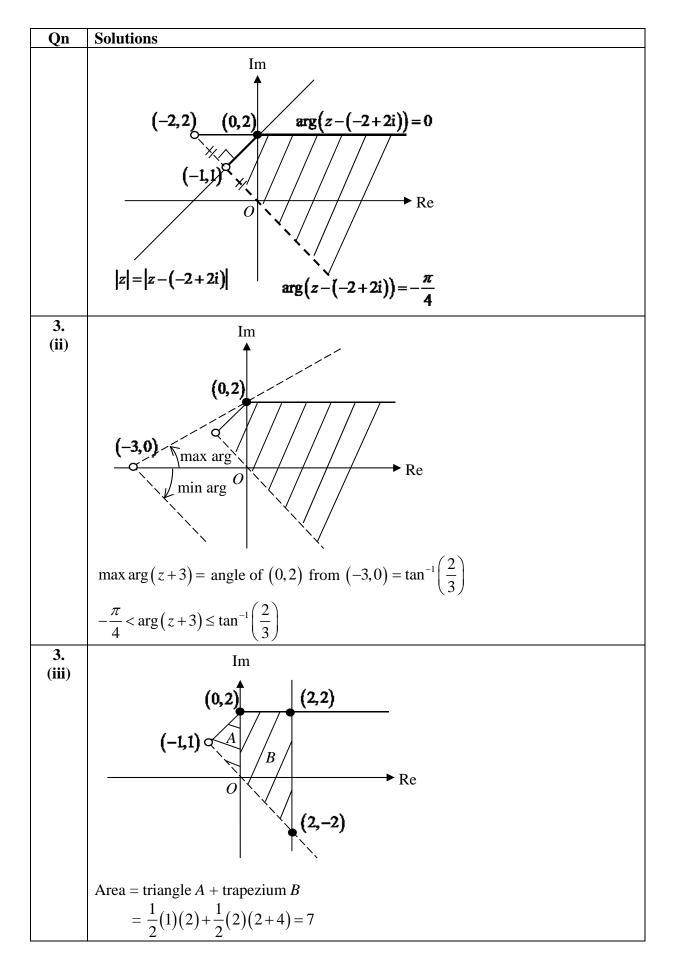
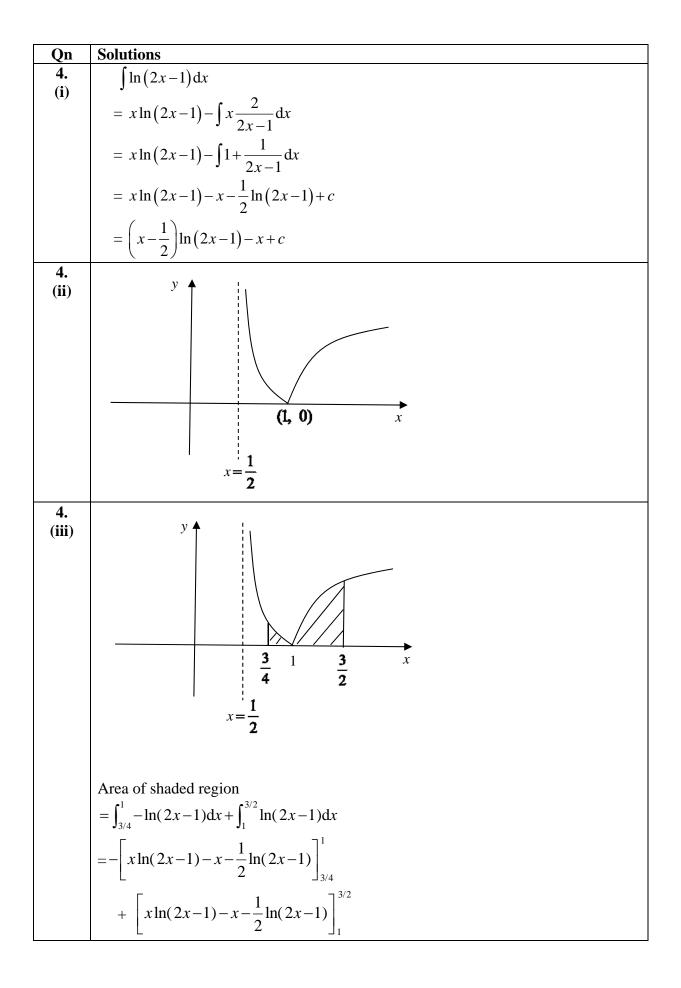
Qn	Solutions
1.	Locus of R is a straight line passing through the origin and parallel to \overrightarrow{AB} .
(a)	
1.	a and b are parallel
(b)	$\mathbf{a} = (2\mathbf{a}\mathbf{b})\mathbf{b}$
(0)	
	$ \mathbf{a} = 2 \mathbf{a} \mathbf{b} ^2 \cos \theta $
	$ \mathbf{b} = \frac{1}{\sqrt{2}}$
	$ \omega = \sqrt{2}$
1.	Using ratio theorem,
(c)	$\overrightarrow{ON} = \frac{1}{3}\mathbf{a} + \frac{2}{3}\mathbf{b}$ and $\overrightarrow{OM} = \frac{1}{2}(\mathbf{b} + \mathbf{c})$
	Since O is the midpoint of MN ,
	$\overrightarrow{ON} = -\overrightarrow{OM}$
	$\frac{1}{3}\mathbf{a} + \frac{2}{3}\mathbf{b} = -\frac{1}{2}(\mathbf{b} + \mathbf{c})$
	$2\mathbf{a} + 4\mathbf{b} = -3\mathbf{b} - 3\mathbf{c}$
	$2\mathbf{a} + 7\mathbf{b} + 3\mathbf{c} = 0$
2.	$f(r) = (3r-2)(3r+1) = 9r^2 - 3r - 2$
(i)	$\frac{n}{n}$ = () $\frac{n}{n}$ () = 2 =
	$\sum_{r=1}^{n} f(r) = \sum_{r=1}^{n} (9r^2 - 3r - 2)$
	$n^{n} - 2 - n^{n} - \sum_{i=1}^{n} n^{i}$
	$=9\sum_{r=1}^{n}r^{2}-3\sum_{r=1}^{n}r-\sum_{r=1}^{n}2$
	$=\frac{3}{2}n(n+1)(2n+1)-\frac{3}{2}n(n+1)-2n$
	$= \frac{-n(n+1)(2n+1) - \frac{-n(n+1) - 2n}{2}}{n(n+1) - 2n}$
	$=3n^3+3n^2-2n$
	$=n\left(3n^2+3n-2\right)$
	Hence, $a = 3, b = 3$ and $c = -2$.
	Thence, $u = 5, v = 5$ and $v = 2$.
2.	$S = \frac{1}{1} = \frac{1}{1}$
(ii)	$S_1 = \frac{1}{(3-2)(3+1)} = \frac{1}{4}$
	$S = \frac{1}{2}$ (and)
	$S_2 = \frac{1}{4} + \frac{1}{(6-2)(6+1)} = \frac{2}{7} \text{ (qed)}$
	s = 2 1 3
	$S_3 = \frac{2}{7} + \frac{1}{(9-2)(9+1)} = \frac{3}{10}$
	$S_4 = \frac{3}{10} + \frac{1}{(12-2)(12+1)} = \frac{4}{13}$
L	

2015 H2 Mathematics Prelim Paper 2 Solutions

Qn	Solutions
2. (iii)	Conjecture: $S_n = \frac{n}{3n+1}$
	Let $P(n)$ be the proposition that " $S_n = \frac{n}{3n+1}$ for all $n \in \square^+$ ".
	Consider P(1), LHS = $S_1 = \frac{1}{4} = RHS$.
	Therefore $P(1)$ is true.
	Assume $P(k)$ is true for some $k \in \Box^+$, i.e., $S_k = \frac{k}{3k+1}$.
	Want to show P(k+1) is true, i.e., $S_{k+1} = \frac{k+1}{3(k+1)+1}$.
	Consider $P(k+1)$,
	$S_{k+1} = \sum_{r=1}^{k+1} \frac{1}{f(r)}$
	$=\frac{k}{3k+1} + \frac{1}{(3(k+1)-2)(3(k+1)+1)}$
	$=\frac{k(3k+4)+1}{(3k+1)(3k+4)}$
	$=\frac{(3k+1)(k+1)}{(3k+1)(3k+4)}$
	$=\frac{k+1}{3(k+1)+1}$
	$\therefore P(k+1)$ is true.
	Since $P(1)$ is true and $P(k)$ is true $\Rightarrow P(k+1)$ is true, by mathematical induction,
	$P(n)$ is true for all $n \in \Box^+$.
3. (i)	$\frac{3\pi}{4} < \arg\left(-2 + 2\mathbf{i} - z\right) \le \pi$
	$\frac{3\pi}{4} < \arg\left(-1\right) + \arg\left(z+2-2i\right) \le \pi$
	$-\frac{\pi}{4} < \arg(z - (-2 + 2i)) \le 0$ (*)





Qn	Solutions
	$= -\left[(0-1-0) - \left(\frac{3}{4} \ln \frac{1}{2} - \frac{3}{4} - \frac{1}{2} \ln \frac{1}{2} \right) \right]$
	$+\left[\left(\frac{3}{2}\ln 2 - \frac{3}{2} - \frac{1}{2}\ln 2\right) - (0 - 1 - 0)\right]$
	$=\frac{3}{4}\ln 2 - \frac{1}{4}$ square units
4. (iv)	$y = \frac{\ln 5}{\ln 2}$ $\frac{\ln 2}{1 + 1}$ $x = \frac{1}{2}$ $x = \frac{1}{2}$ $x = \pi(3)^{2}(\ln 5) - \pi \left(\frac{3}{2}\right)^{2} \ln 2 - \pi \int_{\ln 2}^{\ln 5} x^{2} dy$
	$= \pi (3)^{2} (\ln 5) - \pi \left(\frac{3}{2}\right)^{2} \ln 2 - \pi \int_{\ln 2}^{\ln 5} \left(\frac{e^{y} + 1}{2}\right)^{2} dy$
5(i)	= 26.927 = 26.9 cubic units (3s.f.) In order to use stratified sampling, we need to know the complete composition of the participants according to strata, e.g. race, gender or age-groups. However, it is difficult to have this complete information due to absentees, incomplete registration information, etc. Hence it would be difficult to use a stratified sample.
5(ii)	We assign an index number to each participant when they arrive at the conference. Let the total number of participants to arrive at the conference be x. Sampling interval $= \frac{x}{0.04x} = 25$. Pick a random number from 1 to 25, then pick every 25^{th} participant thereafter. E.g. If the number 5 was selected, we sample the participants with numbers 5, 30, 55, until 4% of the participants are sampled.
6 (ai)	$P(A B) = 0.675 = \frac{P(A \cap B)}{P(B)}$ $\Rightarrow P(A \cap B) = 0.675 (P(A \cap B) + 0.13)$ $\Rightarrow P(A \cap B) = 0.675 P(A \cap B) + 0.08775$ $\Rightarrow P(A \cap B) = 0.27$

Qn	Solutions
	Alternative 1
	$P(A \cup B) = P(A) + P(B) - P(A \cap B)$
	$0.62 = 0.49 + \frac{P(A \cap B)}{P(A \mid B)} - P(A \cap B)$
	$\Rightarrow P(A \cap B) = 0.27$
	Alternative 2
	$P(A' B) = \frac{P(A' \cap B)}{P(B)} \Longrightarrow P(B) = 0.4$
	$\mathbf{P}(A \cap B) = \mathbf{P}(B)\mathbf{P}(A \mid B) = 0.27$
6	P(A B) = 0.675
(aii)	P(A) = 1 - 0.13 - 0.38 = 0.49
	$\mathbf{P}(A \mid B) \neq \mathbf{P}(A)$
	Therefore the two events A and B are not independent
	Or
	$P(A \cap B) = 0.27$
	$P(A) \times P(B) = 0.49 \times 0.4 = 0.196$
	$P(A \cap B) \neq P(A) \times P(B)$
	Therefore the two events A and B are not independent
6	Required Probability
(b)	P(CC) + P(CDCC) + P(CDCDCC) +
	$= + P(DCC) + P(DCDCC) + P(DCDCDCC) + \dots$
	$= p^{2} + p^{2} (1-p)^{2} + p^{2} (1-p)^{4} + \dots$
	$ + (1-p)^{2} p + (1-p)^{4} p + (1-p)^{6} p + \dots $
	$= p^{2} \left[\frac{1}{1 - (1 - p)^{2}} \right] + (1 - p)^{2} p \left[\frac{1}{1 - (1 - p)^{2}} \right]$
	$p\left[p+(1-p)^2\right]$
	$=\frac{p\left[p+\left(1-p\right)^{2}\right]}{2p-p^{2}}$
	$=\frac{1-p+p^2}{2-p}$
	(shown)
7(a)	$9 \ge {}^{10}C_3 \times 3! = 261273600$

Qn	Solutions
7(b)	[All Universities]=[Any six-person]
	– [University A&B]
	- [University $B&C$]
	- [University $A&B$]
	Case 1: University $A\&B {}^9C_6$
	Case 1:University $A\&B$ 9C_6 Case 2: University $B\&C$ 8C_6
	Case 3: University $A\&C$ 7C_6
	So the answer is ${}^{12}C_6 - {}^9C_6 - {}^8C_6 - {}^7C_6 = 805$
	<u>Alternate Method</u> [Not advisable because of too many cases] Consider number of candidates from each university.
	If we have x from A, y from B and z from C, the number of possible ways is ${}^{4}C_{x}{}^{5}C_{y}{}^{3}C_{z}$
	A(4) 1 1 1 2 2 3 3 4
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
	Ans 40 120 60 30 180 180 60 120 15
	So the total number of possible way is 805.
7(c)	So the total number of possible way is 805. All possible groupings: $\frac{{}^{12}C_4 {}^8C_4 {}^4C_4}{3!} = 5775$
	Method 1 (Direct Method)
	Case 1 : Candidates from University A grouped in 2,2,0
	(4 from A versus 8 from 'the rest')
	Number of ways = ${}^{4}C_{2} {}^{8}C_{2} \times {}^{2}C_{2} {}^{6}C_{2} \div 2! = 1260$
	Case 2 : Candidates from University A grouped in 2,1,1
	Number of ways = ${}^{4}C_{2} {}^{8}C_{2} \times {}^{2}C_{1} {}^{6}C_{3} \div 2! = 3360$
	So the probability is $1260 + 3360$
	So the probability is $\frac{1260 + 3360}{5775} = 0.8$
	Method 2 (Method of Complementation –cases where a group has more than 2
	candidates from University A)
	Case 1 : Candidates from University A grouped in 3,1,0
	Number of ways = ${}^{4}C_{3} {}^{8}C_{1} \times {}^{8}C_{4} \div 2! = 1120$
	Case 2: Candidates from University A grouped in 4,0,0
	Number of ways = ${}^{4}C_{4} \times {}^{8}C_{4} \div 2! = 35$
	So the probability is $1 - \frac{1120 + 35}{5775} = 0.8$
	5775

8 (a)	$2X - Y \Box \operatorname{N}\left(2\mu_{1} - \mu_{2}, 2^{2}\left(4\sigma^{2}\right) + 9\sigma^{2}\right)$
	i.e. $2X - Y \Box N(2\mu_1 - \mu_2, 25\sigma^2)$
	$9X - 8Y \square N(9\mu_1 - 8\mu_2, 9^2(4\sigma^2) + 8^2(9\sigma^2))$
	i.e. $9X - 8Y \square N(9\mu_1 - 8\mu_2, 900\sigma^2)$
	P(2X > Y) = P(9X < 8Y)
	P(2X - Y > 0) = P(9X - 8Y < 0)
	$\Rightarrow P\left(\frac{(2X - Y) - (2\mu_1 - \mu_2)}{\sqrt{25\sigma^2}} > \frac{0 - (2\mu_1 - \mu_2)}{\sqrt{25\sigma^2}}\right)$
	$= \mathbf{P}\left(\frac{(9X - 8Y) - (9\mu_1 - 8\mu_2)}{\sqrt{900\sigma^2}} > \frac{0 - (9\mu_1 - 8\mu_2)}{\sqrt{900\sigma^2}}\right)$
	$\Rightarrow \mathbf{P}\left(Z > \frac{0 - (2\mu_1 - \mu_2)}{\sqrt{25\sigma^2}}\right) = \mathbf{P}\left(Z < \frac{0 - (9\mu_1 - 8\mu_2)}{\sqrt{900\sigma^2}}\right)$
	$\Rightarrow P\left(Z > \frac{\mu_2 - 2\mu_1}{5\sigma}\right) = P\left(Z < \frac{8\mu_2 - 9\mu_1}{30\sigma}\right)$
	By symmetry of the standard normal distribution, So $\frac{\mu_2 - 2\mu_1}{\mu_2} = -\frac{8\mu_2 - 9\mu_1}{\mu_2}$
	$ 5\sigma \qquad 30\sigma \\ \Rightarrow 6\mu_2 - 12\mu_1 = -8\mu_2 + 9\mu_1 $
	$\Rightarrow 6\mu_2 - 12\mu_1 = -6\mu_2 + 5\mu_1$ $\Rightarrow 14\mu_2 = 21\mu_1$
	$\therefore \frac{\mu_1}{\mu_2} = \frac{14}{21} = \frac{2}{3}$
8	
o (bi)	$Y \square N(10,9)$ $P(X < 16) = 0.07725 = 0.077(2.cf)$
	P(Y < 16) = 0.97725 = 0.977 (3 sf)
8	Let <i>S</i> be the number of observations with $Y \ge 16$
(bii)	Hence $S \square B(100, 0.02275)$
	Since $n = 100$ is sufficiently large, $np = 2.275 < 5$,
	$S \square Po(2.275)$ approximately
	$\therefore P(100 - S \ge 95) = P(S \le 5) = 0.971 \ (3 \text{ s.f.})$
L	

9(i)	= 17.21+k $=$ 2.5
	$\overline{x} = \frac{17.21 + k}{6}, \ \overline{n} = 3.5$
	$(\overline{n}, \overline{x})$ lies on the regression line, so
	x = 0.943n + 0.484
	17.21 + k = 0.043(3.5) + 0.484
	$\frac{17.21+k}{6} = 0.943(3.5) + 0.484$
	$k = 5.50(2 \mathrm{dp})$
9(ii)	A
x	# ★ (6,5.50)
	+ · · · · · · · · · · · · · · · · · · ·
	₽
	(1,0.26)
9	From the scatter plot, x and n have a curvilinear relationship. Therefore <u>a linear</u>
(iii)	model is inappropriate even though the product moment correlation coefficient is
	relatively high (i.e. 0.915).
9	
(iv)	The graph of $x = a + bn^2$ is concave upwards (or increase at increasing rate) similar
. ,	to the scatter plot
	_ A
	x ×
	×
	The graph of $x = a + b \ln n$ is concave downwards (or increase at decreasing rate).
	The graph of $x - u + v = u + v = u + v$ is concave downwards (or increase at decreasing fate).
	×
	x × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 ×
	×
	x
	From GC,
	$r_B = 0.8212061688 \approx 0.821(3 \text{ s.f.})$
	$r_A = 0.9859197289 \approx 0.986(3 \text{ s.f.})$ which is closer to 1 and hence suggested a
	relatively stronger linear relationship between x and $\ln n$ as compared to x and n^2 .
	Therefore Model (A) is more appropriate.
L	

9	Using GC, the regression line of x on ln n is
(iv)	$x = 0.638570346 + 2.869411323 \ln n$
	$b = 2.869411323 \approx 2.87$
	$a = 0.638570346 \approx 0.639$
	For $x \ge 10$,
	$2.869411323\ln n + 0.638570346 \ge 10$
	$\ln n \ge 3.262491362$
	$n \ge 26.1$
	The number of reported cases is at least 1,000 in the 27 th month
9	The value of <i>a</i> represents the estimated number of cases (in hundreds) of the virus
(v)	reported in the first month .
10	Let X_1 , X_2 be the number of customers on Day 1 & Day 2 respectively
(i)	Then $X_1 \square \operatorname{Po}(20), X_2 \square \operatorname{Po}(20)$
	Since $\lambda = 20 > 10$,
	$X_1 \square N(20, 20)$ approximately,
	$X_2 \square N(20, 20)$ approximately.
	So $X_1 - X_2 \square N(0, 40)$
	$P(X_1 - X_2 \le 2) = P(-2 \le X_1 - X_2 \le 2)$
	$\xrightarrow{c.c.} P(-2.5 \le X_1 - X_2 \le 2.5) = 0.307$
10	Let <i>Y</i> be the number of customers arrived in <i>n</i> hours
(ii)	So, $Y \square \operatorname{Po}\left(\frac{20}{8}n\right)$
	i.e. $Y \square \operatorname{Po}(2.5n)$ where $n \in \square^+$, $0 \le n \le 8$.
	$P(Y \le 2) < 0.01$
	$\Rightarrow P(Y=0) + P(Y=1) + P(Y=2) < 0.01$
	$\Rightarrow e^{-2.5n} \left[\frac{\left(2.5n\right)^{0}}{0!} + \frac{\left(2.5n\right)^{1}}{1!} + \frac{\left(2.5n\right)^{2}}{2!} \right] < 0.01$
	$\Rightarrow \frac{1 + 2.5n + 3.125n^2}{e^{2.5n}} < 0.01$
	When $n = 3$, $P(Y \le 2) = 0.02026 > 0.01$
	When $n = 4$, $P(Y \le 2) = 0.00277 < 0.01$
	So the set of values of <i>n</i> is $\{4, 5, 6, 7, 8\}$ or $\{n \in \square^+ : 4 \le n \le 8\}$
10 (iii)	1. The arrival of customers may not be independent, for example, relatives/friends visit the restaurant together.
	2. The mean number of customers per unit time may not be constant throughout the day. For example, lunch time we may expect more customers.

11	Let μ be the population mean time (in seconds) for a school boy in the school to
(ai)	complete a 4×10 m shuttle run.
	$H_0: \mu = 10.8$
	$H_1: \mu \neq 10.8$
11 (aii)	Assumption : Since sample size is small and population variance is unknown, we need to assume that the time, in seconds, for a school boy to complete a 4×10 m shuttle run follows a normal distribution.
	$\overline{x} = \frac{\sum x}{9} = \frac{93.96 + k}{9}$
	Sample variance = 1.09^2
	$s^2 = \frac{9}{8} (1.09)^2 = 1.3366125$
	Under H ₀ , Test Statistic
	$T = \frac{\overline{X} - 10.8}{\sqrt{\frac{1.3366125}{9}}} \sim t \ (8)$
	Test Statistic value, $t = \frac{\overline{x} - 10.8}{\sqrt{\frac{1.3366125}{9}}}$
	Reject H_0 at 5% level of significance,
	$\mathbf{P}(T \ge t) \le 0.05$
	$\frac{\overline{x} - 10.8}{\sqrt{\frac{1.3366125}{9}}} \ge 2.306004133$
	$\frac{\left(\frac{93.96+k}{9}\right)-10.8}{\sqrt{\frac{1.3366125}{9}}} \le -2.306004133$
	$k \le -4.758049639$
	(rejected since $k > 0$)

or
$$\frac{\left(\frac{93.96 + k}{9}\right) - 10.8}{\sqrt{\frac{1.3366125}{9}}} \ge 2.306004133$$

 $k \ge 11.2$ (3 sf)
 $\{k: k \in \Box, k \ge 11.2\}$
11
(b)
The unbiased estimate for population mean is $\overline{y} \quad \overline{y} = \frac{517.49}{50} = \frac{517.49}{5000} = 10.3498$
The unbiased estimate for population variance is s^2
 $s^2 = \frac{\Sigma(y - \overline{y})^2}{n-1}$
 $s^2 = \frac{122.32}{49} = \frac{3058}{1225} = 2.496326531$
 $H_0: \mu = 10.8$
 $H_1: \mu < 10.8$
Under H_0 , **Test Statistic**
 $Z = \frac{\overline{X} - 10.8}{\sqrt{\frac{(3028)}{1225}}} \Box N(0,1)$ approximately
 $\sqrt{\frac{(3028)}{1225}}$
by Central Limit Theorem since n (=50) is large
From G.C., p -value = 0.0219608 ≈ 0.0220 (3 s.f.)
Reject $H_0, \alpha\% \ge 2.20\%$ and thus $\alpha = 2.20$.
Since n (=50) is large, the mean timing for the boys to complete a 4 × 10 m shuttle
run will be approximated to a normal distribution by Central Limit Theorem.
Therefore not necessary to assume population follows normal distribution.
11
(c)
 $P(\overline{X} - \mu \ge 0.8) \le 0.001$
 $P\left(Z \le \frac{0.8}{2.8} \\ = 0.999$

$$\frac{\frac{0.8}{2.8}}{\frac{2.8}{\sqrt{n}}} \ge 3.090232308$$

 $n \ge 116.98$
 $\therefore n = 117$