2015 H2 MATH (9740/02) JC 2 PRELIM EXAMINATION – MARKING SCHEME

Qn	Solution
1	Mathematical Induction
1(i)	$u_1 = 3 = \frac{2^2 - 1}{2 - 1}.$
	$u_2 = 3 - \frac{2}{3} = \frac{7}{3} = \frac{2^3 - 1}{2^2 - 1}.$
	$u_3 = 3 - \frac{2}{\left(\frac{7}{3}\right)} = \frac{15}{7} = \frac{2^4 - 1}{2^3 - 1}.$
	Hence $a = 2$.
1(ii)	Let P_n be the statement that $u_n = \frac{2^{n+1}-1}{2^n-1}$ for $n \ge 1$.
	When $n = 1$,
	LHS = $u_1 = 3$
	RHS = $\frac{2^2 - 1}{2 - 1} = \frac{3}{1} = 3 = LHS$ (shown).
	\therefore P ₁ is true.
	Assume P_k is true some $k \in \square^+$, i.e., $u_k = \frac{2^{k+1}-1}{2^k-1}$.
	To prove P_{k+1} is also true, i.e. $u_{k+1} = \frac{2^{k+2} - 1}{2^{k+1} - 1}$.
	LHS = u_{k+1}
	$=3-\frac{2}{u_k}$
	$= 3 - \frac{2}{\left(\frac{2^{k+1} - 1}{2^k - 1}\right)}$
	$=3-\frac{2(2^{k}-1)}{2^{k+1}-1}$
	$=\frac{3 \cdot 2^{k+1} - 3 - 2^{k+1} + 2}{2^{k+1} - 1}$
	$=\frac{2 \cdot 2^{k+1} - 1}{2^{k+1} - 1}$
	$=\frac{2^{k+2}-1}{2^{k+1}-1}$
	= RHS
	\therefore P _k is true \Rightarrow P _{k+1} is true.
	Since P_1 is true, and P_k is true $\Rightarrow P_{k+1}$ is true, by Mathematical Induction,
	P_n is true for all $n \in \square^+$.

1(iii)
$$u_{1}u_{2}u_{3}...u_{n} = \left(\frac{2^{2}-1}{2-1}\right)\left(\frac{2^{3}-1}{2^{2}-1}\right)\left(\frac{2^{4}-1}{2^{3}-1}\right)...\left(\frac{2^{n+1}-1}{2^{n}-1}\right)$$
$$= \left(\frac{2^{n+1}-1}{2-1}\right)$$
$$= 2^{n+1}-1 \to \infty \text{ as } n \to \infty.$$
Hence, the limit does not exist.

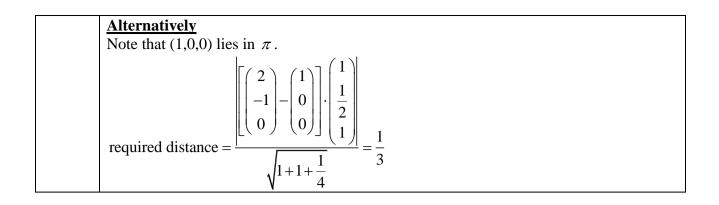
Qn	Solution
2	Differentiation (Maxima and Minima)
2(i)	Base of isosceles triangle = $10 - 2x$
	y + 2h = 20
	By Pythagoras Theorem,
	$x^2 - h^2 = (5 - x)^2$
	$x^2 - h^2 = 25 - 10x + x^2$
	$25 + h^2$
	$x = \frac{25 + h^2}{10}$
	$V = \frac{1}{2} (10 - 2x) hy$
	$=\frac{1}{2}\left[10-2\left(\frac{25+h^2}{10}\right)\right]h(20-2h)$
	$=\frac{1}{5}h(10-h)(25-h^{2})$
	$=\frac{1}{5}h(h^3 - 10h^2 - 25h + 250)$
	$=\frac{1}{5}(h^4 - 10h^3 - 25h^2 + 250h) \text{(shown)}$
(ii)	Differentiate wrt x,
	$\frac{\mathrm{d}V}{\mathrm{d}h} = \frac{1}{5} \left(4h^3 - 30h^2 - 50h + 250 \right)$
	For maximum V, $\frac{\mathrm{d}V}{\mathrm{d}h} = 0.$
	$\therefore \frac{\mathrm{d}V}{\mathrm{d}h} = \frac{1}{5} \left(4h^3 - 30h^2 - 50h + 250 \right) = 0$
	$4h^3 - 30h^2 - 50h + 250 = 0$
	Using GC, $h = 8.0902$ cm (rejected : $2x = 18.090 > 10$),
	$h = -3.0902 \text{ cm} (\text{rejected} \because h > 0)$
	or $h = 2.5$ cm.
	Differentiate wrt x, $\frac{d^2 V}{dh^2} = \frac{1}{5} (12h^2 - 60h - 50)$
	For $h = 2.5$ cm, $\frac{d^2 V}{dh^2} = \frac{1}{5} (12(2.5)^2 - 60(2.5) - 50)$ = $-25 < 0$ \therefore V is maximum.
	Alternatively
	Using GC, $\frac{d^2 V}{dh^2}\Big _{h=2.5} = -25 < 0$
	\therefore V is maximum.
	·

Alter	mative (By 1	st derivative test)	<u>)</u>		
	h	2.5^{-}	2.5	2.5^{+}	
	$\frac{\mathrm{d}V}{\mathrm{d}h}$				
V	is maximun	1.			
∴ m	aximum V =	$=\frac{1}{5}((2.5)^4-10(2$	$(.5)^3 - 25(2.5)^2 +$	250(2.5))	
	=	70.3125 cm^3			

Qn	Solution
3	Complex 1 & 2
(ai)	Method 1:
	Since 1+2i is a root to $x^3 + ax^2 + bx - 5 = 0$,
	$(1+2i)^3 + a(1+2i)^2 + b(1+2i) - 5 = 0$
	(-11-2i) + a(-3+4i) + b(1+2i) - 5 = 0
	Comparing real part, -11-3a+b-5=0
	-3a+b=16(1)
	Comparing imaginary part, -2+4a+2b=0
	4a + 2b = 2 (2)
	Solving (1) and (2), $a = -3, b = 7$.
	$x^3 - 3x^2 + 7x - 5 = 0$
	Using GC, the other roots are $1-2i$ and 1 .
	Method 2: Since the coefficients of the polynomial are all real, 1+2i is a root implies $1-2i$ is also a root. $(x-(1+2i))(x-(1-2i)) = ((x-1)^2 - (2i)^2)$ $= x^2 - 2x + 5$ By comparing coefficients, $x^3 + ax^2 + bx - 5 = (x^2 - 2x + 5)(x-1)$ By comparing coefficient of x^2 , $a = -1-2 = -3$ By comparing coefficient of x , $b = 2+5=7$ Therefore, the other roots are $1-2i$ and 1.
(bi)	$z^{4} = 2e^{i\pi}$ $z = 2^{\frac{1}{4}}e^{i\left(\frac{\pi+2k\pi}{4}\right)}$ $= 2^{\frac{1}{4}}e^{i\left(\frac{1}{4}+\frac{k}{2}\right)\pi} \qquad k = -2, -1, 0, 1$ $= 2^{\frac{1}{4}}e^{i\left(-\frac{3}{4}\right)\pi}, 2^{\frac{1}{4}}e^{i\left(-\frac{1}{4}\right)\pi}, 2^{\frac{1}{4}}e^{i\left(\frac{1}{4}\right)\pi}, 2^{\frac{1}{4}}e^{i\left(\frac{3}{4}\right)\pi}$
(ii)	$w = e^{i\frac{\pi}{2}}$ or $w = i$

(iii)	Hence method:	
	$ wz_3 - w^* z_3 ^2 = z_4 - z_2 ^2$	B1
	$= \left(2\left(2^{\frac{1}{4}}\right)\right)^2$ $= 4\sqrt{2}$	B1
	Otherwise method:	
	$ wz_3 - w^* z_3 ^2 = z_3 (w - w^*) ^2$	D1
	$= z_3 ^2 2i ^2$	B1
	$=4\left(2^{rac{1}{4}} ight)^2$	
	$=4\left(2^{\frac{1}{2}}\right)=4\sqrt{2}$	B 1

Qn	Solution
4	Vectors 2 & 3
(i)	$\cos\theta = \frac{\begin{pmatrix} 1\\1\\1 \end{pmatrix} \cdot \begin{pmatrix} 1\\0\\1 \end{pmatrix}}{\sqrt{2}\sqrt{2}} = \frac{2}{\sqrt{2}}$
	$\sqrt{3}\sqrt{2}$ $\sqrt{6}$
(ii)	$\theta = 0.615 \text{rad or } 35.3^{\circ}$ $x + y + z = 1$
(11)	$\begin{array}{c} x + y + z = 1 \\ x + z = 2 \end{array}$
	By GC, $l: \mathbf{r} = \begin{pmatrix} 2 \\ -1 \\ 0 \end{pmatrix} + \lambda \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}, \lambda \in \Box$
(iii)	$p_k: x + \left(\frac{1}{2}\right)^{k-1} y + z = 2\left[1 - \left(\frac{1}{2}\right)^k\right] = 2 - \left(\frac{1}{2}\right)^{k-1}$
	Since p_k tends to q as $k \to \infty$ and p is p_1 , the limit of the acute angle is 0.615rad.
(iv)	$ \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ \left(\frac{1}{2}\right)^{k-1} \\ 1 \end{pmatrix} = -1 + 1 = 0 $
	Thus p_k is parallel to l for any $k \in \square^+$.
	$\begin{pmatrix} 2\\-1\\0 \end{pmatrix} \cdot \begin{pmatrix} 1\\ \left(\frac{1}{2}\right)^{k-1}\\1 \end{pmatrix} = 2 - \left(\frac{1}{2}\right)^{k-1}$ Thus the point (2, -1, 0) lies in p_k for any $k \in \square^+$.
	<i>l</i> lies in all planes in <i>P</i> .
(v)	Since $a \neq c$ and $\begin{pmatrix} a \\ b \\ c \end{pmatrix} \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} = -a + c \neq 0$, π is not parallel to l , π and any two planes in P must intersect at only 1 point which lies on l .
	T must intersect at only I point which lies on t.
(vi)	$\pi: \mathbf{r} \cdot \begin{pmatrix} 1 \\ \frac{1}{2} \\ 1 \end{pmatrix} = 1$ Since π is parallel to the n in R and $(2, 1, 0)$ lies in n, the perpendicular distance is
	Since π is parallel to the p_2 in P , and $(2,-1,0)$ lies in p_2 , the perpendicular distance is
	also the shortest distance between π and p_2 required distance $=\frac{\frac{3}{2}-1}{\sqrt{1+1+\frac{1}{4}}}=\frac{1}{3}$

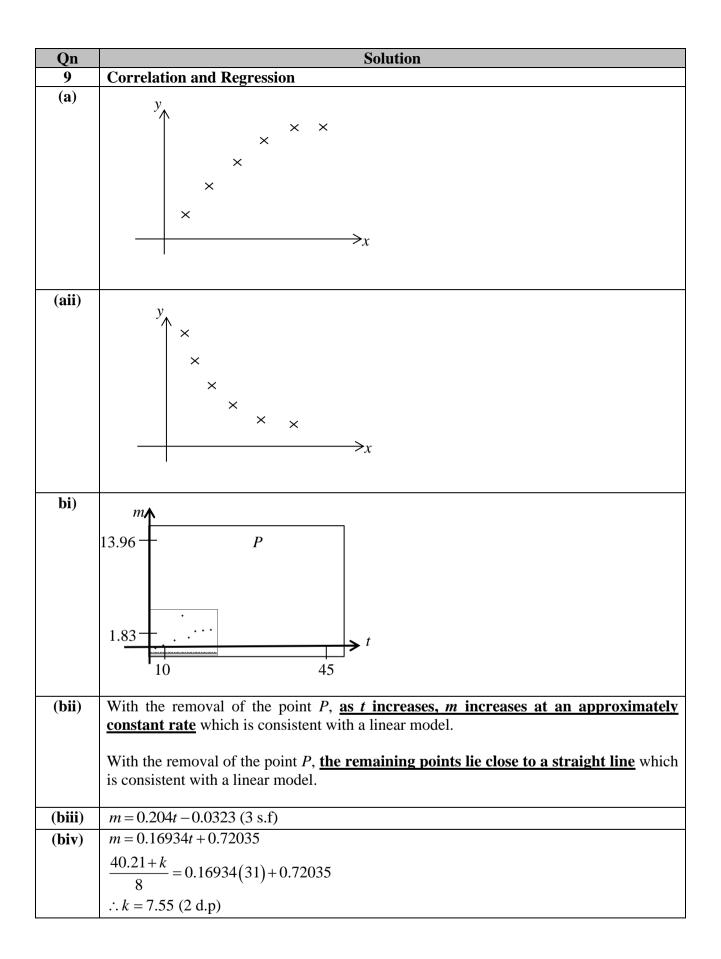


Solution
Permutation and Combination
Number of arrangements = $5 \times 4! = 2880$
Number of arrangements = ${}^{9}C_8 \times \frac{8!}{8} = 45360$
Number of arrangements = ${}^{7}C_{6} \times \frac{6!}{6} \times 6 \times 5 = 25200$
Alternatively:
Number of arrangements = ${}^{7}C_{6} \times \frac{6!}{6} \times {}^{6}C_{2} \times 2! = 25200$

Qn	Solution
6	Binomial Distribution
(a)	Let <i>X</i> be the number of students, out of 10, who score distinction
	$X \sim B(10, 0.01p)$
	$P(X \ge 2) = 0.95$
	1 - P(X = 0) - P(X = 1) = 0.95
	$1 - {\binom{10}{0}} (0.01p)^0 (1 - 0.01p)^{10} - {\binom{10}{1}} (0.01p)^1 (1 - 0.01p)^9 = 0.95$
	$1 - (1 - 0.01p)^{10} - 10(0.01p)(1 - 0.01p)^9 = 0.95$
	$(1-0.01p)^{10} + 10(0.01p)(1-0.01p)^9 = 0.05$
	Using GC,
	$p = 39.416 \approx 39.4$
(b)	Let <i>W</i> be the number of students, out of 10, who score distinction
	$W \sim B(10, 0.4)$
	Since $n = 50$ is large, by Central limit theorem, $\overline{W} \sim N\left(4, \frac{2.4}{50}\right)$ approximately
	$P(\overline{W} < 3.5) = 0.011239 \approx 0.0112$
	Alternatively: (not for students) Let Y be the number of students, out of 500, who score distinction $Y \sim B(500, 0.4)$
	$P(Y < 3.5 \times 50) = P(Y < 175)$
	$= P(Y \le 174)$
	$= 0.0095558 \approx 0.00956 (3 \text{ s.f})$

Qn 7	Suggested Solutions
7	Poisson and Normal Distribution
(i)	Let <i>X</i> be the number of people arriving at a particular bus stop in a randomly chosen period of 5 min. $X \square P_{2}(2)$
	$X \square \operatorname{Po}(2)$
	Let Y be the number of people arriving at a particular bus stop in a period of t min.
	$Y \square \operatorname{Po}\left(\frac{2}{5}t\right)$
	P(Y > 9) < 0.759
	$1 - P(Y \le 9) < 0.759$
	Using table method,
	When $t = 30$, $1 - P(Y \le 9) = 0.75761 < 0.759$
	When $t = 31$, $1 - P(Y \le 9) = 0.79081 > 0.759$
	Hence greatest possible integer for $t = 30$ (shown)
	Alternatively,
	Using GC, $t < 30.039917$
	Hence greatest possible integer for $t = 30$ (shown)
(ii)	Let <i>A</i> be the number of people arriving at a particular bus stop in a randomly chosen period of 60 min.
	$A \square \operatorname{Po}\left(\frac{2}{5} \times 60\right) \Rightarrow A \square \operatorname{Po}(24)$
	Since $\lambda = 24 > 10$, $A \square$ N(24, 24) approximately.
	Let L be the number of people leaving the particular bus stop in a randomly chosen period of 60 min.
	$L \square \operatorname{Po}\left(\frac{2.5}{5} \times 60\right) \implies L \square \operatorname{Po}(30)$
	Since $\lambda = 30 > 10$, $L \square$ N(30, 30) approximately.
	Since there were 5 people at the bus stop at 0800 and more than 15 people at the bus stop at 0900,
	$5+A-L>15 \Rightarrow A-L>10$
	$A - L \sim N(24 - 30, 24 + 30)$ approximately
	$A - L \sim N(-6, 54)$ approximately
	P(A - L > 10)
	= $P(A - L > 10.5)$ after continuity correction
	= 0.0124 (3sf)
(iii)	People arriving and leaving the bus stop may not occur at a constant average rate as the outcomes are influenced by peak hours and lull periods.
	Alternatively: The mean number of people arriving and leaving the bus stop is not constant throughout each time interval as the outcomes are influenced by peak hours and lull periods.

Qn	Solution			
8	Hypothesis Testing			
(i)	Let $u = x - 16$			
	Unbiased estimate of population mean, $\overline{x} = 16 + \overline{u} = 16 + \frac{-23.8}{14} = 14.3$			
	Unbiased estimate of population variance,			
	$s_x^2 = s_u^2 = \frac{1}{13} \left(149.127 - \frac{(-23.8)^2}{14} \right) = 8.359$			
	Let μ denote the population mean time taken by the students (in hrs).			
	Given $X \sim N(\mu, \sigma^2)$ $\therefore \overline{X} \sim N(\mu, \frac{\sigma^2}{n})$			
	H ₀ : $\mu = 16$			
	H ₁ : $\mu \neq 16$			
	Test statistic: $T = \frac{\overline{X} - \mu}{S / \sqrt{n}} \sim t_{n-1}$			
	Level of Significance: 5%			
	Reject H ₀ if p -value < 0.05			
	OR Reject H ₀ if $ t$ -value $ > 2.1603$			
	Under H ₀ , using G.C., <i>p</i> -value = 0.046492 OR <i>t</i> -value = -2.2001			
	Since <i>p</i> -value = $0.0465 < 0.05$ (OR <i>t</i> -value = $-2.2001 < -2.1603$), we reject H ₀ and conclude that there is sufficient evidence at 5% level, that there has been a change in the mean time taken to complete the homework given in a week.			
(ii)	H ₀ : $\mu = 16$			
(11)	$\begin{array}{l} H_{1} \\ H_{1} \\ \mu \neq 16 \end{array}$			
	Test statistic: $Z = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}}$			
	Level of Significance: 5%			
	Reject H ₀ if z-value > 1.9600 or z-value < -1.9600			
	Since we do not reject H ₀ , -1.9600 < $\frac{\overline{x} - \mu}{\sigma / \sqrt{n}}$ < 1.9600			
	$-1.9600 < \frac{\overline{x} - 16}{\frac{3}{\sqrt{14}}} < 1.9600$			
	$/\sqrt{14}$ 14.429 < \bar{x} <17.571			
	$\therefore \left\{ \overline{x} \in \Box : 14.4 < \overline{x} < 17.6 \right\}$			
<u> </u>	μ			



Qn	Solution
10	Normal and Sampling Distributions
(i)	Let X be the mass of a randomly chosen chocolate bar (in grams). Let Y be the mass of a randomly chosen candy bar (in grams).
	$X \sim N(25, 0.3^2)$ $Y \sim N(32, 0.5^2)$
	Let $W = \frac{X_1 + X_2 + Y_1 + Y_2 + Y_3}{5} \sim N\left(\frac{25 \times 2 + 32 \times 3}{5}, \frac{0.3^2 \times 2 + 0.5^2 \times 3}{25}\right)$
	i.e. $W \sim N(29.2, 0.0372)$
	P(W < 29) = 0.14988 = 0.150 (3 s.f.)
(ii)	$X_1 - X_2 \sim N(25 - 25, 0.3^2 + 0.3^2)$
	i.e. $X_1 - X_2 \sim N(0, 0.18)$
	$P(X_1 - X_2 < k) = 0.95$
	$P(-k < X_1 - X_2 < k) = 0.95$
	Using G.C., $k = 0.83154 = 0.832$ (3 s.f.)
(iii)	$0.08X + 0.03Y \sim N(25 \times 0.08 + 32 \times 0.03, 0.3^2 \times 0.08^2 + 0.5^2 \times 0.03^2)$
	i.e. $0.08X + 0.03Y \sim N(2.96, 0.000801)$
	P(0.08X + 0.03Y > 3) = 0.078779 = 0.0788 (3 s.f.)

Qn	Solution
11	Probability
(a)(i)	(15)(10)
	$P(R=3) = \frac{\binom{15}{3}\binom{10}{5}}{\binom{25}{5}} = 0.10601 = 0.106 \ (3 \text{ s.f}) \ (\text{Shown})$
	$\left(\frac{1}{25}\right) = \frac{-0.10001 - 0.100}{25}$
	Alternatively: Probability method
	$P(R=3) = \left(\frac{15}{25}\right) \left(\frac{14}{24}\right) \left(\frac{13}{23}\right) \left(\frac{10}{22}\right) \left(\frac{9}{21}\right) \left(\frac{8}{20}\right) \left(\frac{7}{19}\right) \left(\frac{6}{18}\right) \left(\frac{8!}{3!5!}\right)$
	= 0.10601
	= 0.106 (3 s.f) (Shown)
(ii)	$\mathbf{P}(R=r) > \mathbf{P}(R=r+1)$
	(15)(10) $(15)(10)$
	$\left \left(r \right) \left(8 - r \right) \right \left(r + 1 \right) \left(7 - r \right) \right $
	$\frac{\binom{15}{r}\binom{10}{8-r}}{\binom{25}{8}} > \frac{\binom{15}{r+1}\binom{10}{7-r}}{\binom{25}{8}}$
	(15)(10) $(15)(10)$
	$\binom{15}{r}\binom{10}{8-r} > \binom{15}{r+1}\binom{10}{7-r}$
	15! 10! 15! 10!
	$\left \frac{15!}{r!(15-r)!}\frac{10!}{(8-r)!(2+r)!} > \frac{15!}{(r+1)!(14-r)!}\frac{10!}{(7-r)!(3+r)!}\right $
	(r+1)!(14-r)!(7-r)!(3+r)! > r!(15-r)!(8-r)!(2+r)! (shown)
	$\frac{(r+1)!(14-r)!(7-r)!(3+r)!}{r!(15-r)!(8-r)!(2+r)!} > 1$
	$\frac{(r+1)(r+3)}{(15-r)(8-r)} > 1$
	$(15-r)(8-r)^{-1}$
	Using GC,
	(r+1)(r+3) = 0.705 + 1
	when $r = 4$, $\frac{(r+1)(r+3)}{(15-r)(8-r)} = 0.795 < 1$
	when $r = 5$, $\frac{(r+1)(r+3)}{(15-r)(8-r)} = 1.6 > 1$
	r=5
(b)	
	0.9 Early
	p 1st 0.1 Not early
	0.85 Early
	1-p 2nd
	0.15 Not early
	f(p) = P(chooses first route early for school)

$$= \frac{0.9p}{0.9p + 0.85(1-p)}$$

$$= \frac{0.9p}{0.05p + 0.85}$$

$$= \frac{18p}{p+17} \quad \text{(shown)}$$

$$f(p) = \frac{18p}{p+17}$$

$$f'(p) = \frac{(p+17)18 - 18p(1)}{(p+17)^2}$$

$$= \frac{306}{(p+17)^2} > 0 \Rightarrow f(p) \text{ is increasing}$$

$$f''(p) = \frac{-612}{(p+17)^3} < 0 \Rightarrow f(p) \text{ is concave downwards}$$
Therefore, when $0 \le p \le 1$, $f(p)$ is increasing at a decreasing rate.