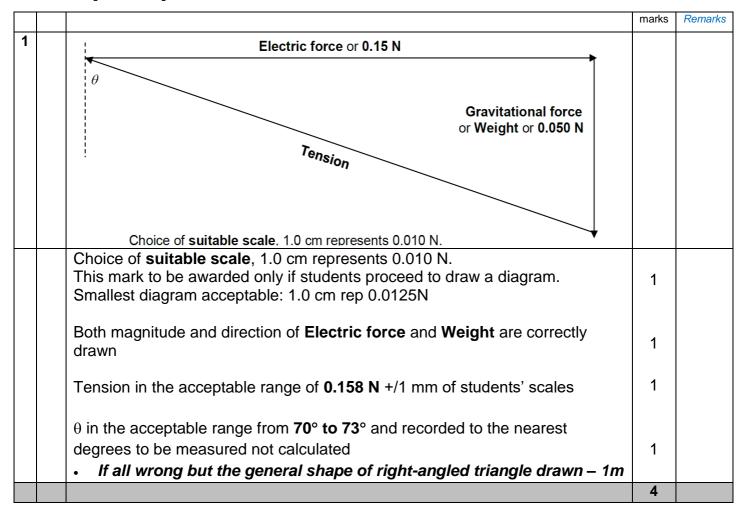


BEATTY SECONDARY SCHOOL PRELIMINARY EXAMINATION 2020

MARKING SCHEME

SUBJECT : SCIENCE (PHYSICS) LEVEL : Sec 4E/5N

PAPER : 5076 / 1 & 2 SETTER : Mrs Seah-Pay Ling Ling


PAPER 1 [40 marks] (Q1-20 for science physics)

1	2	3	4	5	6	7	8	9	10
С	В	D	В	D	A	D	В	С	В
11	12	13	14	15	16	17	18	19	20
D	D	В	В	В	D	D	С	D	В

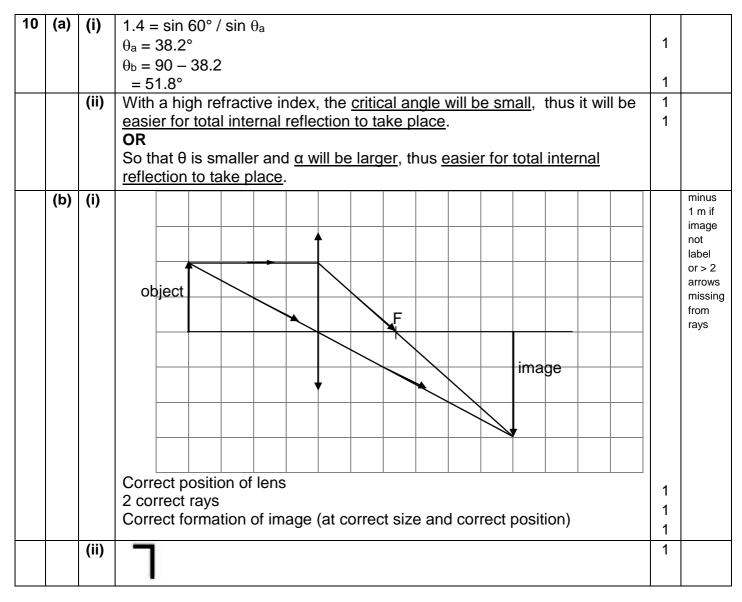
PAPER 2 [65 marks]

- Deduct ½ mark for wrong units from overall score (max 1 mark)
- Deduct ½ mark for wrong significant figures from overall score (max 1 mark)

Section A [45 marks]

2	(a)	$a = \frac{(18-10)}{(12-5)}$	1			
		$= 1.14 \text{ m/s}^2$	1			
	(b)	Total distance = $(10)(5) + (0.5)(10+18)(7) + (18)(6)$	4			
		= 256 m	1			
		Average speed = 256/18				
		= 14.2 m/s	1			
	(c)	From $t = 5$ to 9.4 s, distance between lorry and car increases (since the car				
		is slower).	1			
		From $t = 9.4$ s to 12 s, distance between lorry and car decreases. (since the	4			
		car is now faster than lorry). Note: Car is still behind lorry.	1			
		Twote. Our is suit bernita torry.	6			
			•			
3	(a)	The particles in the steel nearer to the heat source gained kinetic energy				
	(ω)	and vibrate more vigourously. The free electrons gained kinetic energy	1			
		and moved more quickly.	-			
		They collide with adjacent particles and pass their kinetic energy to them.	1			
	(b)	(i)				
	()	• •				
		$4.0 \times 10^5 = \frac{F}{2.0 \times 10^{-4}}$	1			
		F= 80 N	1			
		(ii) weight = 12.5 N	1			
		(iii) $(M \times 10 \times 0.8) + (12.5 \times 0.5) = 80 \times 0.3$	1			
		M = 2.22 kg	1			
		Ecf from 4ci and 4cii.				
			7			
4	(0)	As six is builded into the best on it source the clock of the systemate		T		
4	(a)	As air is bubbled into the beaker, it <u>causes the alcohol to evaporate</u> . Energy is absorbed from the water on the table for the alcohol to change into	1			
		gaseous state. So the water loses energy and start to freeze.	1			
	(b)	Energy is absorbed to overcome the intermolecular forces of attraction.	1			
		It is not used to increase kinetic energy / molecular speed thus temperature				
		remains constant.	1			
			4			
_	4.5			I		
5	(a)	$V = f \times \lambda$ 300,000,000 = 2500,000,000 × λ	1			
		$\lambda = 0.120 \text{ m}$	1			
	(b)	Satellite communication / weather radar / long distance telecommunication /	1			
	` ′	GPS / mobile phoes	1			
		(* accept any of the application if it is in the communication field.				
	(c)	Microwave is a transverse wave but ultrasound is a longitudinal wave.				
	` ′	Microwave does not need a medium to transmit but ultrasound requires a				
		medium.				
		(accept any reasonable difference.)				
			4			

1 mark for correct frequency and 1 for correct amplitude	/ s
Pressure Variation	
(b)	2
Time taken to for sound to reach A = $21 / 330 = 0.06$ s Period = $1 / 220 = 4.55 \times 10^{-3}$ s Number of complete cycles in 21 m = $0.06/(4.55 \times 10^{-3}) = 14$	1
6 (a) λ = v / f = 330 / 220 = 1.5 m number of complete cycles in 21 m = 21 / 1.5 = 14 OR	1


7	(a)	(i)	Negative charges on the right side of A,	1	
			positive charges on the left side of P .	1	
			(Note: equal number of charges on the left of sphere P and right side of		
			sphere A)		
		(ii)	The positive charges in B attract the negative charges to the right-	1	
			hand side of A , as unlike charges attract.		
			leaving behind positive charges in the left-hand side of P.	1	
	(b)	(i)	The rubbing friction between fuel and the hose causes the fuel to lose	1	
			electrons to the hose, thus the fuel becomes positively charged.		
		(ii)	When there is a sudden discharge of the charges, it produces sparks	1	
			that can ignite the fuel.		
		(iii)	The wire allows electrons to flow from the ground to the aircraft body,	1	
			reducing the building up of positive charges on the aircraft.		
				7	

8	(a)	E.m.f. of 12 V is the amount of work done by an electrical energy source in		
		driving a unit charge around a complete circuit is 12 J.	1	
	(b)	effective resistance of parallel resistors = $(1/5 + 1/20)^{-1} = 4.0 \Omega$	1	
		effective resistance of circuit = 2.0 + 4.0		
		= 6.0 Ω	1	
	(c)	V = IR		
		$12 = 1 \times 6$		
		I = 2 A	1	
	(d)	Q = I t		
		$= 2 \times (4 \times 60)$	1	
		= 480 C	1	

(e)	$V = \text{emf of battery} - \text{p.d. across } 2 \Omega \text{ resistor} = 12 - (2 x 2)$	1	
	= 8.0 V	1	
	Or $V = IR = 2 \times 4 = 8 \text{ V}$		
		8	

Section B [20 marks]

9	(a)	Energy cannot be created or destroyed.		
		Energy can only be transformed from one form to another.	1	
		Total energy in an isolated system remains constant.	1	
	(b)	Loss in GPE = 80 x 10 x (5-3)	1	
		= 1600 J	1	
	(c)	Gain in KE = Loss in GPE		Allow
		$\frac{1}{2} \times 80 \times v2 = 1600$	1	Ecf from 9b.
		v = 6.32 m/s	1	
	(d)	There is no friction on slope hence no energy loss to the surrounding.	1	
	(e)	energy at B = energy at C GPE _B + KE _B = KE _C + thermal energy (80 x 10 x 3) + ($\frac{1}{2}$ x 80 x 6.32 ²) = ($\frac{1}{2}$ x 80 x (6.32/2) ² + thermal energy Thermal energy = 3600 J	2	Allow Ecf from 9c.
			10	

	(iii)	Shift the lens towards the screen until another sharp image is formed.	1	
	(iv)	The image will be smaller than the image formed in (b)(ii).	1	
			10	

11	(a)		fuse symbol in live wire before junction of two elements	1	
	(b)		The metal casing	1	
	(c)	(i)	The live wire touches metal case and the person touches the metal casing.	1	
		(ii)	When live wire touches the metal casing, a large current flows through the earth wire, which has lower resistance, rather than through the person who touches the metal casing.	1	
			The large current in turns, melts the fuse and disconnects the metal casing from live terminal.	1	
	(d)	(i)	Maximum current = Maximum power/ voltage = 2100/240 = 8.75 A Fuse to be used is 13 A.	1	
		(ii)	E = Pt = 2.1 kW x 2.5 h x 30 days = 157.5 kWh cost = 157.5 x 0.25 = \$39.38	1 1 1	
				10	

END OF PAPER