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Mathematical Formulae

1. ALGEBRA
Quadratic Equation
For the quadratic equation ax? + bx + ¢ = 0,

~b+ b —dac
=
2a
Binomial expansion
" il f'” -l n n-241 n H=F i 1]
(a+b) =a"+| |a"'b+| _|a" B +.4] |a" B 4.4
| 12, 2 |k..|"

r![.ir—r}! !

m wt n(n=1).(n-r+1)

R .. . r
where n is a positive integer and *

2. TRIGONOMETRY
Identities

sin® A+cos’ A=1
sec” A=1+tan” 4

cosec  A=1+cot” 4

sinfA+ B)=sin Acos BLfcosAsin B

cos(A+ B)=cos Acos B Fsin Asin B

€ F, i «
tan( A+ B) = tan 4+ tan B

1 Ftan A tan &
sin24 =2z Acos A

cos2A4=cos’ A—sin® 4=2cos’ A-1=1-2sin" 4

tan24 = —2 m“fi
l—tan” 4
Formulae for AABC
a b e
sind sinB sinC
a*=bh" +c* =2bccos 4

A= ]—:r.ﬁ sin
2
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I-x
'\.l" 289" = 7 o —
1 Given that 289 find the value of ¥289" [4]
173" =177
2
—x=—1-x
3
3
.E——j
]
Y289 = 0,322 (3SF)
2 An equilateral triangle has a perimeter of 13 333 cm. Find the area of the triangle, in

Cﬂl:', in the form @ #¥3 where a and b are constants. [4]
Method 1: Method 2:
[ =1 — 2
13-33 (13337 (13-35

Length of one side =
sin 607 = v3
2

113-33)
Area=2'- 2 )

1{13-337
2l 2

3

sin 60"

e

r

-

6

A

. 'lql
Height = 1"

(Pythagoras Theorem)
[13-33) (13-35)
Height = Voo 36
[413-343) - (13-3.3)
Height = 1" 36
I's[u—aﬁ]"
Height = 1" 36
— 13— 11."
Height= © l 3)

%x[lj Mf‘J (13_—343}
V3(13-343)

Area =
J3{13- wz
Area =
ﬁ(lgﬁ—?sﬁ)
Area = 36
19643234 983117
Area = 36 18




The equation of a curve * = 2% +A¥+35 intersects the line ¥ =¥ 3 at two points.
Find the set of values of k. [4]

2 +(k=Dx+2=0

(k—1)" —4(2)(2) >0

(k+30k=5)=0

3 ~—"5 &
k<-3ork=5
-2

Fi(x) =

It is given that f(x) is defined for x > 1 and is such that x -1,
-2
frs F(x) =

By considering ) , explain whether x" =1 is an increasing or decreasing
function. [4]

(7 —1)4x—2x7 (2x)

(,1': —]:]:

fx)=

¥ 1) >0
Given x> 1, 4x<0,{1' )}[
- dx

= ()

0 (.r:—l]:

since {1 <0 p(x) is a decreasing function.
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- j = 5 5-.1'
(a)  On the same diagram, sketch the graphs of ¥ => and ¥ =(5") [3]

- . - ¥ = 5 5—.7
(b) Find the coordinates of the point of intersection of -* S and ¥=3G7) [2]

S.T = 5{ 5—.1"}
x=1=x



A, B and C are the angles of a triangle.

(@)

Show that cos C = cos (A + B) [2]
In a triangle, A+ B + C = 180°
0 A+B=180° C

cos (A +B) =cos (180° C)
cos (A + B) = cos 180°cos C  sin180°sin C
cos(A+B)=( 1)cosC (0)sinC
cos(A+B)= cosC

therefore  cosC= cos (A + B)

Given that A = 45° and B = 30°.

(b)

1(Ja+5)
Without using a calculator, find cos C in the form 4 ", where a and
b are integers. [3]

cos ' =—cos(457+307)

cos( =—cos45%cos 30" +sin 45%sin 30°
's.E xﬁ 1."'2 |
cos(C=———x—+—u—
2 2 2 2

cosC = i(vﬁ —«JE)
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i

The diagram shows a triangle PQR in which angle PRQ = ¢ radians, angle PQR is a
right angle, M is the midpoint of QR and the length of PQ = 12 m. Without using a

OM = MR = 63

calculator, find the value of the integer k such that
. T 12 Pythagoras Theorem:
an—=——
6 OR PM =\12* + OM* = /252
OR =123

PM =647

angle MPR =sin ' {g]

[5]

. T
sinZMPR > ¢
MR

- PM

. W
sin

sin ZMPR =

|
sin /MPR = —2

X 63
ﬁﬁ A
. 3
gin S MWPR =
27
sin < MPR = V3 xﬁ
27 V7
—
sin /MPR =~ 21

=

6« MR



d’y
1 =bHx-5

A curve is such that ¥’ . The curve passes through the point ( 1, 5) and at

this point, the gradient of the curve is 3.

(@) Find the x-coordinates of the stationary points of the curve.

dy

- [(6x-5) dx
ﬁ =3y -S5x+¢
dx

At point ( 1, 5), gradient =3
3=3(-1) -5(-D+c

c=-5

dy _

= =3x"—5x-5
dx

(b) Find the equation of the curve.

y=x-=x'-5x+c¢
At point ( 1, 5),
;5 2
a=(-1) —E{—I}'—S[—l‘jﬂf

[4]

[2]
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Coffee is dripped at a constant rate of 2[ em’ /5 into an empty cylindrical cup of

radius 4 cm.

The volume, V em’ , of coffee in the cup is given by 4

depth, in cm, of the coffee.

Find
()

(i)

The time taken for the depth of the coffee to reach 3 cm,

X=3,
V = &416313)
volume
Time = rafe
631 315
Time= 27 S

The rate of change of the depth of the coffee at this time.

V=x"fl0-x)

Vel ot — x

N =20 3a x°
x
) db e
When ¥ -3, dx
av_,
di
dv_dx v
di  dV  di
E= : % 2T
di  33x
dr_ 2
di 33
2
—om/l s

Rate of change = 33

=x@0-x)  \where x is the

[3]

[4]
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(b)

Write down and simplify the first three terms in the expansion, in ascending

?
powers of x, of (2-3x) 3]
] ] 5 4 5\
(2-3x) =2 +[ ]" (—3x)+ Jz ~3x)?
First 3 terms of 2
(2-3x)" =32-240x + 720x°
Given that the expansion of (p+gx)(2-3x) up to the term in +is
8+rx+1680x"  find the value of p, or g and of r. [4]

(p+q_r}[2—31] |[p+qrx}[L 2- "’4ﬂt+?2m}

(pH qx}l[l—lr]' =32p—240px + 720 px” +32gx — 240gx” +

Comparing
32p=8
1

a

720 p—240g = 1680
?2:}[5— 240qg = 1680
~240g = 1500

25

fi’=_T

g-240p=r

r —:urL 25] 24{:[1] — —260
4 4
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(@)

(b)

2+ log,(3x—1)=log,(2x" = 5)

Solve the equation [4]
2=log,(2x" = 5)—log,(3x~1)
2x* -5
log. =2
& 3x—1
2x* -5 _3
3x—1
2x* =5 g
dx—1
2x' -5=27x-9
2x* =27x+4=0
- 274277 - 4(2)(4)
2(2)
L 274697
4
x=13.4 (35F) o, x=0.150 (Rejected)
41
log, x + log, x =~
(i)  Show that g2 3]
log, x+log, x —E+]g—x
g: Ex lg2  1g8
log, x+lo r_lg_x_l__lg_r
S XTI =2 T 3192
log, x -+ log, x = 3lgx+lgx _4lgx
: 3lg2 31g2
.. . log, x+log, x=5
(i) Hence solve the equation =2 B : [2]
4@x:5
g2
4lgx=151g2
oy 13182
4
x=10 *

x=13.5 (35F)
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A4, 2)

0

The diagram shows a rectangle ABCD with vertices A (4, 2) and B (2, 8).
Q) Find the equation of BC, [3]
8-2 3

Gradient of AB +

= 2-
1
Gradient of BC = 3
8= L(2)+e
. |

(i)  Given that the line ¥ =¥ ~2 passes through point C, find the coordinates of [2]
12
X — L= :.'l.'+—
a

r=14
y=12
C=(14,12)
(i) Find the coordinates of the midpoint of AC. [1]

(14+4 12+2)
s =(9,7)

Midpoint of AC=% 2 2 /

(iv)  Hence, find the coordinates of D. [1]

Fy+2 v+8Y
¥+ $_1,+ — (9.7)
2 2 )

D = (16, 6)
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(v)

14

Find the area of the rectangle ABCD.

1‘2 416 14 2‘
Area = § 2 6 128
Area = 80 square units

2

[2]

13 (i)

Rx® —9x+1
Express *(2x=1)°
Bx' —Ox+1_ 4
¥2x—1)

in partial fractions.
B C

+ ¥
2x-1 (2x¢-1)
Bx® —9x+1=A(2x—1) +Bx(2x—1)+cx

X

Letx=0

A=1

Letx=1

8—9+1=1+B-3
B=2

(i)

Bx'—9x+1 1

2 3
x(2x=1"  x 2x-1 (2x-1)

2 8x" —0x+1 dy

Hence find ~ x(2x =1y

2 3

jlﬂx‘—g.t+1¢r:j-‘ l+ B 1
! Hlx 2x-1 {l\:—l]'

x(2x =1y

jzﬂx'—‘}xtldr:j: l 2 3
box(2x-1) b X

+ - :
X 21 (2x-1)

[.”

dr = [In x+In(2x 1)+

dx =

II: 8x" —9x+1

x2x -1y 2

j.: 8x' —Ox+1 3

x(2x -1y

| 2In(2x-1) 3(2x-1)"
-1(2)

2(2x-1)

[6]
dx

dx

2

I
|

in the form ln« —& where a and b are integers.
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2 ‘- [ X
Ih—gxﬂm: Inx+In(2x—1)+ - }

box(2x-1) L H2x=D 1
J.:ﬁ.x'——‘ﬁt]dx: ]n2+|n3+l}—[]n1+]n]+i}

box(2x-1) L : ’
rg‘x"—q‘-"‘ﬁldx: 1n6+l}[i]

b ox(2x-1r - 2 2

=In6-1

()  Express 4% —4x-19 in the form a(x+B) +€ | herea band ¢ are

constants. [2]

45" —4x-19

hy=4x —4x-19
[1]

(i) Find the coordinates of the turning point on the grap

(4
2
(iii)  Find the exact values of the x  intercepts. [3]

-

4{ J 20=0
x—-—| -20=

[Turn over
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(b) A boy kicked a ball from the floor of the top of a stage P to the top of stage Q.

N

e hm
o — Stage Q

Xxm

Stage P

The height, h m, of the ball above the ground is represented by the equation
h=-x"+8x+9
where x m is the horizontal distance travelled by the ball.

(1 Find the height of stage P. [1]
x=0
Height =9 m

(i)  Express /#=—x"+8x+%in the form =P ~(*+4)" \here p and q are integers.

[2]
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_ {_t—4]2—lﬁ—9}

- fu —4)'-25]

h
h
h=25-(x—4)

(iii)  State the coordinates of the turning point of #==x"+8x+9 [1]

Turning point = (4, 25)

End of Paper
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