Suggested Solutions for 2022 C2 H1 Preliminary Examinations

No.	Suggested Solutions				
1	$x^2 - kx + 3 + k = 0$ has real roots if Discriminant ≥ 0				
	Discriminant				
	$=k^2-4(3+k)$				
	$=k^2-4k-12$ 2 \ \int 6				
	=(k+2)(k-6)				
	For discriminant ≥ 0 , we have				
2a	$\{k \in \mathbb{R} : k \le -2 \text{or} k \ge 6 \}$				
2a	$\int \frac{\sqrt[3]{x} - (\sqrt{x})^3}{\sqrt{x}} dx = \int x^{-\frac{1}{6}} - x dx = \frac{6}{5} x^{\frac{5}{6}} - \frac{1}{2} x^2 + C$				
2(b) (i)	$\frac{\mathrm{d}}{\mathrm{d}x} \left(6 \ln \sqrt[3]{3x^2 + 4} \right)$				
	$= \frac{6}{3} \frac{\mathrm{d}}{\mathrm{d}x} \left(\ln \left(3x^2 + 4 \right) \right)$				
	$=2\left(\frac{6x}{3x^2+4}\right)$				
	$=\frac{12x}{3x^2+4}$				
	$\frac{3x + 4}{\text{Method 2}}$				
	$\frac{\mathrm{d}}{\mathrm{d}x}\left(6\ln\sqrt[3]{3x^2+4}\right)$				
	$= 6 \left(\frac{\frac{1}{3} (3x^2 + 4)^{-\frac{2}{3}} 6x}{\sqrt[3]{3x^2 + 4}} \right)$				
	$=\frac{12x}{3x^2+4}$				
(ii)	$\int \frac{x}{3x^2 + 4} \mathrm{d}x = \frac{1}{12} \int \frac{12x}{3x^2 + 4} \mathrm{d}x$				
	$= \frac{1}{12} \left(6 \ln \sqrt[3]{3x^2 + 4} \right) + c$				
	$= \frac{1}{2} \ln \sqrt[3]{3x^2 + 4} + c \text{or} \frac{1}{6} \ln \left(3x^2 + 4\right) + c$				
3(i)	$AD = \sqrt{x^2 + x^2} = \sqrt{2}x$				
	PerimeterAEBCGFD = $\frac{1}{2}(2\pi x) + 2AD + 2DF + 4x = 10$				
	$\pi x + 2\sqrt{2}x + 2DF + 4x = 10$				

	,			
	$DF = \frac{10 - \left(\pi + 2\sqrt{2} + 4\right)x}{2}$			
	2			
	$=5-\left(\frac{\pi}{2}+\sqrt{2}+2\right)x$			
(ii)	Let area of window be A			
	$A = \frac{1}{2}\pi x^2 + \frac{1}{2}(2x + 4x)x + (DF)4x$			
	$= \frac{1}{2}\pi x^2 + 3x^2 + \left(5 - \left(\frac{\pi}{2} + \sqrt{2} + 2\right)x\right)4x$			
	$= \frac{1}{2}\pi x^2 + 3x^2 + 20x - 2\pi x^2 - 4\sqrt{2}x^2 - 8x^2$			
	$= -\frac{3}{2}\pi x^2 - 5x^2 - 4\sqrt{2}x^2 + 20x$			
	$\frac{\mathrm{d}A}{\mathrm{d}x} = -3\pi x - 10x - 8\sqrt{2}x + 20$			
	For max A, $\frac{dA}{dx} = 0 \Rightarrow x = \frac{20}{3\pi + 10 + 8\sqrt{2}}$			
	$\frac{d^2 A}{dx^2} = -\left(3\pi + 10 + 8\sqrt{2}\right) < 0$			
	A is maximum when $x = \frac{20}{3\pi + 10 + 8\sqrt{2}}$			
4 (i)				
	↑ ^y			
	y = 3			
	(0.2)			
	(0,2)			
	$\left(-\frac{1}{3}\ln 3,0\right)$			
	$y = 3 - e^{-3x}$			
(ii)	At x-axis, $y = 0 \Rightarrow e^{-3x} = 3 \Rightarrow x = -\frac{1}{3} \ln 3$			
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3\mathrm{e}^{-3x}$			

When	$x = -\frac{1}{3}\ln 3,$
	(1)

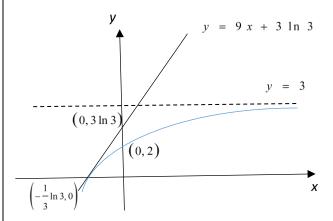
$$\frac{dy}{dx} = 3e^{-3\left(-\frac{1}{3}\ln 3\right)} = 3e^{\ln 3} = 9$$

Equation of tangent,

$$y - 0 = 9\left(x - \left(-\frac{1}{3}\ln 3\right)\right)$$

$$y = 9x + 3\ln 3$$

(iii)



Area

$$= \frac{1}{2} (3 \ln 3) \left(\frac{1}{3} \ln 3 \right) - \int_{-\frac{\ln 3}{3}}^{0} 3 - e^{-3x} dx$$

$$= \frac{1}{2} (\ln 3)^{2} - \left[3x + \frac{e^{-3x}}{3} \right]_{-\frac{\ln 3}{3}}^{0}$$

$$= \frac{1}{2} (\ln 3)^{2} - \left[\frac{1}{3} - \left(-\ln 3 + \frac{e^{\ln 3}}{3} \right) \right]$$

$$= \frac{1}{2} (\ln 3)^{2} - \frac{1}{3} + \left(-\ln 3 + \frac{3}{3} \right)$$

$$= \frac{1}{2} (\ln 3)^{2} - \ln 3 + \frac{2}{3} \text{ units}^{2}$$

5(i) Let x be the selling price of a toy boat.

Let y be the selling price of a toy car.

Let z be the selling price of a toy plane.

	x = 2y
	9x + 5y + 3z = 335
	3x + 4y = 38 + x + 2z
	Rearranging the equations, we get
	x - 2y + 0z = 0
	9x + 5y + 3z = 335
	2x + 4y - 2z = 38
	From GC, $x = 22.4$, $y = 11.2$, $z = 25.8$
	Hence, the selling price of a toy plane is \$25.80.
(ii)	Substitute $D = 20$ and $p = 0$ into $D = 3 + ae^{-0.08p}$,
	$20 = 3 + ae^0$
	a = 17
(iii)	D (thousands)
	$ \begin{array}{c} (0,20) \\ 3 \\ \hline \qquad $
(iv)	$D = 3 + 17e^{-0.08p}$ $\frac{dD}{dp} = 17(-0.08)e^{-0.08p}$ $= -1.36e^{-0.08p}$
(v)	$p = \sqrt{0.5(t-9)^2 + 312}$

$$\frac{dp}{dt} = \frac{1}{2} \left[0.5(t-9)^2 + 312 \right]^{\frac{1}{2}} (0.5)(2)(t-9)$$

$$= \frac{1}{2}(t-9) \left[0.5(t-9)^2 + 312 \right]^{\frac{1}{2}}$$

$$= \frac{t-9}{2\sqrt{0.5(t-9)^2 + 312}}$$

$$\frac{dD}{dt} = \frac{dD}{dp} \times \frac{dp}{dt}$$

$$= -1.36e^{-0.08tp} \times \frac{t-9}{2\sqrt{0.5(t-9)^2 + 312}}$$
When $t = 20$, $p = \sqrt{0.5(20-9)^2 + 312}$

$$= 19.30025907$$

$$\frac{dD}{dt} = -1.36e^{-0.08(19.30025907)} \times \frac{20-9}{2\sqrt{0.5(20-9)^2 + 312}}$$

$$= -0.290388 \times 0.2849703$$

$$= -0.0828 (3sf)$$
(vi) The monthly demand for toy trains at 20 months from now is decreasing at a rate of 82.8 toys per month.

6(i) No. of ways = ${}^{17}C_s = 24310$
(ii)
$$\frac{\text{Method 1}}{Case \ 1: \text{Husband at either end}}$$
No. of ways = $7! \times 2 \times 8! = 406425600$

$$\frac{Case \ 2: \text{Husband not at either end}}{Case \ 1: \text{Husband not at either end}}$$
No. of ways = $14 \times 8! \times 7! = 2844979200$
Total number of ways = $406425600 + 2844979200 = 3251404800$

$$\frac{\text{Method 2}}{Case \ 2: \text{Method 2}}$$

	No. of ways = $8! \times 7! \times ({}^{16}C_1 \times 1) = 3251404800$
(iii)	No. of ways = ${}^{8}C_{4} \times {}^{9}C_{4} = 8820$
(iv)	Case 1: includes wife (but not husband) ${}^{7}C_{3} \times {}^{8}C_{4} = 2450$ Case 2: includes husband (but not wife) ${}^{7}C_{4} \times {}^{8}C_{3} = 1960$
	Total number of ways = $2450 + 1960 = 4410$ Required Probability = $\frac{4410}{8820} = \frac{1}{2}$
7(i)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	$n(M \cap S' \cap A') = 18 + x$ $40 = 26 - x + x + 14 - x + n(S \cap M' \cap A')$ $n(S \cap M' \cap A') = x$ $45 = 21 - x + x + 14 - x + n(A \cap S' \cap M')$ $n(A \cap S' \cap M') = 10 + x$
(ii)	Since M and S are independent, $P(M \cap S) = P(M) \times P(S)$

26 _ 65	40
$\frac{1}{92+x} - \frac{1}{92+x}$	$\overline{92+x}$
$26(92+x) = 65 \times 40$	= 2600
2392 + 26x = 2600	
26x = 208	
x = 8	

(iii) P(M|A) is the probability that a customer likes mangoes, given that he or she likes apples.

$$P(M | A) = \frac{P(M \cap A)}{P(A)}$$
$$= \frac{\left(\frac{21}{100}\right)}{\left(\frac{45}{100}\right)}$$
$$= \frac{7}{15}$$

(iv) Number of customers who like exactly two different fruits

$$= 18 + 13 + 6 = 37$$

Number of customers who like only one fruit

$$= 26 + 18 + 8 = 52$$

Required probability

= P(3 like exactly two different fruits and 1 like only one fruit)

$$= \frac{37}{100} \times \frac{36}{99} \times \frac{35}{98} \times \frac{52}{97} \times 4 = 0.103 \text{ (3 sf)} \qquad \underline{0}$$

$$= \frac{{}^{37}C_3 \times {}^{52}C_1}{{}^{100}C_4} = 0.103 \text{ (3 sf)}$$

8(i)					
$\frac{k+6120}{8} = 1.834352(442.5) + 40.8$ $k = 700.00608$					
k = 700.00608					
k = 700.00608	$k + 6120_{-1.834352(442.5) + 40.8}$				
= 700 (to nearest integer)					
(ii) $r = 0.996$. It indicates a strong positive linear correlation between the	ne number of				
Nutella brownies sold and the profit.					
(iii) y					
(620,1200)					
(190,390)	(190,390)				
X					
(iv) Sub $x = 480$ into $y = 1.834352x + 40.8$, we obtain $y = 921.28896$					
$y \approx $921.29 \text{ (to 2 d.p. for money)}$					
The product moment correlation is close to 1 and $x = 480$ is within	the data				
range of [190, 620]. Thus, the estimate will be a reliable one.					
(v) As r measures the degree of scatter of the data points, an increase of 80					
values of the monthly profit (values of y) will not change the scatter of Hence, there will be no change in the value of r.	tne data.				
9(i) Let X be the duration of a particular viral infection in a child.					
Let μ be the mean population duration of a particular viral infection as	mong				
children and σ^2 be the population variance of a particular viral infection	on among				
children.	-				
$s^2 = \frac{120}{119} (1.215)^2 = 1.48863, \ \overline{x} = 4.07$					
H_0 : $\mu = 4.3$ H_1 : $\mu \neq 4.3$ at 5% level of significance					

	Under H ₀ , since $n = 120$ is large, by Central Limit Theorem, $\overline{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$			
	approximately.			
	$Z = \frac{\overline{X} - \mu}{\frac{s}{\sqrt{n}}} \sim N(0,1) \text{ approximately}$			
	\sqrt{n}			
	Using a one-tailed test, $\overline{x} = 4.07$ gives p -value = $0.038920609 < 0.05$			
	We reject H ₀ at 5% level of significance and conclude that there is sufficient evidence there the mean duration of viral infection of the particular viral among children is different from the researchers' claim.			
(ii)	Not necessary. Since $n = 120$ is large, by Central Limit Theorem, the sample mean duration of a particular viral infection in children follows a normal distribution approximately.			
(iii)	$H_0: \mu = 4.3$			
	$H_1: \mu < 4.3$			
	Since H_0 is rejected, p-value $\leq \frac{k}{100}$			
	$\frac{0.038920609}{2} \le \frac{k}{100}$			
	$k \ge 1.95$ (3 s.f.)			
	$k \ge 1.95 (3 \text{ S.1.})$			
(iv)	Unbiased estimate of population variance,			
	$\sum (y - \overline{y})^2 = 77.88$			
	$s^{2} = \frac{\sum (y - \overline{y})^{2}}{59} = \frac{77.88}{59} = 1.32$			
(v)	H ₀ : $\mu = 4.3$			
	H_1 : μ < 4.3			
	There is a probability of $\frac{\beta}{100}$ to conclude that the population mean duration of			
	infection being treated with medicine M is less than 4.3 days when it is actually 4.3 days.			
10 (i)	Let <i>X</i> be the mass of a randomly selected Honeycrisp apple. $X \sim N(78, 13^2)$.			
	$P(70 < X < 90) = 0.5528661 \approx 0.553$			
(ii)	Let <i>Y</i> be the mass of a randomly selected empty box. $Y \sim N(10, 0.8^2)$			

	Let $T = X_1 + X_2 + X_3 + + X_{24} + Y \sim N(1882, 4056.64)$
	$P(T < 2000) = 0.9680354 \approx 0.968$
(iii)	The mass of an apples is independent of the mass of another apple. The mass of an apple is independent of the mass of an empty box.
(iv)	k is the largest mass. $P(X \ge k) > 0.55$
	From GC,
	When
	$k = 75, P(X \ge k) = 0.59125$
	$k = 76, P(X \ge k) = 0.56113$
	$k = 77, P(X \ge k) = 0.53066$
	k = 76
	Therefore largest $k = 76$
	Alternative method
	$P\left(Z \ge \frac{k - 78}{13}\right) > 0.55$
	$\frac{k - 78}{13} < -0.12566$
	k < 76.366 largest $k = 76$
(v)	Let <i>A</i> be the cost of a randomly selected Honeycrisp apple.
(*)	Let A be the cost of a randomly selected Holleyerisp apple. $A \sim N(5.46, 0.8281)$
	Let <i>F</i> be the total cost of an empty box and 24 Honeycrisp apples. $F \sim N(131.24, 19.8744)$
	$F_1 + F_2 + F_3 \sim N(393.72, 59.6232)$
	$P(370 \le T \le 420) = 0.998604 \approx 0.999$

	T				
11	Let M be the height of a male student and F be the height of a female student.				
(i)(a)	$M \sim N(171, 3.58^2)$,				
	$F \sim N(160, 5.11^2)$				
	1 - 1 (100, 3.11)				
	$(P(F > 158))^2 = 0.6522452^2 = 0.425423 \approx 0.425$				
(i)(b)	$P(F > 158) \times P(F < 158) \times 2! = 0.4536428 \approx 0.454$				
(ii)	Let <i>T</i> be total height of 3 male and 4 female students.				
	$T = F_1 + F_2 + F_3 + F_4 - M_1 - M_2 - M_3$				
	$T \sim N(127, 142.8976)$				
	$ P(F_1 + F_2 + F_3 + F_4 - M_1 - M_2 - M_3 \le 130)$				
	$= P\left(-130 \le T \le 130\right)$				
	= 0.599078				
	≈ 0.599				
(iii)	Let <i>X</i> be the no female students (out of 80) whose height is more than 158 cm.				
	$X \sim B(80, \ 0.6522453)$				
	$P(X \ge 50) = 1 - P(X \le 49)$				
	$= 0.73758 \approx 0738$				
(iv)	Let Y be number of male students (out of n) who are shorter than 175 cm.				
	$Y \sim B(n, P(M < 175))$				
	P(M < 175) = 0.868070857				
	$Y \sim B(n, 0.868070857)$				
	$P(Y \le 10) > 0.4$				
	From GC,				
	$n = 11$, $P(Y \le 10) = 0.78909 > 0.4$				
	$n = 12$, $P(Y \le 10) = 0.483 > 0.4$				
	$n = 13$, $P(Y \le 10) = 0.24071 < 0.4$				
	Largest $n=12$.				