value of x in BaBr ₂ .xH ₂ O. Give your answer to the nearest whole number.
	344.6 = 137.3 + 2(79.9) + 18x x = 2.64 ≈ 3 [1]
(e)	A databook value for the M_r of hydrated barium bromide is 333.1. Calculate the difference between the M_r value obtained from the student's data and the databook value. Express this difference as a percentage of the databook value.
	Percentage difference = $\frac{(344.6-333.1)}{333.1} \times 100$ = 3.45%
	[1] [Total: 8]




(b)	With the aid of a simple well-labelled diagram, explain how thermoplastics differ from thermosets in their bonding between polymer chains.				
	Thermoplastic po instantaneous	cri	oss links betw e interactions	oset veen chains between	its chains while
(2)	Cive and every	le of each of the following	tunes of polymo	~ *	[3]
(c)	Give one examp	le of each of the following	types of polyme	er.	
		type of polymer	e	xample	
		wrinkle-free fabric	p p	olyester	
		water soluble		PVA	
		L			[2]
					[_]
					[Total: 9]


Answer **one** question from this section in the spaces provided.


(i) Br ²⁺ (ii) (iii)	(g) → Br ³⁺ (g) + e Write down the Br ²⁺ :1s ² 2s ² 2p ⁶	full electronic configuration of Br^{2+} and Se^{2+} . $3s^2 3p^6 3d^{10} 4s^2 4p^3$	[1]		
(ii)	Write down the Br ²⁺ :1s ² 2s ² 2p ⁶	full electronic configuration of Br^{2+} and Se^{2+} . $3s^2 3p^6 3d^{10} 4s^2 4p^3$	[1]		
	Br ²⁺ :1s ² 2s ² 2p ⁶	5 3s ² 3p ⁶ 3d ¹⁰ 4s ² 4p ³			
(iii)					
(iii)	Se ²⁺ : 1s ² 2s ² 2p	o ⁶ 3s ² 3p ⁶ 3d ¹⁰ 4s ² 4p ²			
(iii)			Se ²⁺ : $1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^2$ [2]		
		he 3 rd ionization energy of bromine is higher or lo ain your answer.	wer than that of		
	Br ²⁺ has higher nuclear charge than Se ²⁺ . Both have similar shielding effect by inner shell electrons. Hence, the most loosely held electron in Br ²⁺ experience a stronger nuclear attraction and more energy is required to remove this electron. Hence 3 rd ionization energy of bromine is higher .				
(iv)	Suggest with a	reason how the first ionisation energy of ⁷⁹ Br is co	[2] mpared to ⁸¹ Br.		
		energy of ⁷⁹ Br is the same as that of ⁸¹ Br becaus of protons and electrons.	e they have the		
	The oxide of \mathbf{M} dissolves partially in water to give an alkaline solution, while its chloride readily dissolves in water to give a slightly acidic solution.				
1.	1. Identify element M.				
	Element M is Mg				
	 State the pH of the resultant solution when the oxide and chloride of M are added to water separately. Write appropriate equations to support your answer. 				
		equations for reaction with water	pH of resultant solution		
	oxide of M	$MgO(s) + H_2O(I) \Longrightarrow Mg(OH)_2(aq)$	9		
	reac 1. 2.	 readily dissolves in wa 1. Identify element M Element M is 2. State the pH of th water separately. 	readily dissolves in water to give a slightly acidic solution. 1. Identify element M. Element M is		

			Hydration	
		chloride of M	MgC $l_2(s)$ + 6H ₂ O(l) → [Mg(H ₂ O) ₆] ²⁺ (aq) + C l ⁺ (aq)	
			Slight Hydrolysis $[Mg(H_2O)_6]^{2+}(aq) \rightleftharpoons$ $[Mg(H_2O)_5(OH)]^{+}(aq) + H^{+}(aq)$	6.5
 				[4]
 (c)	(i)	Calculate the pl	H of a 0.100 mol dm ⁻³ solution of H_2SO_4 .	
 (-)	(-)	•	$= 0.200 \text{ mol dm}^{-3}$	
			-lg(0.200) = 0.699 or 0.7	[4]
	(ii)		I_2CrO_4 , like sulfuric acid, is a dibasic acid. How cid does not undergo full dissociation in water.	[1] ever, unlike sulfuric
			$H_{2}CrO_{4} \Longrightarrow HCrO_{4}^{-} + H^{+}$ $HCrO_{4}^{-} \Longrightarrow CrO_{4}^{2-} + H^{+}$	
			ned by adding equal amounts of NaHCrO₄ and lain how this buffer can help to maintain a fairly	
		When a small amount of acid is added, $CrO_4^{2-} + H^+ \rightarrow HCrO_4^-$ A large reservoir of CrO_4^{2-} removes the added H ⁺ to maintain a fairly constant pH.		
			mount of base is added, → CrO₄²⁻ + H₂O	
		A large reservo pH.	ir of HCrO₄ removes the added OH ⁻ to mainta	in a fairly constant
				[3]

	(i)	Using the graph in A , deduce the order of the reaction with respect to $O_2(g)$.					
		The half-life is constant at 1.5min.					
		Order of read	ction with respec	t to O ₂ is 1			[2]
	(ii)				nvestigate the or	der of reaction v	
		respect to NO. The data collected is shown in Table B .					
		Expt	Initial [O ₂]/ mol dm ⁻³	Initial [NO]/ mol dm ⁻³	Temperature/ K	Initial rate/ mol dm ⁻³ s ⁻¹	
		1	0.01	0.013	298	0.0032	
		2	0.01	0.013	318	0.0135	
		3	0.01	0.026	298	0.0032	
				Table B			
			e order of reacti between NO(g) a		to NO and write th	he rate equation	for
		Order of read	ction with respec	t to NO:	zero		
		Rate equatio	n:				
		$Rate = k[O_2] $ [2]					
(c)	Elem	ents of Period 3 show trends in their reactions.					
	(i)	Sketch the melting point trend for Period 3 elements from sodium to chlorine.					
		Melting point/ °C					
		▲					
1 1	1						
		+ +			+ + →		
		Na	a Mg A <i>l</i>	Si P	S Cl		
		Na	a Mg A <i>l</i>	Si P	S Cl		

	(i)
	Melting point / °C
(ii)	By considering the structure and bonding, explain for the observed melting point of silicon.
	[1] Silicon has giant covalent structure. A lot of energy is required to overcome the strong covalent bonds between the Si atoms.
(iii)	The table below shows the successive ionisation energy values for phosphorus.
	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$
	Explain how this data shows that phosphorus is a member of Group 15 of the Periodic Table.
	Sharp increase between 5 th to 6 th IE. 6 th electron is removed from inner electronic shell. There are 5 valence electrons. Therefore phosphorus is a Group 15 element. [1]
(iv)	Silicon reacts with calcium to form Ca ₂ Si. Ca ₂ Si is thought to contain the Si ^{4–} ion. Write out the electronic configuration of Si ^{4–} .
	$1s^2 2s^2 2p^6 3s^2 3p^6$ [1]
(v)	Compare the difference in size between Si ^{4–} and Ca ²⁺ .
	Both ions are isoelectronic. Nuclear charge Ca ²⁺ is larger. The nuclear attraction on the outermost electrons in Ca ²⁺ is stronger. Hence size of Ca ²⁺ is smaller.
(vi)	[2] The elements sodium, aluminium and sulfur react with oxygen to form oxides. Write equations, if any, for the reactions of each of these oxides with water. State the pH of the resultant solution formed.
	Na2O + H2O \rightarrow 2NaOHpH=13 or 14Al2O3 does not dissolve in waterpH = 7SO3 + H2O \rightarrow H2SO4pH = 1 - 2
	[4]

(d) There are three bottles labelled A , B and C in the laboratory. Ea one of the following reagents: aqueous Cl ₂ , KI solution and KBr s			•		
The following tests were carried out and the results were below.		ts were summarised in the table			
		Experiment	Procedure	Observations	
		1	mixing reagent in bottle A with reagent in bottle B	mixture remains colourless	
		2	mixing reagent in bottle A with reagent in bottle C	mixture turns brown	
		3	mixing reagent in bottle B with reagent in bottle C	mixture turns brown	
	(i)	Which bottle con your answer.	tains aqueous Cl ₂ ? With the aid of	f a balanced equation, explain [2]	
Bottle C $Cl_2 + 2X^- \longrightarrow 2Cl^- + X_2$ where X = Br or I Down the group, the halogens have lower tendency to be reduced . Stronger oxidising agent higher in the Group oxidises (and hence dishalide ions in aqueous solution further down the Group				idises (and hence displaces) the	
	(ii)		provided, how would you use it to ude the observations in your answ	2	
		Since bottle A a obtained, separa	nd B is either KBr or KI, add heately.		
		If the organic layer is purple, bottle contains KI. If the organic layer is orange-red, bottle contains KBr.			
				[Total: 20]	