

SECONDARY 4 PRELIMINARY EXAMINATION

CHEMISTRY Paper 2

6092/02

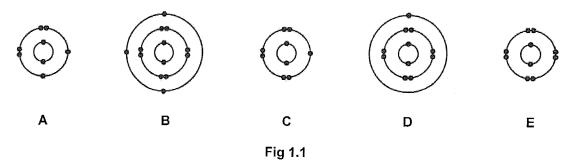
14 Sep 2021 (Tue	sday)		1 hour 45 minutes
CANDIDATE NAME			
CLASS		INDEX NUMBER	
Do not turn over th Write your name, o Write in dark blue o You may use a sof	or black pen on both side t pencil for any diagrams	in the spaces provided above.	
Section A Answer all questio	ns in the spaces provide	d.	
	uestions. The last questions in the spaces provided	on is in the form either/or. d.	

The use of an approved scientific calculator is expected, where appropriate.

The number of marks is given in brackets [] at the end of each question or part question.

The total mark for this paper is 80.

A copy of the Periodic Table is printed on page 18.


FOR EXAMI	NERS' USE
Paper 1	/ 40
Paper 2	/ 80
Section A	/ 50
Section B	/ 30

This document consists of 18 printed pages including the cover page.

Page 1 of 18

Section A Answer all questions in this section in the spaces provided. The total mark for this section is 50.

1 Fig. 1.1 shows the electronic configurations of five atoms, A, B, C, D and E.

(a) Answer the following questions.

Each letter may be used once, more than once or not at all.

Give the letter of the atom, A, B, C, D and E, that:

(i)	is in Group 1 of the Periodic Table,	[1]
(ii)	has 11 protons,	[1]
(iii)	is a noble gas,	[1]
(iv)	forms a stable ion with a single negative charge.	[1]

(b) Complete Table 1.1. to show the number of electrons, neutrons and protons in the nitrogen atom and phosphide ion. [3]

Table 1.1

particle	number of electrons	number of neutrons	number of protons
¹⁵ ₇ N	7		
³² P ^{3–}		17	

[Total: 7 marks]

Page 2 of 18

2 Figs. 2.1 and 2.2 show diagrams of the structures of diamond and magnesium oxide.

,

•

	$(Mg^2) (Q^2 - Mg^2) (Q^2 - Mg$
	Fig. 2.1 Structure of diamondFig. 2.2 Structure of magnesium oxide
(a)	Describe one similarity and one difference in the two structures. [2]
	similarity
	difference
(b)	Discuss how and why the melting points of diamond and magnesium oxide are similar. [3]
	com
	······································
(-)	
(c)	Explain why the diagram for diamond is a more accurate representation than the diagram for magnesium oxide. [1]
(d)	Diamond is a form of carbon. Carbon is an element.
	What is meant by the term <i>element</i> ? [1]
	[Total: 7 marks]
	Page 3 of 18

3			t to make a sample of pure dry iron(II) sulfate crystals, FeSO₄● iron(II) carbonate as one of the reactants.	7H₂O.
	(a)	State the othe	er reactant that the students need.	[1]
	(b)	Describe the s	steps in their method (without details of the apparatus used).	[4]
		····	*****	
				•••••
		*** *** *** *** ***		

	(c)	The students the percentag	calculated the mass of crystals they were expecting and foun e yield of their process was much less than 100%.	d that
		They gave exp	planations for this low percentage yield.	
		student A student B student C	The crystals are damp at the end. Some iron(II) carbonate remains unreacted at the end. The iron(II) sulfate has lost some of its water of crystallisati	on.
		For each expl	anation, state whether it could be correct and explain your ans	swer. [3]
		student A		
		student B		
		••••••••••••••••••		
	,	student C		
		••••••		
			[Total: 8 m	iarks]

Page 4 of 18

[Turn over

÷

4

4 A student was given a test-tube containing a small piece of sodium in oil.

\$

.

(a)	Why was the sodium in oil? [1]
	piece of sodium was transferred from the test-tube to a beaker half-filled with water, reaction produced a gas.
(b)	Name this gas and give a test to confirm the presence of this gas. [2]
	gas
	test and observation
(c)	Give two observations that were made when sodium reacted with the water. [2]
	1
	2
(d)	Name the solution that remained in the beaker when the reaction had finished. [1]
(e)	A piece of litmus paper was placed in this solution. What was the colour of the litmus paper in this solution? [1]
(f)	Write an equation for the reaction between sodium and water. [1]
	[Total: 8 marks]

5 Fig. 5.1 below shows the apparatus that can be used to investigate the rate of reaction between calcium carbonate and various acids.

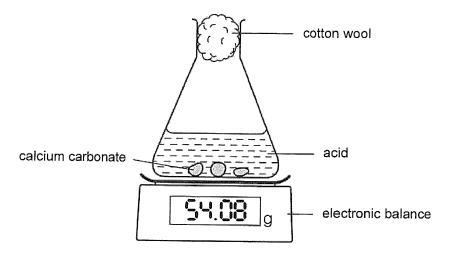
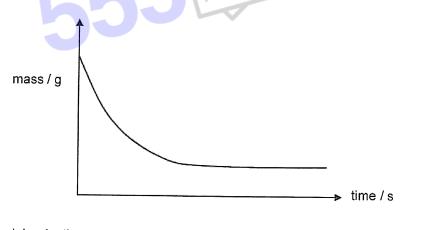



Fig. 5.1

(a) Write the balanced equation, including state symbols, for the reaction between calcium carbonate and hydrochloric acid. [2]

(b) The graph shows the change in mass that occurs during the reaction between 50 g of calcium carbonate and 200 cm³ of 1.0 mol/dm³ hydrochloric acid.

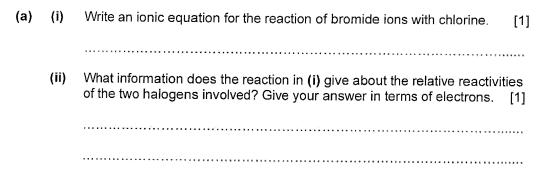
(i) Explain why the mass decreases during the course of the reaction. [1]

.....

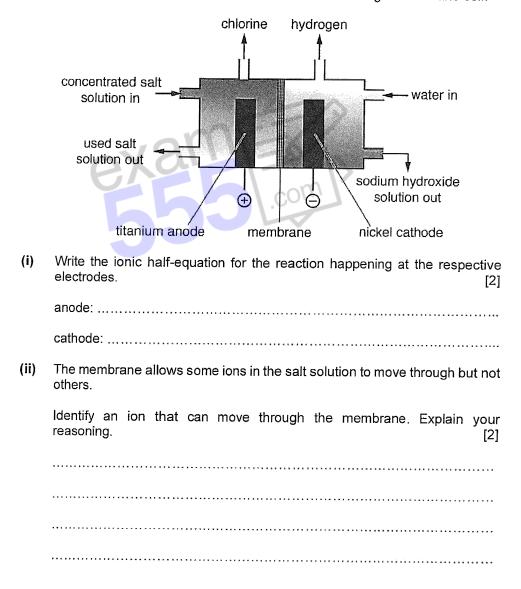
(ii) Exactly the same experiment was repeated with 200 cm³ of 1.0 mol/dm³ ethanoic acid.

Sketch on the graph the expected results.

[2]


Page 6 of 18

(c) Explain why hydrochloric acid reacts much faster with calcium carbonate powder than with lumps of calcium carbonate. [2]
 (d) Calcium carbonate is added to excess sulfuric acid. Explain why the reaction stops after a while even when the calcium carbonate is not completely used up. [2]


[Total: 9 marks]

6 Bromide ions are present in seawater. A key reaction in the manufacture of bromine from seawater is the reaction of bromide ions with chlorine gas. The chlorine is made on site by electrolysis of brine.

(b) Chlorine is usually manufactured from sodium chloride using a membrane cell.

Page 8 of 18

(iii) 20 kg of hydrogen gas is produced by a membrane cell.

Calculate the volume of chlorine gas (measured at room temperature and pressure) that will be produced at the same time. [3]

(c) Bromine can be produced in a laboratory by reacting Br⁻ and BrO₃⁻ ions.

 $5Br^- + 6H^+ + BrO_3^- \rightarrow 3Br_2 + 3H_2O$

Identify the reducing agent in this reaction. Explain your answer in terms of changes in oxidation state. [2]

[Total: 11 marks]

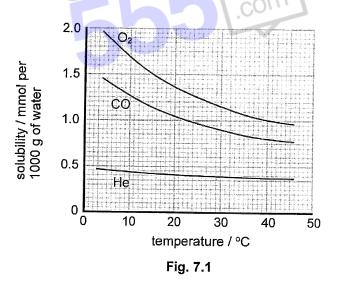
Section B

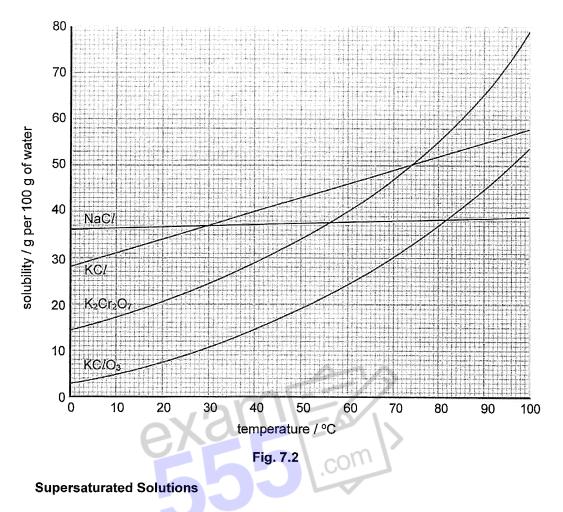
Answer **all** three questions in this section. The last question is in the form of an either/or and only one of the alternatives should be attempted.

7 Read the information about solutions.

Definition of a Solution

In general, a solution is formed when one substance disperses uniformly throughout another. Each substance in a solution is called a *component* of the solution. The *solvent* is normally the component present in the greatest amount, and all the other components are called *solutes*.


When we think of solutions, we usually think of liquids, such as a solution of a salt in water, like seawater. Solutions, however, can also be solids or gases. For example, the air we breathe is a gaseous solution, as it is a homogeneous mixture of several gases.


Solubility and Saturated Solutions

Solubility is a measurement of the maximum quantity of a substance which will dissolve in a given amount of solvent at a particular temperature. When a solute's concentration is equal to its solubility, the solution is said to be *saturated* with the solute. If the concentration is less than its solubility, the solution is said to be *unsaturated*.

Solubility Curves

A solubility curve is a graph of solubility against temperature. Figs 7.1 and 7.2 show the solubility curves of different substances in water.

A solution that contains more than the maximum amount of solute that is required to saturate it is known as a *supersaturated* solution. A supersaturated solution is unstable and the excess dissolved solute will crash out of the solution until the solution becomes saturated, i.e., the solute's concentration is equal to its solubility.

(a) Air is a gaseous solution.

Identify the solvent in air and explain your answer.	[1]
······································	
	• • • • • • • • • • • • • • • • • • • •
I have the data to calculate the menuing of a second the terms	

(b) Use the data to calculate the maximum mass of oxygen that can be dissolved into 100 g of water at 30 °C. [2]

Why do bubbles form on the inside wall of a cooking pot when water is heated on (C) the stove, even though the water temperature is well below the boiling point of water? [2] -----(d) What is a similarity and a difference in the solubilities of KCl and KClO3? [2] similarity difference Why does the x-axis of the graph in Fig 7.2 not go below 0 °C or above 100 °C? (e) [1]

Page 12 of 18

- (f) At what temperature would 3 g of KC/O₃ saturate 10 g of water? [1]
- (g) On cooling a saturated solution of KCl containing 50 g of water from 60 °C to a lower temperature, 6 g of solid were deposited. Determine the temperature to which the solution was cooled. Show all your working. [3]

[Total: 12 marks]

Page 13 of 18

8 Photosynthesis is a reaction that takes place in the chloroplasts of plants.

The overall reaction involves the conversion of carbon dioxide and water into glucose and oxygen.

$$6\mathrm{CO}_2 + 6\mathrm{H}_2\mathrm{O} \rightarrow \mathrm{C}_6\mathrm{H}_{12}\mathrm{O}_6 + 6\mathrm{O}_2$$

The reaction is endothermic and is catalysed by enzymes (chlorophyll).

(a) Draw an energy profile diagram for photosynthesis using the axes shown.

Label

- the axes,
- the enthalpy change and activation energy,
- the reactants and products.

[3]

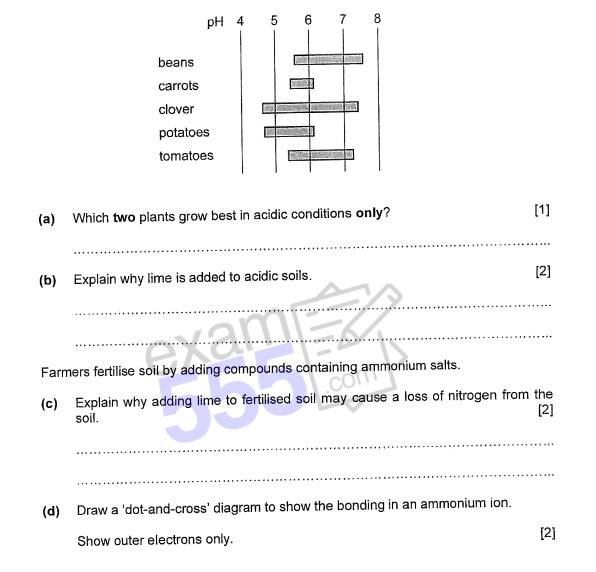
÷

	exam = 5
(b)	Describe how a catalyst, such as an enzyme, speeds up a chemical reaction. [2]
(c)	Photosynthesis, combustion and respiration are important processes in the carbon cycle.
	Describe how the carbon cycle regulates the amount of carbon dioxide in the atmosphere. [3]
	[Total: 8 marks]

Page 14 of 18

EITHER

ķ


.

Zinc is an important metal and it is extracted from its ore called zinc blende, ZnS.
a) Zinc blende is first roasted in air to obtain zinc oxide.
Name the other product formed in this reaction. [1
Zinc oxide is then converted into impure zinc by heating with coke.
Give two reasons why coke is needed. [2]
1
2
) The major impurity in the impure zinc is cadmium. The boiling point of zinc is 907 °C and that of cadmium is 767 °C.
Name a technique which could be used to separate these two metals. [1]
In common with most metals, zinc is a good conductor of electricity.
Describe the metallic bonding in zinc and explain why it is a good conductor of electricity. [4]
Steel articles can be plated with zinc to prevent rusting.
When the zinc layer is damaged exposing the underlying steel, it does not rust. Explain.
[Total: 10 marks]

Page 15 of 18

•

9 The diagram shows the best pH ranges for growing different plants.

Page 16 of 18

OR

(e) A fertilizer contains 28.2% nitrogen, 8.1% hydrogen, 20.8% phosphorus and 42.9% oxygen.

ŧ

(i) How does this prove that the fertiliser contains only the four elements? [1]
 (ii) Use the above percentages to calculate the empirical formula of the fertiliser. [2]

[Total: 10 marks]

Page 17 of 18

								Group	ar								
	1											≡	N	V	۸I	All	0
		Manual strength of the second strength of the			NAME AND ADDRESS OF ADDRE		-										2
							I										He
				Kev			hydrogen 1										4
	K	L	nroton (atomic) n	Imber	1					L	5	9	7	œ	6	10
	t d		ator	atomic symbol								ക	U	z	0	ш	Ne
	bood million		225	name	2							boran	carbon	nitrogen	oxygen	fluorine	neon
	0		relativ	e atomic t	mass							11	12	14	16	19	50
	12	ł									- 1	13	14	15	16	17	18
	Mo								•			Al	20 I	۵.	S	õ	Å
sodium	magnesium								1			aluminium 27	silicon 28	phosphorus 31	sulfur 32	chlorine 35,5	argon 40
		24	1		74	25	26	27	28	29	30	31	32	33	34	35	36
		- v			5 č	Ξ	ч ц а	i O	ÏZ	3	Zu	Ga	9 Ge	As	Se	Ъ	Ł
		candium			chromium	manganese	, noi	cobalt	nickel	copper	zinc	galium	germanium	arsenic	selenium	bromine	krypton
		45			52	52	56	59	59	64	65	2	73	75	19	8	84
	1	39			42	43	44	45	46	47	48	49	20	5	52	23	24
		>	Zr		Mo	Tc	Ru	돈	Ъ	Ag	B	ц	S	Sb	Te		Xe
		yttrium			molybdenum	technetium	ruthenium	rhodium	palladium	silver	cadmium	indium	. <u></u> = ;	antimony	tellurium	enibol	Xenon
		89			96	ť	101	103	106	108	112	411	119	771	871	171	131
		57-71	(74	75	76	17	78	62	8	8	62 i	8 i	78 (85	8
		Inthanoids			≥	Re	ő	Ŀ	٦,	Au	ВН	-1 -	ድ]	ה ה	ያ ፲	A	r Y
					lungslen	rhenium	osmium	iridium	platinum	gold 107	mercury 201	204	707	ulnuusia	millolod	astaune	
					184	186	0.8L	182	CR I	12	201	407	10.7	207			
		89 - 103			106	107	108	109	110	÷	112		114		110		
		actinoids			Sg	Bh hahainm	HS haseium	Mt maihanium lo	US cfarmstadturm	roentaanium	conemicium		flerovium		livermorium		
	radum					1	1	1	1	, 1	1		I		1		
).									
		1									LC		12	00	00	02	14
	lanthanoids	h	57	58	23	00	61	62	8	64	6 i	99	è	βi	50	2 7	= :
			Га	ő	ፚ	PN	Бп	ES	Ē	G	<u>a</u> .	2	OF .	ם :	E		
			lanthanum	cerium	praseodymum	neodymium	promethium	samarium 4 c.o.	europium	gadolinium	(erbium	dysproslum 163	165	erolum 167	169	173	175
			139	140	141	144	•	NC1	701		8	200	3		201	0.1	507
	actinoids		68	06	6	6	83	94	32	98	6	8 2	53 L	3	5		<u>3</u> -
			Ac	۴	Ъ В		dN	Pu	Am	E a	LJK herkelium	californium	ES einsteinlum	FTT fermíum	IVIO mendelevium	nobelium	LI lawrencium
			actinum	munod1	protactimum	Uraniuni 03R	Unkinidau	buttonin		1	1	1	1	1	1	1	1

 \boldsymbol{v}_{3}^{i}

92 U uranium 238

91 Pa protactiniu 231

90 Th thorium 232

The volume of one mole of any gas is 24 \mbox{dm}^3 at room temperature and pressure (r.t.p.)

*3

The Periodic Table of Elements

Page 18 of 18

2021 O-level Chemistry P2 Suggested Marking Scheme

Qn	Suggested Answer	Marks	Guidance
A1a(i)	Potassium and chlorine	1	Students need to note: students selected the most and least reactive metal. (i.e. potassium and copper)
A1a(ii)	chlorine	1	
A1a(iii)	copper	1	
A1a(iv)	aluminium	1	Note: since the question asked for <u>element</u> , you should only state aluminium and <u>not</u> <u>aluminium oxide</u>
A1a(v)	Potassium and chlorine	tom	Students need to note: students selected lithium or magnesium (which will form ions of 2 and 2.8 electronic configuration respectively)
A1b	 The most unreactive group contains only non-metals. [True] Melting point increases across period 2. [False] Atoms lose electrons more easily down Group I. [True] The strongest non-metal oxidising agent is at the top of the group. [True] 	3	
A2(a)	Fractional distillation occurs by separating propane and octane through their <u>differences in boiling</u> <u>point</u> .Columns at the top have lower temperatures than columns at the bottom with higher temperatures Octane has a <u>larger molecular size/larger relative</u> <u>molecular mass</u> as compared to propane. With a	1	[R] Both octane and propane have different boiling points. This is not good enough. You need to relate to the chemical formula to determine which hydrocarbon has a higher bp and thus how will it affect the which part of the fractionating column does it leave from.

Se00ction A

	 larger molecular size, more energy is absorbed to overcome a more extensive intermolecular forces of attraction in octane as compared to propane. Hence, octane has a <u>higher boiling point</u> as compared to propane. Propane with a lower boiling point will be <u>distilled in the higher fractions containing propane and butane</u>, octane with a higher boiling point <u>will be distilled at a lower column</u> 	1	
A2b	Both propane and butane has <u>similar molecular</u> <u>sizes with similar boiling points</u> . Hence, they will leave the column in the same fraction.	1	What is the principle behind the separation of substances that take place in the fractionating column? It will be varying boiling points, not viscosity.
A2c	Molecular formulaEmpirical formulapropaneC3H8C3H8octaneC8H18C4H9	2 som	 Recall: empirical formula is the <u>simplest</u> whole number ratio of a substance. Hence, the molecular formula of octane can be further simplified. Students need to note: empirical formula written as (C₄H₉)₂.
A2d(i)	Octane has a <u>higher number of carbon and</u> <u>hydrogen atoms</u> as compared to butane. Hence, octane has a larger number of C-C and C-H bonds_as compared to butane. The enthalpy change of combustion of octane is more negative than butane as <u>more energy is</u> <u>given out in the bond formation of carbon</u> <u>dioxide and water in the combustion of octane</u> <u>than energy absorbed to break bonds in octane</u> <u>and oxygen.</u>		$\begin{array}{l} 2C_8H_{18}+25O_2\rightarrow 16CO_2+18H_2O\\ 2C_4H_{10}+13O_2\rightarrow 8CO_2+10H_2O\\ \end{array}$ Students need to note: - "More energy needed to form bonds" without specifying reactants and products.
A2d(ii)	No. mol of octane combusted = 50 x 1000 / [(12x8) + (18 x 1)] = 438.596 mol Energy released in combustion of octane	1	

	= 239 No. = 239 = 833 Mass = 833 = 483	unt of en 99122.8 ⁴ 3.028 mo	1 kJ of butan ergy 1 / 2880 ol ne comb (12x4) + g	usted	ted with t	he same	1				
A3a	RED		NOX				2	Students need to note: in expt			
	expt	(-) electrode	(+) electrode	electrolyte	(-) electrode	(+) electrode		4: copper as product for both (-) and (+) electrodes, thus indicate the state at which it is formed.			
	1	С	С	Dilute NaCl(aq)	H ₂ (g)	$O_2(g)$ and $H_2O(I)$	-/>				
	2	С	С	Conc NaCl(aq)	H ₂ (g)	Cl ₂ (g)					
	3	Ag	Ag	Dilute CuSO4(aq)	copper	oxygen	5				
	4	Cu	Cu	Dilute CuSO₄(aq)	Copper solid /deposits	copper(II) ions	com				
A3b	do n Exan <u>carb</u> <u>Non-</u> <u>in th</u> Exan	ot partic nples of on and s inert ele e reactio	cipate in inert el silver el ectrodes ons of th	the react ectrodes ectrodes. are react ne cell.	e electrode ions of the from the f ive and pa trodes is	e cell. table are articipate	1	Students need to note: students did not read the requirements of the question properly and gave examples which are <u>not</u> in the table. Note that in this question, silver is to be inferred as inert electrodes based on the products formed (given by question)			
A3ci	Redo	<u>dish bro</u>			ed on the s	surface of	1				

A3cii	4OH⁻(aq) → 2H₂O(I) + O₂(g) + 4e⁻	1	Check if your equation is balanced! Common error of missing electrons.
A3ciii	Bluecopper(II)sulfatesolutiondecolourises/changedtolightbluethencolourless over time.This is due to thedischarge of copper(II) ions to	1	
	form solid copper., hence concentration of copper(II) ions decreases		
A4a	calcium silicate	1	
	CaSiO ₃		
(b)(i)	$2Fe_{2}O_{3} \rightarrow 4Fe + 3O_{2}$ number of mols of Fe ₂ O ₃ = 14 000 x 10 ⁶ / (56x2 + 16 x 3) = 8.75 x 10 ⁷ moles number of mols of Fe = 2 x 8.75 x 10 ⁴ = 1.75 x 10 ⁷ moles mass of Fe = 1.75 x 10 ⁷ x 56 = 9.8 x 10 ⁹ g = 9800 tonnes	n 1	Note on the conversion from tonnes to grams. 1 tonne = 1 x 10 ³ kg = 1 x 10 ⁶ g Note that the formula of iron(III) oxide contains two iron atoms. Ensure working and units are shown clearly.
(b) (ii)	The iron ore contains iron(III) oxide, and are other <u>impurities such as silicon dioxide present within</u> <u>the 14000 tonnes.</u> It could be possible for some of the iron to be <u>oxidised</u> again, since it is in contact with the oxygen and heat forming iron(III) oxide reducing the		
	oxidised again, since it is in contact with the oxygen and heat, forming iron(III) oxide, reducing the yield.		

(c)	 Nitrogen: The hot air blasted into the furnace contains about <u>78% of nitrogen</u>. carbon dioxide: Carbon(coke) reacting with oxygen in the blast furnace to form carbon dioxide. Carbon dioxide is also a <u>product of the decomposition of calcium carbonate</u> which is added into the blast furnace. Carbon monoxide <u>reduces iron(III) oxide to form molten iron and carbon dioxide gas.</u> carbon monoxide: <u>carbon dioxide reacts with excess coke (carbon)</u> to form carbon monoxide. 		Ensure the answers are related to the question, i.e. not a general answer such that nitrogen obtained from fractional distillation or carbon dioxide is from the combustion of fuel.
(d)	Pure iron is too soft, thus carbon is added to increase its strength. There is a need to add the amount of carbon carefully as higher percentage of carbon added will form high- carbon steel while a low percentage of carbon added will form a low carbon steel. <u>High-carbon steel is harder but more brittle, less</u> malleable than low-carbon steel.	1 com	Show the differentiation between high and low carbon steel.
A5(a)	HO A HO A HO A HO A N X C X N HO H	3	Tips: Determine the type of bonding present based on the metallic/non- metallic nature of the elements. Draw the displayed structural formula. Place the element with the most number of bonds in the centre. You may use symbols as shown.
(b)(i)	From equation 1, it is shown that a total of <u>3 moles</u> of gases such as ammonia and carbon dioxide are produced. Since gases occupy a larger volume		Since instruction mentions "use equation 1", ensure reference is made.

	than liquid and the engine is hot, there is a likelihood that these gas particles will have an increase in kinetic energy and move further apart, increasing the pressure in the tank, leading to an explosion.	1	Do note that the explosion does not occur due to reasons such as the explosive or flammable nature of ammonia or carbon dioxide.
(ii)	Only gases such as <u>nitrogen and water vapour are</u> <u>released into the atmosphere</u> . These have <u>no</u> <u>adverse effects on the environment.</u>	1	Ensure reference is made to both the reactants and products of equations 2 and 3.
	Oxides of nitrogen are completely removed, thus there will be no chance of these gases being released into the atmosphere to form <u>acid rain and</u> causing damage to living things and buildings.	1	Explanation on the effect of the pollutants must be explained.
(iii)	Carbon dioxide, a greenhouse gas, is still released into the atmosphere. It continues to cause an increase in the earth's temperature that will result in effects caused by global warming such as melting of ice caps.	1	Ensure environmental issue is explained.
(iv)	$(NH_{2})_{2}CO + H_{2}O \rightarrow 2NH_{3} + CO_{2} - eqn \ 1 \ x \ 4$ $4(NH_{2})_{2}CO + 4H_{2}O \rightarrow 8NH_{3} + 4CO_{2}$ $8NH_{3} + 6NO_{2} \rightarrow 7N_{2} + \frac{12}{4}H_{2}O - eqn \ 3$ (8)	2	Answer is to be derived by cancelling species which appear on both sides of the equations.
	(0) 4(NH ₂) ₂ CO + 6NO ₂ \rightarrow 7N ₂ + 8H ₂ O + 4CO ₂		
(c)	No. of moles of urea = 160/ [14x2 + 4 + 12 + 16] = 2.66667 mol	1	
	Concentration = 2.66667 / 0.5 =5.33 mol/dm ³ (3 sf)	1	

Section B

Qn	Suggested Answer	Mark s	Guidance
6(a)(i)	Hydrochloric acid is a monobasic acid which contain a single-charged negative ion such as C <i>l</i> ⁻ , thus having the general formula HA.	1	Change in question: Suggest whether hydrochloric acid and sulfuric acid fit the general formula HA.
	Sulfuric acid is a dibasic acid, with an anion of double charge, $SO_4^{2^-}$, thus the formula will be H ₂ A.	1	
(ii)	$2HA + M_2CO_3 \rightarrow 2MA + CO_2 + H_2O$	1	
(iii)	2CH ₃ COOH + Ca → (CH ₃ COO) ₂ Ca + H ₂	1	Note the chemical formulae of salts of organic acids.
	From the above equation, it is shown that the charge of the metal, Ca, +2, corresponds to the general equation 2.		Make reference to information
	The co-efficient of CH ₃ COOH is 2; while that of hydrogen is $\frac{2}{2}$ = 1 and the chemical formula of calcium ethanoate corresponds to MA _x .	1	from data such as to x and general equation.
(b)(i)	The relationship suggests that the pH is inversely proportional to the initial concentration of the acid.		
	If the above is true, the <u>product of the pH and the initial</u> <u>concentration of the acid has to be a constant.</u>		

	Using HC/(aq) as an example, the product of the two values are not shown to be a constant. i.e. which are 0.02, 0.1 and 0.14 respectively.		
(ii)	 pH is determined by the concentration of hydrogen ions in the solution. The <u>factors that affect of the pH of an acid are concentration of acid, basicity of the acid and strength of the acid.</u> 		1 mark for identifying each factor and explanation, will be good to quote data.
	For HC/(aq), as its <u>concentration increases</u> from 0.01 to 0.2 mol/dm ³ , <u>pH decreases</u> from 2.0 to 0.7 This trend is the same for all the other acids as well.	1	
	The second factor which affects the pH is the <u>basicity of</u> <u>the acid</u> . If an acid is monobasic, the concentration of hydrogen ions is the same as that of its concentration. However, if the <u>acid is dibasic like sulfuric acid, the</u> <u>concentration of hydrogen ions is double that of its</u> <u>concentration</u> , which decreases the pH of the acid. Comparing 0.01 mol/dm ³ , of monobasic hydrochloric acid and 0.01mol/dm ³ sulfuric acid, hydrochloric acid has a higher pH of 2.0 compared to 1.7 of sulfuric acid. The third factor is the <u>strength of the acids</u> . Weak acids such as ethanoic acid <u>ionises partially</u> to form hydrogen ions as compared to <u>strong acids</u> such as hydrochloric acid and sulfuric acid which <u>ionises completely to form</u> <u>hydrogen ions in water</u> . Comparing 0.1 mol/dm ³ of weak ethanoic acid and 0.1mol/dm ³ strong hydrochloric acid, ethanoic acid has a higher pH of 3.4 compared to 2.0 of hydrochloric acid.	1	
(iii)	0.04, 1.4 0.10, 1.0		Concentration of hydrogen ions = concentration of hydrochloric acid (monobasic acid) Concentration of hydrogen ions in sulfuric acid will be
			double of its concentration (dibasic)

			Use data to determine the pH of acid based on the concentration of hydrogen ions.
B7(a)(i)	Relative molecular mass of repeating unit = 16 + (12+2)(4) + 16 + 12+ 16 + [(12)6 + 4] + 12 + 16 + 16 = 220 $\begin{pmatrix} 0 & H & H \\ -1 & I & 0 \\ -C & -C & -C & -C & -0 & -H \\ -C & -C & -C & -C & -C & -0 & -H \\ -C & -C & -C & -C & -C & -0 & -H \\ -C & -C & -C & -C & -C & -0 & -H \\ -C & -C & -C & -C & -C & -C & -0 & -H \\ -C & -C & -C & -C & -C & -C & -0 & -H \\ -C & -C & -C & -C & -C & -C & -0 & -H \\ -C & -0 & -H \\ -C & -C$		Note the oxidation of diol to to form dicarboxylic acid. No units for relative molecular mass. Show working clearly.
(b)(i)	It has many ester linkages (-COO-)		
(ii)	Similarity: Both processes involve joining together a large number of small molecules/monomers to form a macromolecule/polymer. At least 2: Differences: In addition polymerisation, there is <u>no loss of atoms/no</u> <u>side product formed/only 1 product is formed</u> when monomers are joined together. However, in condensation polymerisation, <u>a small molecule is removed/side</u> <u>products formed</u> as two monomers joined together.	1	
	In addition polymerisation, monomers are <u>unsaturated</u> <u>C=C</u> (double covalent bond present between carbon atoms) <u>/alkenes</u> . However, in c <u>ondensation</u>	1	

	polymerisation, monomers either have hydroxyl or carboxyl groups/ reactants are diol or diacid) In addition polymerisation, the polymers have the same molecular mass as the monomers. In condensation polymerisation, the polymers have different molecular masses from the monomers.		
Either B8a	The relative reactivity: <u>Aluminium is the most reactive of the three elements</u> <u>and silicon is the least reactive of the three elements</u> . <u>Carbon is more reactive than silicon</u> . <u>Carbon cannot reduce aluminium from aluminium</u> <u>oxide to form aluminium metal as aluminium oxide</u> <u>remains in the silicon.</u> Hence, carbon is less reactive than aluminium. From the equation, <u>carbon reduced silicon from silicon</u> <u>dioxide to form silicon element.</u> Hence, carbon is more reactive than silicon.		Students need to note: students discussed about ease of extraction instead of reduction.
Either B8b	 NOTE: since this is a 5m question, examiners will EXPECT AT LEAST 5 KEY POINTS. Question requirement: " use ideas of bonding and structure". Hence, you should explain BOTH for each oxide. Carbon monoxide is a <u>simple covalent substance made</u> up of <u>simple, discrete molecules. A low amount of energy is absorbed to overcome the weak intermolecular forces of attraction. Hence, carbon monoxide has a low melting point of -205 °C and a boiling point of -192 °C.</u> Silicon dioxide has a <u>giant covalent lattice structure made up of silicon and oxygen atoms. A large amount of energy is absorbed to overcome the strong covalent bonds between silicon and oxygen ATOMS. Hence,</u> 	5	 Students need to note: Students did not mention both bonding and structure Carbon monoxide was explained as a simple molecule "Strong forces between molecules""

	silicon dioxide has a high melting point of 1600 °C and a boiling point of 2230 °C. Aluminium oxide has a giant ionic lattice structure made up of aluminium and oxide ions. A large amount of energy is absorbed to overcome the strong electrostatic forces of attraction between aluminium and oxide ions. Hence, aluminium oxide has a high melting point of 2000 °C and a boiling point of 2980 °C. Both carbon monoxide and silicon dioxide were unable to conduct electricity in any state as CO is a simple covalent substance and SiO ₂ is a giant covalent substance which both do not have any free-moving mobile electrons and ions to conduct electricity. Aluminium oxide is able to conduct electricity in molten state as there are free-moving ions not held in fixed positions which an conduct electricity. Carbon monoxide is a gas at r.t.p hence has low density, while silicon dioxide and aluminium oxide are solid at r.t.p hence has high density.		
Either 8c	Mass of aluminium in a 100g of alloy = 2.8×27 = 75.6g Maximum possible percentage by mass of silicon in alloy = $100\% - 75.6\% - 6\%$ = 18.4% Minimum possible percentage by mass of silicon in alloy = $100\% - 75.6\% - 8\%$ = 16.4% Hence, alloy Y has the closest percentage by mass of silicon between $16\% - 19\%$.	1	
Or 8a	Experiment 2 is used as a control.	1	

	There is <u>only one factor changed in each of the other</u> <u>experiments</u> .		
Or 8b	You should make clear comparisons and explain collision theory clearly between the different experiments with reference to the control experiment 2. Also cite data! Comparing experiment 1 and 2, the <u>concentration of</u> <u>iodide ions used is 0.1 mol/dm³, half that of the</u> <u>experiment 2 at 0.2 mol/dm³. Hence, with half the 2</u> concentration, the <u>number of reactant particles (iodide</u> <u>ions) per unit volume decreases. Hence, this</u> <u>decreases the frequency of collisions and frequency</u> <u>of effective collisions decreased. Hence, time taken</u> <u>for blue-black colour to appear increased from 27s to</u> <u>50s. Rate of reaction decreased.</u> Comparing experiments 2 and 3, the <u>temperature has</u> <u>doubled from 20°C to 40 °C.</u> When temperature increased, this <u>increases the frequency of collisions.</u> <u>Hence, the number of particles with energy equal to</u> <u>or greater than activation energy increased. Hence,</u> <u>this increases the frequency of effective collisions.</u> <u>Hence, time taken for blue-black colour to appear</u> <u>decreased from 27s to 15s. Rate of reaction</u> <u>increased.</u> Comparing experiments 2 and 4, the presence of catalysts Cu ²⁺ ions in experiment 4 will speed up the rate of reaction <u>unlike the absence of catalysts in experiment 2. Hence, the</u> <u>catalysts provide an alternative pathway of lower</u> <u>activation energy for the reaction to occur. A higher</u> <u>number of particles have energy equal to or greater</u> <u>than activation energy. Hence, frequency of effective</u> <u>collisions increases. Hence, time taken for blue-black</u> <u>colour to appear decreased from 27s to 20s. Rate of</u> <u>reaction increased.</u>	Stude -	Ints need to note: More concentrated solution was not described was more iodide ions <u>per unit</u> <u>volume</u> More collisions instead of <u>increased</u> <u>frequency of</u> <u>collisions</u> [R] More number of collisions
Or 8c	No. of moles of hydrogen peroxide used = 30/1000 x 0.05		

= 0.0015 mol No. of moles of iodide ions used (for expt 2, 3, 4) $= 10/1000 \times 0.2$ = 0.002 mol Mol ratio of I⁻: $H_2O_2 = 2$: 1 For 0.002 mol of iodide ions used, 0.001 mol of hydrogen peroxide is required for reaction. However, there is 0.0015 mol of H₂O₂ and there is excess 0.0005 mol of H₂O₂. Hence, iodide ions is the limiting reagent for experiments 2.3 and 4. OR For 0.0015 mol of hydrogen peroxide used, 0.003 mol of iodide ions is required for the reaction. However, there is only 0.002 mol of iodide ions and there is insufficient iodide ions for the reaction. Hence, iodide ions is the limiting reagent for experiments 2, 3 and 4. AND No. of moles of iodide ions used (for expt 1) = 10/1000 x 0.1 = 0.001 mol Mol ratio of I⁻: $H_2O_2 = 2$: 1 For 0.001 mol of iodide ions used, 0.0005 mol of hydrogen peroxide is required for reaction. However, there is 0.0015 mol of H₂O₂ and there is excess 0.001 mol of H₂O₂. Hence, iodide ions is the limiting reagent for experiments 1

