PRELIMINARY EXAMINATION International Baccalaureate 2 Chemistry Higher level Paper 2 | Tuesday 28 August 2018 (afternoon) | Candidate name | | |------------------------------------|--------------------------|-------| | 2 hour 15 minutes | | | | | Candidate session number | Class | | | | | #### Instructions to candidates - Write your candidate name and session number in the boxes above. - Do not open this examination paper until instructed to do so. - Answer all the questions. - Write your answers in the boxes provided. - A calculator is required for this paper. - A clean copy of the Chemistry data booklet is required for this paper. - The maximum mark for this examination paper is [95 marks]. | For Examiner's Use | | | | | |--------------------|------|--|--|--| | Q1 | / 15 | | | | | Q2 | / 22 | | | | | Q3 | / 16 | | | | | Q4 | / 20 | | | | | Q5 | /8 | | | | | Q6 | / 14 | | | | | Total | / 95 | | | | | An | swer | all q | uestions. Write your answers in the boxes provided. | | |----|------|--------------|---|-----| | 1. | (a) | Gal | lium exists as two isotopes ⁶⁹ Ga (65%) and ⁷¹ Ga (35%). | | | | | (i) | Define the term <i>relative atomic mass</i> . | [1] | (ii) | Calculate the relative atomic mass of gallium. | [1] | (b) | Gal | lium reacts with nitrogen gas to form gallium nitride, GaN. | | | | | | 2Ga (s) + N ₂ (g) \rightarrow 2GaN (s) $\Delta H^{\theta} = -156.8 \text{ kJ mol}^{-1}$ | | | | | (i) | State the full electron configuration of the gallium ion in GaN. | [1] | | | | | | | | | | (ii) | Deduce, giving your reason, whether the sign of ΔS^θ for the reaction would be positive or negative. | [2] | | | | | | | | | | | | | | (iii) | Outline how the spontaneity of the reaction varies with temperatures. Explain your answer. | [2] | |-------|--|-----| | | | | | | | | | ••••• | | | | | | | | (iv) | | [3] | (c) 2.00 g of an impure sample of gallium oxide, Ga_2O_3 , was dissolved in 200 cm³ of ### (Question 1 continued) | 0.300 mol dm ⁻³ hydrochloric acid, HCl, solution. The chemical equation for the reaction is shown below. | | |---|-------| | $Ga_2O_3 \ (s) \ + \ 6HCl \ (aq) \ \rightarrow \ 2GaCl_3 \ (aq) \ + \ 3H_2O \ (l)$ | | | The excess hydrochloric acid requires 14.00 cm ³ of 0.100 mol dm ⁻³ sodium hydroxide, NaOH, solution for complete neutralisation. | | | (i) Calculate the amount (in moles) of sodium hydroxide required for complete neutralisation. | [1] | | | | | | | | (ii) Calculate the amount (in moles) of hydrochloric acid that reacted with gallium oxide. | [2] | | | | | | | | | | | | •
 | | (iii) Calculate the mass of gallium oxide present in the impure sample. | [2] | | | | | | | | | | | | | **2.** The table below shows some data on the oxides of elements in Period 3 of the Periodic Table. | Oxide | Na₂O | MgO | Al ₂ O ₃ | SiO ₂ | P ₄ O ₆ | SO ₂ | |-------------------|------|------|--------------------------------|------------------|-------------------------------|-----------------| | Melting point / K | 1193 | 3125 | 2345 | 1883 | 297 | 200 | | (a) Predict an approximate pH value for the solutions formed by adding Na ₂ O and P ₄ O ₆ separately to water. Explain your answer. | [3] | |--|-------------| | | | | | • | | | | | | ٠. | | | | | | | | | | | | | | (b) With reference to structure and bonding, explain the following. | | | (b) With reference to structure and bonding, explain the following.(i) The melting point of MgO is higher than Na₂O. | [3] | | | [3] | | | [3] | | | [3] | | | | | | [3]

 | | | [3] | | (ii) | The melting point of SiO ₂ is higher t | than that of P₄O ₆ . | [3] | |---------|--|--|-----| (c) (i) | SO ₂ exists as two resonance structerity the formal charge of each at | uctures. Draw the two Lewis structures. Label om in both structures. | [4] | | | Lewis structure I | <u>Lewis structure II</u> | (ii) | Using your answer from part (c) structure. |)(i), explain briefly which is the more stable | [1] | | | | | | | ••••• | | | | (iii) Identify the type of hybridisation found in O of SiO₂. [1] (d) The Born-Haber cycle for MgO under standard conditions is shown below. The enthalpy change of the processes are shown in the table below. | Process | Enthalpy change / kJ mol ⁻¹ | |---------|--| | Α | + 150 | | В | + 248 | | С | + 2186 | | D | + 702 | | F | - 602 | | (i) | Define the enthalpy change, F . | [1] | |-----------|---|-----| | | | | | | | | | (ii) | Identify the processes A and D in the cycle. | [2] | | Process A | A : | | | Process | D : | | | | | | | (iii) | Determine the value of the enthalpy change for process E . | [2] | | | | | | | | | | | | | | | | | | (IV) | data booklet. Explain why the second ionisation energy of Mg, using section 8 of the data booklet. Explain why the second ionisation energy is larger than the first ionisation energy. | | |------|---|----| | | | | | | | •• | | | | | | | | •• | | | | •• | | | | | | 3. | (a) | The equation | for the decom | position of a | aseous hydroger | n iodide at 4 | 400 °C is shown | |----|-----|--------------|---------------|---------------|-----------------|---------------|-----------------| | | | | | | | | | $$2HI\left(g\right)\ \Longleftrightarrow\ H_{2}\left(g\right)\ +\ I_{2}\left(g\right)$$ The values for the initial rates of decrease in hydrogen iodide concentration at various initial concentrations have been determined and shown in the table below. | Initial concentration / mol dm ⁻³ | 1.67 | 3.34 | 5.01 | 6.68 | |---|------|------|------|------| | Initial rate / mol dm ⁻³ s ⁻¹ | 0.41 | 1.64 | 3.69 | 6.56 | | (i) | Deduce the order of reaction with respect to hydrogen iodide. | [1] | |-------|--|-----| |
 | | | |
 | | | | (ii) | Hence, state the rate equation for the forward reaction. | [1] | |
 | | | | (iii) | Calculate the value of the rate constant, stating its units, for the forward reaction. | [2] | |
 | | | | (iv) | At 400 °C, the activation energy for the forward reaction is +184 kJ mol ⁻¹ and that for the reverse reaction is +163 kJ mol ⁻¹ . In the space below, sketch the reaction pathway diagram and indicate the value of enthalpy change of the forward reaction. | [3] | |------|--|-----| | | | | | | | | | | | | | | | | | (v) | The rate of decomposition of hydrogen iodide can be increased by the addition of gold catalyst. Explain how the addition of catalyst increases the rate of decomposition. | [3] | |
 | | | | (b) | Consider the | following | equilibrium | reaction | at 623 | K. | |-----|--------------|-----------|-------------|----------|--------|----| |-----|--------------|-----------|-------------|----------|--------|----| 2HI (g) $$\rightleftharpoons$$ H₂ (g) + I₂ (g) | (i) | State the equilibrium constant expression, \mathcal{K}_c , for the decomposition of hydrogen iodide. | [1] | |-------|---|-----| | | | | | (ii) | In a 2.00 dm 3 closed container at 623 K, 0.10 mol of HI was allowed to reach equilibrium. At equilibrium, 0.0564 mol of HI was present. Calculate a value for K_c . | [3] | | | | | | | | | | | | | | | | | | (iii) | State and explain the effect of increasing pressure on the yield of hydrogen gas. [| [2] | | | | | | | | | | | | | | | | | **4.** (a) 3-phenylpropene reacts with hydrogen iodide to form 2-iodo-1-phenylpropane as shown below. | (i) State the type of reaction between 3-phenylpropene and HI. | [1] | |--|-----| |--|-----| | |
 | | |--|------|--| (ii) | Deduce | the | mechanism | for | the | reaction, | using | curly | arrows | to | indicate | the | | |------|--------|-------|---------------|-----|-----|-----------|-------|-------|--------|----|----------|-----|-----| | | moveme | nt of | electron pair | S. | | | | | | | | | [3] | | (iii) | State the type of polymerisation which 3-phenylpropene can undergo. | [1] | |-------|---|-----| | | | | | | | | | (iv) | Draw two repeating units of the polymer formed by 3-phenylpropene. | [1] | | | | | | | | | | | | | | | | | (b) The synthetic pathways below show reactions using 2-iodo-1-phenylpropane as a starting material. (i) Draw the structural formula of product ${\bf G}$ in the box above. [1] | (| ii) | 2-iodo-1-phenylpropane is optically active. Draw the three-dimensional shape of each enantiomer, showing their spatial relationship to each other. | [2] | |---|------|--|-----| | | | | | | | | | | | | | | | | I | | | | | (| iii) | When one enantiomer of 2-iodo-1-phenylpropane undergoes step II, approximately 75% of the product molecules show inversion of configuration. Comment on the mechanisms that occur. | [2] | | | | | | | | | | | | | | | | | (| iv) | Suggest why the rate of step II of 2-iodo-1-phenylpropane is greater than that of 2-bromo-1-phenylpropane. | [1] | | | | | | | | | | | | | Claire and reagenit(e) and | condition(s) required for st | ep i and step iii. | _ | |------------|--|------------------------------------|----------------------------------|---| | Step I : | | | | | | | | | | | | | | | | | | Step III : | - | - | on 27 of the data booklet. The | | | | NMR of 1-phenylpropan-2
own in the table below. | 2−ol contains 5 peaks. ≿ | Some details of the peaks are | | | | WIT III the table below. | | | _ | | | Chemical shift / ppm | Splitting | Integration factor | | | | 1.2 | Doublet | 3 | | | | 2.0 | Singlet | | | | | 2.7 | Doublet | | | | | | | | | | | 3.8 | Multiplet | | | | | 3.8
7.2 | Multiplet
Singlet | | | | (i) | 7.2 | Singlet | ation factors of the remaining 4 | | | (i) | 7.2 Complete the table above | Singlet | ation factors of the remaining 4 | | | (i) | 7.2 Complete the table above peaks. | Singlet | | | | | 7.2 Complete the table above peaks. | Singlet e by suggesting the integr | | | | | 7.2 Complete the table above peaks. | Singlet e by suggesting the integr | | | | | 7.2 Complete the table above peaks. | Singlet e by suggesting the integr | | | | | 7.2 Complete the table above peaks. | Singlet e by suggesting the integr | | | | | 7.2 Complete the table above peaks. | Singlet e by suggesting the integr | | | (d) The characteristic ranges for infrared absorptions are shown in section 26 of the data booklet. Identify one range in which the infrared spectra of 2-iodo-1-phenylpropane and ### (Question 4 continued) | | 1-phenylpropan-2-ol would be similar and one range in which they would differ. | [2] | |--------|--|-----| | Or | ne similarity : | | | | | | |
Or | ne difference : | | | | | | | | | | 5. (a) "Acidity regulators" are food additives that have a buffering action on the pH of | bull | er solution for this purpose. | | |-------------|--|---| | | $C_5H_7O_5CO_2H$ (aq) \rightleftharpoons $C_5H_7O_5CO_2^-$ (aq) + H^+ (aq) | | | (i) | Write an expression for K_a for citric acid. | | | | | | | | | | | (ii) | The concentration of citric acid in lemon juice is 0.22 mol dm ⁻³ . Assuming that no other acid is present, calculate the pH of lemon juice. | | | | K_a of citric acid = 7.4×10^{-4} mol dm ⁻³ . | | | | | | | | | | | (iii) | Explain the term <i>buffer solution</i> . | | | | | | | | | | | | | | | (iv) | Write an equation to show how the citric acid / sodium citrate buffer system regulates the acidity on the addition of H ⁺ (aq) ions and OH ⁻ (aq) ions respectively. | _ | | On addition | on of H ⁺ : | | | On addition | on of OH⁻ : | | | | | | | dm ⁻³ sodium citrate. | [1] | |--|-----| | | | | | | | (b) Explain why pH of water decreases with increasing temperature. | [2] | | | | | | •• | | | | | | | $\textbf{6.} \quad \text{(a)} \quad \text{Electrolysis of a blue, dilute solution of copper (II) chloride, } \text{CuCl}_2\text{, can be carried out}$ | usin | g platinum electrodes. | | |-----------|---|-----| | (i) | Write balanced half-equations, with state symbols, for the reactions occurring at the anode and cathode. | [2] | | Anode : | | | | Cathode : | | | | | | | | (ii) | Describe two observations that occur during the electrolysis. | [2] | | | | | | | | | | | | | | | | | | (iii) | State one factor that affect the quantity of products produced during the electrolysis of the aqueous copper (II) chloride. | [1] | | | | | | | | | | | | | | (iv) | The same process is carried out using concentrated aqueous copper (II) chloride and another product is formed at the anode. Identify the product and explain its formation. | [3] | |------|---|-----| (v) | Explain why aqueous copper (II) chloride is coloured. | [3] | | (v) | Explain why aqueous copper (II) chloride is coloured. | [3] | | (v) | Explain why aqueous copper (II) chloride is coloured. | [3] | | (v) | Explain why aqueous copper (II) chloride is coloured. | [3] | | (v) | Explain why aqueous copper (II) chloride is coloured. | [3] | | (v) | Explain why aqueous copper (II) chloride is coloured. | [3] | | (b) |) An iron half-cell, Fe(s) Fe ²⁺ (aq), is connected to a copper half-cell, Cu (s) Cu ²⁺ (aq), via a salt bridge and an external circuit. | | | |-----|--|---|-----| | | (i) | State the function of the salt bridge. | [1] | | | | | | | | | | | | | (ii) | Determine the standard cell potential for the cell, using section 24 of the data booklet. | [1] | | | | | | | | | | | | | (iii) | State the direction of electron flow in the external circuit. | [1] |