

PRELIMINARY EXAMINATION International Baccalaureate 2

Chemistry Higher level Paper 2

Tuesday 28 August 2018 (afternoon)	Candidate name	
2 hour 15 minutes		
	Candidate session number	Class

Instructions to candidates

- Write your candidate name and session number in the boxes above.
- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- Write your answers in the boxes provided.
- A calculator is required for this paper.
- A clean copy of the Chemistry data booklet is required for this paper.
- The maximum mark for this examination paper is [95 marks].

For Examiner's Use				
Q1	/ 15			
Q2	/ 22			
Q3	/ 16			
Q4	/ 20			
Q5	/8			
Q6	/ 14			
Total	/ 95			

An	swer	all q	uestions. Write your answers in the boxes provided.	
1.	(a)	Gal	lium exists as two isotopes ⁶⁹ Ga (65%) and ⁷¹ Ga (35%).	
		(i)	Define the term <i>relative atomic mass</i> .	[1]
		(ii)	Calculate the relative atomic mass of gallium.	[1]
	(b)	Gal	lium reacts with nitrogen gas to form gallium nitride, GaN.	
			2Ga (s) + N ₂ (g) \rightarrow 2GaN (s) $\Delta H^{\theta} = -156.8 \text{ kJ mol}^{-1}$	
		(i)	State the full electron configuration of the gallium ion in GaN.	[1]
		(ii)	Deduce, giving your reason, whether the sign of ΔS^θ for the reaction would be positive or negative.	[2]

(iii)	Outline how the spontaneity of the reaction varies with temperatures. Explain your answer.	[2]
•••••		
(iv)		[3]

(c) 2.00 g of an impure sample of gallium oxide, Ga_2O_3 , was dissolved in 200 cm³ of

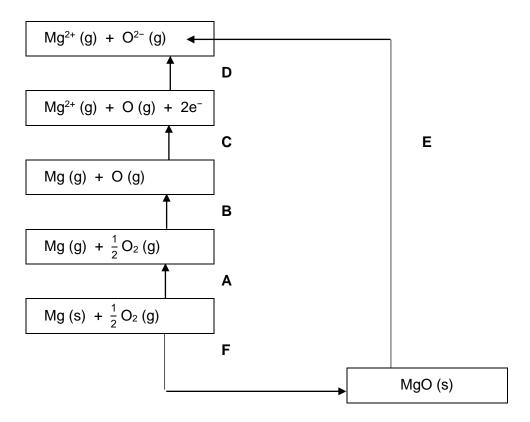
(Question 1 continued)

0.300 mol dm ⁻³ hydrochloric acid, HCl, solution. The chemical equation for the reaction is shown below.	
$Ga_2O_3 \ (s) \ + \ 6HCl \ (aq) \ \rightarrow \ 2GaCl_3 \ (aq) \ + \ 3H_2O \ (l)$	
The excess hydrochloric acid requires 14.00 cm ³ of 0.100 mol dm ⁻³ sodium hydroxide, NaOH, solution for complete neutralisation.	
(i) Calculate the amount (in moles) of sodium hydroxide required for complete neutralisation.	[1]
(ii) Calculate the amount (in moles) of hydrochloric acid that reacted with gallium oxide.	[2]
	•
(iii) Calculate the mass of gallium oxide present in the impure sample.	[2]

2. The table below shows some data on the oxides of elements in Period 3 of the Periodic Table.

Oxide	Na₂O	MgO	Al ₂ O ₃	SiO ₂	P ₄ O ₆	SO ₂
Melting point / K	1193	3125	2345	1883	297	200

(a) Predict an approximate pH value for the solutions formed by adding Na ₂ O and P ₄ O ₆ separately to water. Explain your answer.	[3]
	•
	٠.
(b) With reference to structure and bonding, explain the following.	
(b) With reference to structure and bonding, explain the following.(i) The melting point of MgO is higher than Na₂O.	[3]
	[3]
	[3]
	[3]
	[3]
	[3]


(ii)	The melting point of SiO ₂ is higher t	than that of P₄O ₆ .	[3]
(c) (i)	SO ₂ exists as two resonance structerity the formal charge of each at	uctures. Draw the two Lewis structures. Label om in both structures.	[4]
	Lewis structure I	<u>Lewis structure II</u>	
(ii)	Using your answer from part (c) structure.)(i), explain briefly which is the more stable	[1]
•••••			

(iii) Identify the type of hybridisation found in O of SiO₂.

[1]

.....

(d) The Born-Haber cycle for MgO under standard conditions is shown below.

The enthalpy change of the processes are shown in the table below.

Process	Enthalpy change / kJ mol ⁻¹
Α	+ 150
В	+ 248
С	+ 2186
D	+ 702
F	- 602

(i)	Define the enthalpy change, F .	[1]
(ii)	Identify the processes A and D in the cycle.	[2]
Process A	A :	
Process	D :	
(iii)	Determine the value of the enthalpy change for process E .	[2]

(IV)	data booklet. Explain why the second ionisation energy of Mg, using section 8 of the data booklet. Explain why the second ionisation energy is larger than the first ionisation energy.	
		••
		••
		••

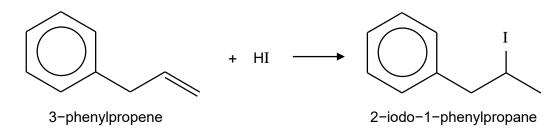
3.	(a)	The equation	for the decom	position of a	aseous hydroger	n iodide at 4	400 °C is shown

$$2HI\left(g\right)\ \Longleftrightarrow\ H_{2}\left(g\right)\ +\ I_{2}\left(g\right)$$

The values for the initial rates of decrease in hydrogen iodide concentration at various initial concentrations have been determined and shown in the table below.

Initial concentration / mol dm ⁻³	1.67	3.34	5.01	6.68
Initial rate / mol dm ⁻³ s ⁻¹	0.41	1.64	3.69	6.56

(i)	Deduce the order of reaction with respect to hydrogen iodide.	[1]
(ii)	Hence, state the rate equation for the forward reaction.	[1]
(iii)	Calculate the value of the rate constant, stating its units, for the forward reaction.	[2]

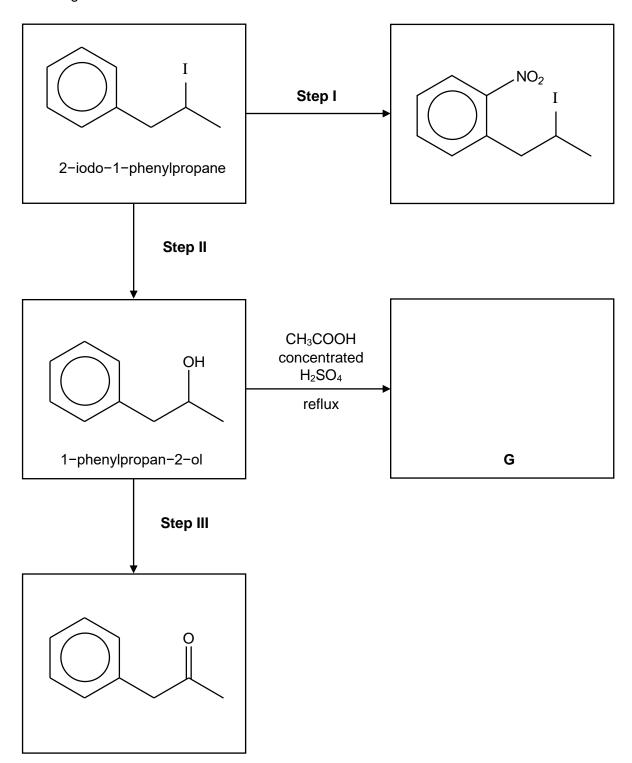

(iv)	At 400 °C, the activation energy for the forward reaction is +184 kJ mol ⁻¹ and that for the reverse reaction is +163 kJ mol ⁻¹ . In the space below, sketch the reaction pathway diagram and indicate the value of enthalpy change of the forward reaction.	[3]
(v)	The rate of decomposition of hydrogen iodide can be increased by the addition of gold catalyst. Explain how the addition of catalyst increases the rate of decomposition.	[3]

(b)	Consider the	following	equilibrium	reaction	at 623	K.
-----	--------------	-----------	-------------	----------	--------	----

2HI (g)
$$\rightleftharpoons$$
 H₂ (g) + I₂ (g)

(i)	State the equilibrium constant expression, \mathcal{K}_c , for the decomposition of hydrogen iodide.	[1]
(ii)	In a 2.00 dm 3 closed container at 623 K, 0.10 mol of HI was allowed to reach equilibrium. At equilibrium, 0.0564 mol of HI was present. Calculate a value for K_c .	[3]
(iii)	State and explain the effect of increasing pressure on the yield of hydrogen gas. [[2]

4. (a) 3-phenylpropene reacts with hydrogen iodide to form 2-iodo-1-phenylpropane as shown below.


(i) State the type of reaction between 3-phenylpropene and HI.	[1]
--	-----

(ii)	Deduce	the	mechanism	for	the	reaction,	using	curly	arrows	to	indicate	the	
	moveme	nt of	electron pair	S.									[3]

(iii)	State the type of polymerisation which 3-phenylpropene can undergo.	[1]
(iv)	Draw two repeating units of the polymer formed by 3-phenylpropene.	[1]

(b) The synthetic pathways below show reactions using 2-iodo-1-phenylpropane as a starting material.

(i) Draw the structural formula of product ${\bf G}$ in the box above.

[1]

(ii)	2-iodo-1-phenylpropane is optically active. Draw the three-dimensional shape of each enantiomer, showing their spatial relationship to each other.	[2]
I			
(iii)	When one enantiomer of 2-iodo-1-phenylpropane undergoes step II, approximately 75% of the product molecules show inversion of configuration. Comment on the mechanisms that occur.	[2]
(iv)	Suggest why the rate of step II of 2-iodo-1-phenylpropane is greater than that of 2-bromo-1-phenylpropane.	[1]

	Claire and reagenit(e) and	condition(s) required for st	ep i and step iii.	_
Step I :				
Step III :				
	-	-	on 27 of the data booklet. The	
	NMR of 1-phenylpropan-2 own in the table below.	2−ol contains 5 peaks. ≿	Some details of the peaks are	
	WIT III the table below.			_
	Chemical shift / ppm	Splitting	Integration factor	
	1.2	Doublet	3	
	2.0	Singlet		
	2.7	Doublet		
	3.8	Multiplet		
	3.8 7.2	Multiplet Singlet		
(i)	7.2	Singlet	ation factors of the remaining 4	
(i)	7.2 Complete the table above	Singlet	ation factors of the remaining 4	
(i)	7.2 Complete the table above peaks.	Singlet		
	7.2 Complete the table above peaks.	Singlet e by suggesting the integr		
	7.2 Complete the table above peaks.	Singlet e by suggesting the integr		
	7.2 Complete the table above peaks.	Singlet e by suggesting the integr		
	7.2 Complete the table above peaks.	Singlet e by suggesting the integr		
	7.2 Complete the table above peaks.	Singlet e by suggesting the integr		

(d) The characteristic ranges for infrared absorptions are shown in section 26 of the data booklet. Identify one range in which the infrared spectra of 2-iodo-1-phenylpropane and

(Question 4 continued)

	1-phenylpropan-2-ol would be similar and one range in which they would differ.	[2]
Or	ne similarity :	
 Or	ne difference :	

5. (a) "Acidity regulators" are food additives that have a buffering action on the pH of

bull	er solution for this purpose.	
	$C_5H_7O_5CO_2H$ (aq) \rightleftharpoons $C_5H_7O_5CO_2^-$ (aq) + H^+ (aq)	
(i)	Write an expression for K_a for citric acid.	
(ii)	The concentration of citric acid in lemon juice is 0.22 mol dm ⁻³ . Assuming that no other acid is present, calculate the pH of lemon juice.	
	K_a of citric acid = 7.4×10^{-4} mol dm ⁻³ .	
(iii)	Explain the term <i>buffer solution</i> .	
(iv)	Write an equation to show how the citric acid / sodium citrate buffer system regulates the acidity on the addition of H ⁺ (aq) ions and OH ⁻ (aq) ions respectively.	_
On addition	on of H ⁺ :	
On addition	on of OH⁻ :	

dm ⁻³ sodium citrate.	[1]
(b) Explain why pH of water decreases with increasing temperature.	[2]
	••

 $\textbf{6.} \quad \text{(a)} \quad \text{Electrolysis of a blue, dilute solution of copper (II) chloride, } \text{CuCl}_2\text{, can be carried out}$

usin	g platinum electrodes.	
(i)	Write balanced half-equations, with state symbols, for the reactions occurring at the anode and cathode.	[2]
Anode :		
Cathode :		
(ii)	Describe two observations that occur during the electrolysis.	[2]
(iii)	State one factor that affect the quantity of products produced during the electrolysis of the aqueous copper (II) chloride.	[1]

(iv)	The same process is carried out using concentrated aqueous copper (II) chloride and another product is formed at the anode. Identify the product and explain its formation.	[3]
(v)	Explain why aqueous copper (II) chloride is coloured.	[3]
(v)	Explain why aqueous copper (II) chloride is coloured.	[3]
(v)	Explain why aqueous copper (II) chloride is coloured.	[3]
(v)	Explain why aqueous copper (II) chloride is coloured.	[3]
(v)	Explain why aqueous copper (II) chloride is coloured.	[3]
(v)	Explain why aqueous copper (II) chloride is coloured.	[3]

(b)) An iron half-cell, Fe(s) Fe ²⁺ (aq), is connected to a copper half-cell, Cu (s) Cu ²⁺ (aq), via a salt bridge and an external circuit.		
	(i)	State the function of the salt bridge.	[1]
	(ii)	Determine the standard cell potential for the cell, using section 24 of the data booklet.	[1]
	(iii)	State the direction of electron flow in the external circuit.	[1]