1 Solution Let P_n be the proposition $2^{n+1} > n^2$ where $n \in \mathbb{Z}^+, n \ge 3$. When n = 3: $2^{3+1} = 16$ $3^2 = 9$ $\therefore P_3 \text{ is true as } 16 > 9$. Assume P_k is true for some $k \in \mathbb{Z}^+, k \ge 3$: $2^{k+1} > k^2$ To prove P_{k+1} is true: $2^{k+2} = 2(2^{k+1})$ $> 2(k^2)$

$$2k^{2} - (k+1)^{2} = k^{2} - 2k - 1$$

$$= \left[k - \left(1 - \sqrt{2}\right)\right] \left[k - \left(1 + \sqrt{2}\right)\right]$$

$$> 0 \quad \text{as } k \ge 3$$

$$\therefore 2^{k+2} > (k+1)^2$$
, as $2k^2 > (k+1)^2$

Since P_3 is true and P_k is true $\Rightarrow P_{k+1}$ is true, by Mathematical Induction, P_n is true for all positive integers $n \ge 3$.

2 Solution

(a)
$$r = \sqrt{\frac{9}{\cos^2 \theta + (\sin \theta - \cos \theta)^2}} \Rightarrow r^2 = \frac{9}{\cos^2 \theta + (\sin \theta - \cos \theta)^2}$$

$$\Rightarrow (r\cos\theta)^2 + (r\sin\theta - r\cos\theta)^2 = 9$$

Using $x = r\cos\theta$, $y = r\sin\theta$,

$$\therefore x^2 + (y - x)^2 = 9$$

$$\Rightarrow 2x^2 - 2xy + y^2 = 9$$

(b)
$$r = \frac{1}{\sin \theta - \cos \theta} \Rightarrow r \sin \theta - r \cos \theta = 1 \Rightarrow y = x + 1$$

$$\therefore 2x^2 - 2x(x+1) + (x+1)^2 = 9$$

$$\Rightarrow 2x^2 - 2x^2 - 2x + x^2 + 2x + 1 = 9$$

$$\Rightarrow x^2 = 8$$

$$\Rightarrow x = \pm 2\sqrt{2}$$

Hence the points of intersections are $\left(2\sqrt{2},1+2\sqrt{2}\right)$ and $\left(-2\sqrt{2},1-2\sqrt{2}\right)$

Otherwise:

Using
$$(r\cos\theta)^2 + (r\sin\theta - r\cos\theta)^2 = 9$$
 and $r\sin\theta - r\cos\theta = 1$,

$$(r\cos\theta)^2 + 1^2 = 9 \Rightarrow r\cos\theta = \pm 2\sqrt{2} = x$$

Hence the points of intersections are $\left(2\sqrt{2},1+2\sqrt{2}\right)$ and $\left(-2\sqrt{2},1-2\sqrt{2}\right)$

3	Solution
(a)	$f(x) = \frac{2x-1}{x} \qquad f^{2}(x) = \frac{3x-2}{2x-1}$ $f^{3}(x) = \frac{4x-3}{3x-2} \qquad f^{4}(x) = \frac{5x-4}{4x-3}$
	Conjecture: $f^{n}(x) = \frac{(n+1)x - n}{nx - (n-1)}$
(b)	Let P_n be the proposition $f^n(x) = \frac{(n+1)x - n}{nx - (n-1)}$ where $n \in \mathbb{Z}^+$.
	When $n = 1$:
	LHS = f(x)
	$RHS = \frac{2x-1}{x} = 2 - \frac{1}{x}$
	$\therefore P_1$ is true.
	Assume P_k is true for some $k \in \mathbb{Z}^+$: $f^k(x) = \frac{(k+1)x - k}{kx - (k-1)}$
	To prove P_{k+1} is true:
	P_{k+1} : $f^{k+1}(x) = \frac{(k+2)x - (k+1)}{(k+1)x - k}$
	$f^{k+1}(x) = f\left[\frac{(k+1)x - k}{kx - (k-1)}\right]$
	$=\frac{2(k+1)x-2k-kx+(k-1)}{(k+1)x-k}$
	$=\frac{(k+2)x - (k+1)}{(k+1)x - k}$
	Since P_1 is true and P_k is true $\Rightarrow P_{k+1}$ is true, by Mathematical Induction, P_n is true for all $n \in \mathbb{Z}^+$.
(c)	For $f''(x)$ to be defined, $x \neq \frac{n-1}{n}$.
	\therefore Largest subset of the reals for $f^n(x)$ to be defined for all $n \in \mathbb{Z}^+$ is $\left\{ x \in \mathbb{R} : x \neq \frac{n-1}{n}, n \in \mathbb{Z}^+ \right\}$.

4	Solution
•	Solution
(a)	$r = \sqrt{\frac{2}{\sin 3\theta}}$ is undefined for $\sin 3\theta \le 0$
	Then the range of values are $-\pi < \theta \le -\frac{2\pi}{3}$ or $-\frac{\pi}{3} \le \theta \le 0$ or $\frac{\pi}{3} \le \theta \le \frac{2\pi}{3}$ or π .
	Hence the equation of the asymptotes are
	$\theta = 0, \pm \frac{\pi}{3}, \pm \frac{2\pi}{3}, \text{ and } \pi$.
(b)	$\theta = 0, \pm \frac{1}{3}, \pm \frac{1}{3}, \text{ and } \pi.$ $\theta = \frac{2\pi}{3}, \pm \frac{1}{3}, \text{ and } \pi.$ $\theta = \frac{5\pi}{6}$ $\theta = \pi$ $\theta = -\frac{5\pi}{6}$ $\theta = -\frac{2\pi}{3}$ $\theta = -\frac{\pi}{3}$ $\theta = -\frac{\pi}{6}$ $\theta = -\frac{\pi}{6}$ $\theta = -\frac{\pi}{6}$

5	Solution
(a)	Since the coefficients of x^2 and y^2 must have different sign, $A < 0$.
(b)	Since the equation of H is $Ax^2 + 2y^2 - 4\sqrt{3}y + 4 = 0$, the centre is $(0, \sqrt{3})$ and by symmetry, the other focus,
	O' is $(0, 2\sqrt{3})$.
	Comparing $(y-\sqrt{3})^2 - \frac{1}{-2/A}x^2 = 1$ to a standard equation of a hyperbola, $\frac{(y-h)^2}{a^2} - \frac{x^2}{b^2} = 1$,
	we have $e^2 = 1 + \frac{b^2}{a^2}$ \Rightarrow $3 = 1 + \frac{\left(-\frac{2}{A}\right)}{1}$ \Rightarrow $A = -1$
(c)	$2y^{2} - 4\sqrt{3}y - x^{2} + 4 = 0 \implies \left(y - \sqrt{3}\right)^{2} - \frac{x^{2}}{2} = 1$
	For curve <i>H</i> , the derivative will be $\frac{dy}{dx} = \frac{x_0}{2(y_0 - \sqrt{3})}$
	The angle that T makes with the horizontal, $\theta = \tan^{-1} \left(\frac{x_0}{2(y_0 - \sqrt{3})} \right)$
	The angle that <i>OP</i> makes with the horizontal, $\alpha = \tan^{-1} \left(\frac{y_0}{x_0} \right)$
	The angle that $O'P$ makes with the horizontal, $\beta = \tan^{-1} \left(\frac{y_0 - 2\sqrt{3}}{x_0} \right)$
	To show $\alpha - \theta = \theta - \beta$, we can show $2\theta = \alpha + \beta$.
	$\tan 2\theta = \frac{2\tan\theta}{1-\tan^2\theta} = 2\left(\frac{x_0}{2(y_0-\sqrt{3})}\right) \div \left[1-\left(\frac{x_0}{2(y_0-\sqrt{3})}\right)^2\right]$
	$= \left(\frac{x_0}{y_0 - \sqrt{3}}\right) \frac{4(y_0 - \sqrt{3})^2}{4(y_0 - \sqrt{3})^2 - {x_0}^2}$
	$= \left(\frac{x_0}{y_0 - \sqrt{3}}\right) \frac{4\left(y_0 - \sqrt{3}\right)^2}{4 + 2x_0^2 - x_0^2}$
	$=\frac{4x_0\left(y_0-\sqrt{3}\right)}{{x_0}^2+4}$

$$\tan(\alpha + \beta) = \frac{\tan\alpha + \tan\beta}{1 - \tan\alpha \tan\beta} = \left(\frac{y_0}{x_0} + \frac{y_0 - 2\sqrt{3}}{x_0}\right) \div \left[1 - \left(\frac{y_0}{x_0}\right) \left(\frac{y_0 - 2\sqrt{3}}{x_0}\right)\right]$$

$$= \left(\frac{2y_0 - 2\sqrt{3}}{x_0}\right) \frac{x_0^2}{x_0^2 - \left(y_0^2 - 2\sqrt{3}y_0\right)}$$

$$= \left(\frac{2x_0\left(y_0 - \sqrt{3}\right)}{x_0^2 - \left(\frac{x_0^2}{2} - 2\right)}\right)$$

$$= \frac{4x_0\left(y_0 - \sqrt{3}\right)}{x_0^2 + 4}$$

Since $\tan(2\theta) = \tan(\alpha + \beta) \Leftrightarrow 2\theta = \alpha + \beta$ over the interval $(0, \pi)$, we have $2\theta = \alpha + \beta \Rightarrow \alpha - \theta = \theta - \beta$. Hence the angles made by the line segments OP and O'P with the tangent T is the same.

6	Solution
(a)	$2^n X_n = \frac{2^{n-1}}{2} X_{n-1} + 2$
	Substitute $v_n = 2^n X_n$:
	$v_n = \frac{1}{2}v_{n-1} + 2$
	Let $v_n = A \left(\frac{1}{2}\right)^n + B$, where A, B are constants
	Substituting v_o, v_1 :
	$v_0 = 6 = A + B$
	$v_1 = 5 = \frac{1}{2}A + B$
	Solving, $A = 2$, $B = 4$.
	$\therefore v_n = 2^{1-n} + 4$
	$X_n = \frac{1}{2^n} v_n$
<i>a</i> >	$X_n = 2^{1-2n} + 2^{2-n}$
(b) (i)	As $u_n \to l$ as $n \to \infty$,
	$l = \frac{l^2 + 5}{2l + 4}$
	$l - \frac{l^2 + 5}{2l + 4} = 0$
	$\frac{2l^2 + 4l - l^2 - 5}{2l + 4} = 0$
	$\frac{2l+4}{(l+5)(l-1)} = 0$
	$2l+4$ $\therefore l = -5 \text{ OR } l = 1.$
(b)	Using GC,
(ii)	When $a = -2.01$, the sequence increases towards the limit $l = -5$.
	When $a = -1.99$, the sequence decreases towards the limit $l = 1$.
(b) (iii)	$u_{n+1} + 2 = \frac{u_n^2 + 4u_n + 13}{2(u_n + 2)} = \frac{(u_n + 2)^2 + 9}{2(u_n + 2)}$
	Note $(u_n + 2)^2 + 9 > 0$
	If $u_n > -2$, $u_n + 2 > 0$, $\therefore u_{n+1} + 2 > 0 \Rightarrow u_{n+1} > -2$

If $u_n < -2$, $u_n + 2 < 0$, $\therefore u_{n+1} + 2 < 0 \Rightarrow u_{n+1} < -2$

When a = -2.01 < -2, all terms in the sequence will be less than -2, hence the sequence converges to $\alpha = -5 < -2$.

When a = -1.99 > -2, all terms in the sequence will be greater than than -2, hence the sequence converges to $\alpha = 1 > -2$.

Solution

(a)
$$x_n - x_{n-1} = k(x_{n-1} - x_{n-2})$$

 $x_n = (k+1)x_{n-1} - kx_{n-2}, n \in \mathbb{Z}, n \ge 3$

(b)
$$x_n - (k+1)x_{n-1} + kx_{n-2} = 0$$

Auxiliary equation: $\lambda^2 - (k+1)\lambda + k = 0$

$$\lambda = \frac{k + 1 \pm \sqrt{(k+1)^2 - 4k}}{2}$$
$$= \frac{k + 1 \pm \sqrt{(k-1)^2}}{2}$$

$$\lambda = k$$
 OR $\lambda = 1$

General solution: $x_n = A + B(k^n)$, where A, B are constants

When
$$n = 1$$
, $x_1 = 8 = A + Bk$ ----- (1)

When
$$n = 2$$
, $x_2 = 23 = A + Bk^2$ ---- (2)

(2) – (1):
$$B = \frac{15}{k(k-1)}$$

$$A = \frac{8k - 23}{k - 1} = 8 - \frac{15}{k - 1}$$

$$x_n = 8 + \frac{15}{k-1} (k^{n-1} - 1), \ n \in \mathbb{Z}^+$$

(c) When k > 1,

$$k^{n-1} \to \infty$$
 as $n \to \infty \Rightarrow x_n \to \infty$ as $n \to \infty$

When 0 < k < 1,

$$k^{n-1} \to 0$$
 as $n \to \infty \Rightarrow x_n \to 8 - \frac{15}{k-1}$ as $n \to \infty$

If k > 1, we would expect the spread of the virus to escalate and affect the whole population.

If 0 < k < 1, we would expect the spread of the virus to stop, and the total number of Omega variant cases in Singapore to approach approximately $8 - \frac{15}{k-1}$.

(d) Any of the following or equivalent:

- k is unlikely to be constant for an extended period of time in a virus outbreak
- k may decrease if a lot of the population has gotten the virus (eg. if there is herd immunity)

- x_n cannot grow indefinitely due to population size limits
- If k is not an integer, x_n takes non-integer values which is not feasible in real life.
- (e) Consider $x_n x_{n-1}$ for some $n \in \mathbb{Z}$, $n \ge 2$

$$k=1: x_m - x_{m-1} = x_{m-1} - x_{m-2}$$
 for all $m \in \mathbb{Z}, m \ge 3$

For n = 2:

$$x_2 - x_1 = 15$$

For $n \ge 3$:

$$x_{n} - x_{n-1} = x_{n-1} - x_{n-2}$$

$$= x_{n-2} - x_{n-3}$$

$$= \dots$$

$$= x_{2} - x_{1} = 15$$

 \therefore for all $n \in \mathbb{Z}$, $n \ge 2$, $x_n - x_{n-1} = 15$ (constant indep of n)

Therefore x_n is an arithmetic progression with a common difference of 15.

(f) When $n \le 5$, k = 4:

$$x_n = 3 + 5(4^{n-1}), \ n \le 5$$

$$x_4 = 323$$

$$x_5 = 1283$$

When $n \ge 6$, k = 1 and x_n increases as an arithmetic progression with common difference 1283 - 323 = 960.

$$\therefore x_n = 1283 + (n-5)960, \ n \ge 5$$

$$1283 + (n-5)960 \ge 10000$$

$$n-5 \ge 9.0802$$

$$n \ge 14.0802$$

Alert Orange will be triggered on the 15th week of the outbreak.

8 Solution

(a)
$$r + r\cos(\theta - \alpha) = d$$

At
$$\left(\frac{8\sqrt{2}}{3}, 0\right)$$
, $\frac{8\sqrt{2}}{3} + \frac{8\sqrt{2}}{3}\cos(-\alpha) = d$

$$\Rightarrow d = \frac{8\sqrt{2}}{3} + \frac{8\sqrt{2}}{3}\cos\alpha$$

At
$$\left(2\sqrt{2}, \frac{\pi}{3}\right)$$
, $2\sqrt{2} + 2\sqrt{2}\cos\left(\frac{\pi}{3} - \alpha\right) = d$

$$\Rightarrow d = 2\sqrt{2} + \sqrt{2}\cos\alpha + \sqrt{6}\sin\alpha$$

Then
$$d = \frac{8\sqrt{2}}{3} + \frac{8\sqrt{2}}{3}\cos\alpha = 2\sqrt{2} + \sqrt{2}\cos\alpha + \sqrt{6}\sin\alpha$$

$$\Rightarrow$$
 8+8cos α = 6+3cos α + 3 $\sqrt{3}$ sin α

$$\Rightarrow 2 + 5\cos\alpha = 3\sqrt{3}\sin\alpha$$
 (shown)

(b)
$$\Rightarrow (2+5\cos\alpha)^2 = (3\sqrt{3}\sin\alpha)^2$$

$$\Rightarrow 4 + 20\cos\alpha + 25\cos^2\alpha = 27\sin^2\alpha = 27 - 27\cos^2\alpha$$

$$\Rightarrow$$
 52 cos² α + 20 cos α - 23 = 0

$$\Rightarrow \cos \alpha = \frac{-20 + \sqrt{400 + 4784}}{104} \quad (\because \alpha \text{ is acute})$$

$$\Rightarrow \cos \alpha = \frac{1}{2} \Rightarrow \alpha = \frac{\pi}{3}$$

(c)
$$r = \frac{d}{1 + \cos\left(\theta - \frac{\pi}{3}\right)}$$
. At $\left(2\sqrt{2}, \frac{\pi}{3}\right)$, $2\sqrt{2} = \frac{d}{1 + \cos\left(0\right)} \implies d = 4\sqrt{2}$

(d)

(e) At the closest point to the Sun, which is the vertex of the parabola, the tangent is perpendicular to the line of symmetry.

Hence the gradient of the path $=-\frac{1}{\sqrt{3}}$

$$\therefore y - \sqrt{6} = -\frac{1}{\sqrt{3}} \left(x - \sqrt{2} \right) \implies y = -\frac{1}{\sqrt{3}} x + \frac{4\sqrt{6}}{3}$$

(f) At the y-axis, the distance is $\frac{4\sqrt{6}}{3}$ A.U.s

Hence the distance in kilometres =
$$\frac{4\sqrt{6}}{3} \times 150 \times 10^6$$
 km
= 489.898×10^6 km
= 4.90×10^8 km (3 s.f.)