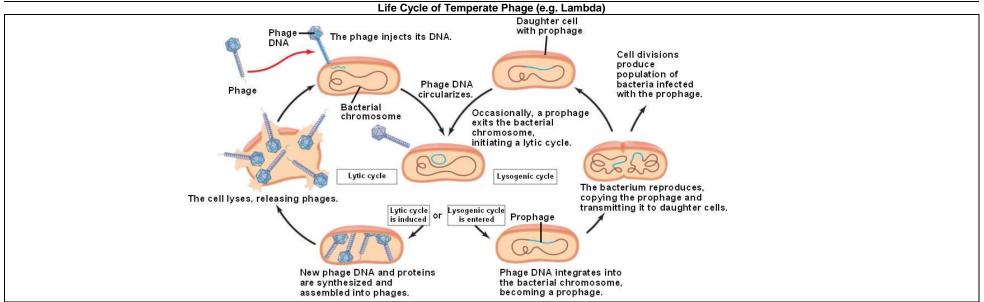

enetics and Inheritance (9744)		Viruses	2018
things when in host cell.	r organization 3) ability	ial. However, non-living because they have no cellular organization / to reproduce and grow in numbers 4) ability to respond to stimuli and pend on host cells to complete their life cycle.	
Structure of Viruses			
	Bacteriophages	Animal Viruses	
Size: 10-300nm		Enveloped	
	T4 Lambda phage phage	Influenza	Human Immunodeficiency Virus (HIV)
 Genome Nucleic acid that codes for synthesis of viral components and enzymes for viral replication & assembly Can be either DNA/RNA, single/double-stranded 	 Double- stranded DNA 	 (-) strand RNA >viral genome is complementary to viral mRNA <u>8 different</u> segments of single stranded RNA associated with nucleoproteins Each RNA segment is packed with 3 polymerase proteins which come together to form an RNA-dependent RNA polymerase enzyme complex which replicates and transcribes the viral genome in the host cell 	 (+) strand RNA →viral genome has the same sequence as viral mRNA <u>2 identical</u> copies of single stranded RNA bound to nucleocapsid proteins
Protein coat that surrounds and protects viral genome Comprise subunits called capsomeres	 Icosahedral capsid head 	Present.	 Present, conical shaped Enzymes reverse transcriptase integrase and protease found i capsid
Envelope Phospholipid bilayer surrounding the nucleocapsid Derived from host cell membrane Embedded with viral glycoproteins involved in host cell recognition	Absent	 Glycoproteins embedded in envelope: haemagglutinin (80%) & neuraminidase (20%) 	 Glycoprotein embedded in envelope: gp41 gp120 is attached to gp41
Base plate RNA	Envelope segments, ssociated with NA dependent polymerase eoproteins Capsid	Haemagglutinin Neuraminidase Capsid Integrase Envelope	2 copies of single stranded RNA genom each associated with nucleocapsid proteins Matrix proteins Protease
T4 phage Lambda phage			unodeficiency Virus


replication rate of the virus. Over time, there is an accumutation of mutations in the viral genome. Sometimes, these mutations produce viruses with modified** surface antigens (e.g. glycoproteins such as haemagglutinin or neuraminidase) with different conformation. If these viruses infect a host that does not have the antibodies that recognise these modified surface antigens, the host becomes susceptibleto the virus.

Antigenic Shift: When a bird strain of influenza A and human strain of influenza A infect a single cell of an intermediate host (e.g.a pig), genetic reassortment can occur. Thus when new viruses are assembled in the host cell, a new combinations of RNA segments can come together. Sometimes, genetic reassortment produces viruses with <u>new** surface antigens</u> (e.g. glycoproteins such as haemagglutinin or neuraminidase). If these viruses infect a human host the host becomes susceptibleto the virus, as the host will not have the antibodies that recognise these <u>new** surface antigens</u>,

Genetics and Inher	tance (9744)	Viruses	2018
Starss	Destaviantaria	Virus Life Cycle	nod onimal visuana
Stages	Bacteriophage T4 phage Lambda phage (Lytic phage) (Temperate phage)	Influenza	ped animal viruses HIV
1.Attachment Virus recognises and attaches to host cell	 Attachment sites on tail fibres adsorbs to complementary receptor sites on bacterial surface (e.g. <i>E.coli</i>) 	 Enveloped viruses use viral glycoproteins to bir Hemagglutinin binds to complementary sialic acid receptor on host cell (e.g. epithelial cells in respiratory tract) membrane 	 d to specific receptor molecules on host cell. gp120 binds to complementary CD4 receptors on T helper cells or (macrophages) with the help of a correceptor.
2.Penetration Viral genome introduced into host cell	 Bacteriophage releases lysozyme which digests bacterial cell wall This allows the release of molecules from the bacterium which triggers a change in shape of the proteins in the base plate which causes the contraction of tail sheath which will drive the hollow core tube through cell wall When the tip of the hollow core tube reaches the plasma membrane, phage DNA is injected into the bacterial cell The empty capsid remains outside 	Release of • Virus enters host cell by endocytosis (the process involves invalues invagination of membrane) • Endocytic vesicle fuses with lysosome → which lowers the pH → causes viral envelope to fuse with lipid bilayer of vesicle → nucleocapsid is released into cytosol • Degradation of capsid degraded by cellular enzymes and the 8 viral RNA segments that are released into cytosol enter the nucleus	 capsid into host cell cytosol With the help of gp41, the viral envelope <u>fuses</u> with host cell membrane → nucleocapsid is released into cytosol (NB: HIV can also enter by endocytosis) d to release viral genome (uncoating) Capsid degraded by cellular enzymes → the 2 viral RNA strands and enzymes are released into the <u>cytosol</u>
3. Replication Synthesis of viral components & viral genome replication	 Host cell macromolecular synthesizing machinery is used to synthesise phage proteins Early phage proteins: degrade host DNA Phage DNA synthesized using host cell nucleotides and early proteins Late phage proteins: are phage enzymes and structural components Linear phage DNA circularizes and inserted into host cell genome by enzyme integrase The integrated phage DNA is known as a prophage Expression of phage genes is repressed by phage repressor proteins. Hence new phages are not synthesized Prophage replicates along with bacterial chromosome During spontaneous induction, cellular proteases are activated. They destroy the repressor proteins The prophage is then excised from the bacterial genome The replication phase of lytic cycle then occurs. (see left) 	 Viral RNA-dependent RNA polymerase uses viral genome as a template to synthesise mRNA mRNA enters cytosol → translated into viral structural components (Capsid proteins are made in the cytosol. Envelope glycoproteins are made in the RER & eventually are embedded in host cell membrane) can also act as template for synthesis of new viral RNA genome in the nucleus. Viral RNA genome then exits nucleus. 	 Reverse transcriptase makes DNA strand using viral RNA as template to form a DNA-RNA hybrid. The RNA is then degraded and the 2nd DNA strand is made → double-stranded DNA molecule produced Viral DNA <u>enters nucleus</u> → inserted into host cell genome by integrase → Viral DNA known as provirus → can remain latent for a long time Upon activation, viral DNA transcribed to viral RNA which <u>enters cytosol</u> Viral RNA can either act as mRNA and be translated into proteins or become part of the genome of the new virions mRNA is translated to viral polyproteins is translated into envelope glycoproteins gp120 and gp 41 in the RER and eventually are embedded in the host cell surface membrane.
4. Maturation Assembly of complete viruses	 Phage DNA and capsid assemble into a DNA-filled head Head, tail and tail fibers assembled independently & join in a specific sequence. 	 Capsid proteins associate with host cell membrane where viral glycoproteins are inserted. Nucleoproteins associate with the RNA genome and then interact with capsid proteins that have associated with the glycoproteins embedded on the plasma membrane. This initiates the budding process. 	 For HIV, <u>maturation</u> is completed only after <u>release</u> of virus. The viral RNA genome and polyprotein assembles a the cell surface membrane where viral glycoproteins have been inserted.
5. Release	 Phage lysozyme synthesised within the cell breaks down the bacterial cell wall Bacterial cell membrane lyses and release the newly formed virions 	 Newly formed viruses bud off by <u>evagination</u>, acquiring host cell membrane with embedded viral glycoproteins Neuraminidase facilitates the release of the new virions from the host cell membrane by cleaving sialic acid from the host cell receptor. 	 Newly formed viruses bud off by <u>evagination</u>, acquiring host cell membrane with embedded viral glycoproteins Viral protease cleaves polyproteins, forming viral enzymes and proteins. The viral RNA genome and enzymes are ther encapsulated by a protein coat to form a capsid The mature HIV virus (virion) is now able to infect neighbouring cells.

