

ST ANDREW'S JUNIOR COLLEGE PRELIMINARY EXAMINATIONS HIGHER 1

CANDIDATE					
NAME					
CLASS	2	3			

H1 CHEMISTRY

8873 / 02

Paper 2 Structured Questions

27 August 2024 2 hours

Candidates answer on the Question Paper.

Additional Materials: Data Booklet

READ THESE INSTRUCTIONS FIRST

Write your centre number, index number, name and class at the top of this page.

Write in dark blue or black pen.

You may use a HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

Section A

Answer all the questions.

Section B

Answer one question.

The use of an approved scientific calculator is expected, where appropriate.

Question Number	Total Marks	Marks Obtained
;	SECTION A	
1	14	
2	7	
3	9	
4	30	
	SECTION B	
5	20	
6	20	
TOTAL	80	

The number of marks is given in brackets [] at the end of each question or part question.

Section A

Answer **all** the questions in this section in the spaces provided.

	Isotope 28Si 29Si 30Si	Table 1.1 Relative Isotopic mass 27.976 28.976 29.973	Percentage abundance. % 92.22 4.69					
	²⁸ Si ²⁹ Si	mass 27.976 28.976	92.22 4.69					
	²⁹ Si	27.976 28.976	92.22					
	²⁹ Si	28.976	4.69					
	³⁰ Si	29.973	2.22					
			3.09					
	Relative atomic mass of silic = (27.976 x 92.22 + 28.976 = 28.08 (to two decimal place	x 4.69 + 29.973 x 3	.09)/100					
(ii)	Complete the electronic cor	·	1.	[1				
	1s ²	••						
	1s ² 2s ² 2p ⁶ 3s ² 3p ²							
(iii)	Explain why second ionisa	ation energy of sili	con is lower than that of	[2				
	aluminium.	plain why second ionisation energy of silicon is lower than that of [
	2 nd I.E. of Si is lower than th	nat of Al.						
	Al^+ : 1s ² 2s ² 2p ⁶ 3s ²							
	Si^+ : $1s^2 2s^2 2p^6 3s^2 3p^1$							
	• In Al ⁺ , the electron is re	emoved from the 3s	orbital, whereas for Si ⁺ , the					

		 The <u>electron in the 3p orbital</u> is <u>further from the nucleus</u> √ than the electron in the 3s orbital and experiences <u>additional shielding effect</u> √ by the two 3s electrons. These factors <u>outweigh the effect of increase in nuclear charge</u> √ from Al⁺ to Si⁺, resulting in a <u>weaker attraction by nucleus</u> √ Hence <u>less energy</u> is required to remove the electron from the 3p orbital in Si⁺ than that in the 3s orbital in Al⁺. 	
(b)		When carbon tetrachloride, CCl_4 , and silicon tetrachloride, $SiCl_4$, were added to water, the following observations were seen. carbon tetrachloride Forms two immiscible layers silicon tetrachloride White solid and steamy fumes	
	(i)	Write a balanced equation for the reaction of $SiCl_4$ with water. $SiCl_4(I) + 2H_2O(I) \rightarrow SiO_2(S) + 4HCl$ (aq) (State symbols not required)	[1]
	(ii)	CCl_4 has no reaction with water. Suggest an explanation for the inertness of CCl_4 to water. CCl_4 does not have any empty and energetically accessible 3d	[1]
		orbitals that can accept lone pair of electrons from water molecules, hence, it is inert to water.	
	(iii)	Explain why CCl ₄ forms two immiscible layers with water when they are mixed.	[2]
		The energy released to form the <u>instantaneous dipole-induced dipole</u> <u>interactions between CCl₄ and water</u> $$ is <u>insufficient</u> $$ to overcome the <u>hydrogen bonding between water molecules</u> $$ and the <u>instantaneous</u> <u>dipole-induced dipole interactions between CCl₄ molecules</u> $$. Hence,	

			CCl ₄ is insoluble in water and forms two immiscible layer when added to	
			water.	
	(c)		to carbon's ability to form strong multiple bonds, it can form different	
		allotr	ropes like graphene and fullerene.	
		Gran	phene is an allotrope of carbon that occurs as two-dimensional sheets while	
			renes are molecules of carbon atoms with hollow shapes. An example of a	
		sphe	erical fullerene is buckminsterfullerene, C_{60} , while carbon nanotube (CNT) is	
		a typ	pe of cylindrical fullerene.	
		Buck	kminsterfullerene has low melting point and is slippery while CNT, like	
			hene, has high tensile strength and is an excellent conductor of electricity.	
		91		
		(i)	Graphene is a <i>nanomaterial</i> .	[1]
			Define what is meant by the term nanomaterial.	
			Nanomaterials are defined as a material containing particles where there	
			is <u>at least one dimension</u> between <u>1-100 nm on the nanoscale</u> .	
-		/::\	Duest a discussion to illustrate the atmost we of smooth and	[4]
		(ii)	Draw a diagram to illustrate the structure of graphene.	[1]
			Structure of bonds carbon atoms	ent
		/iii\	Explain how carbon nanotube is an excellent conductor of electricity and	[2]
		(iii)	has high tensile strength.	[4]
			In CNT, there is <u>delocalisation of the electron in the p orbital on each</u>	
			carbon, forming an extended π -electron cloud √above and below the	
			layer within the tube allows it to be good electrical conductors.	

			1
		Carbon atoms in graphene form a single layer hexagonal lattice structure,	
		resulting in an extensive network of many strong covalent bonds	
		between carbon atoms give a single carbon nanotube high tensile	
		strength.	
	(:. A	Our manufacture to the color of all and a size of the color of the col	F41
	(iv)	Suggest why buckminsterfullerene is a good lubricant.	[1]
		The spherical shape of the buckminsterfullerene allows it to roll/move	
		between the moving parts, reducing contact and friction between parts.	
		[14 m	arks1
			uoj

2 Propanone, CH₃COCH₃, reacts with iodine, I₂, in the presence of an acid catalyst.

An experiment is performed using 1.00 mol dm $^{-3}$ of I_2 and 1.00 mol dm $^{-3}$ H $^+$ (aq) where concentration of CH $_3$ COCH $_3$ is monitored over time. The same experiment was then repeated using 0.500 mol dm $^{-3}$ H $^+$ (aq) instead.

The results obtained are used to plot the graph below.

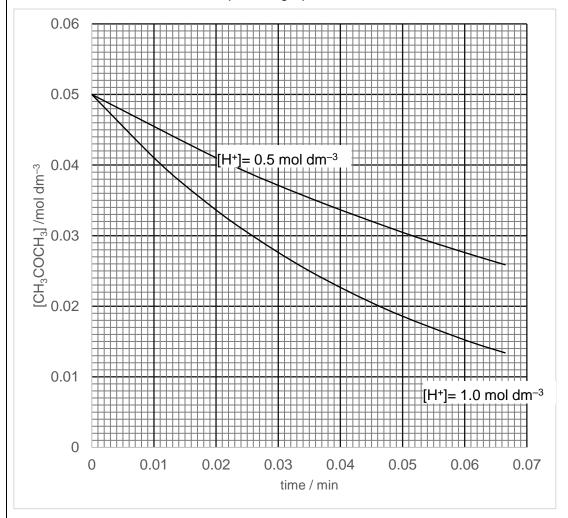
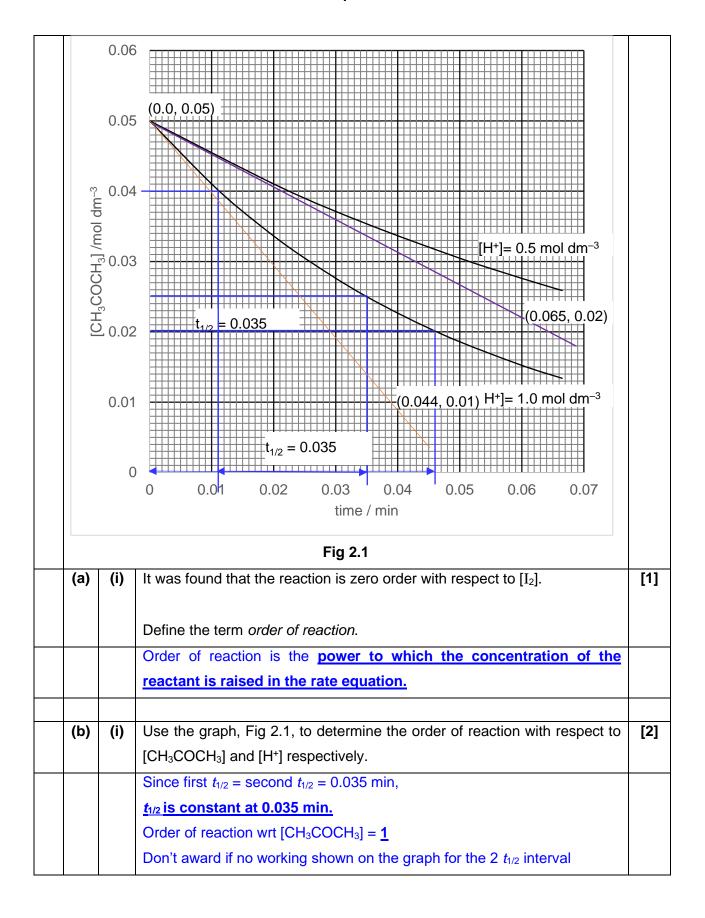



Fig 2.1

		When [H ⁺] = 1.0 moldm ⁻³ , initial rate = $\left \frac{0.01 - 0.05}{0.044 - 0} \right = 0.909$	
		When [H ⁺] = 0.5 moldm ⁻³ , initial rate = $\left \frac{0.02 - 0.05}{0.065 - 0} \right = 0.462$	
		When [H+] x 2, rate x 2,	
		Order of reaction wrt $[H^+] = \underline{1}$	
	(ii)	Write the rate equation for this reaction. Hence, calculate the value of rate	[2]
		constant, k. Include the units.	
		Rate = k [H ⁺][CH ₃ COCH ₃]	
		$k = \frac{0.0909}{0.05} = 18.2 \text{ mol}^{-1} \text{dm}^3 \text{min}^{-1}$	
(c)		Other halogens, like chlorine and bromine, can also react with propanone	[2]
		in similar reactions as iodine.	
		Describe and explain how the reactivity of halogens varies down the group.	
		Include relevant data from the <i>Data Booklet</i> in your answer.	
		Atomic radius of Cl = 0.099nm	
		Atomic radius of Br = 0.114nm	
		Atomic radius of I = 0.133 nm	
		Down the group, the <u>oxidising power of halogens decreases</u> √ because	
		its <u>atomic radius increases</u> and its <u>electron affinity decreases</u> $\sqrt{}$.	
		Hence, there is <u>less tendency for halogens to gain electrons</u> √ to be	
		reduced to form halide ions.	
		reduced to form mande forts.	
		OR	
		Down the group, the <u>oxidising power of halogens decreases</u> √ because	
		valence electrons of halogens are further away from nucleus, and	
		hence, <u>are less attracted to the nucleus</u> $\sqrt{.}$ As a result, it is <u>harder for</u>	
		halogens to gain electrons √ to be reduced to form halide ions.	

			[7 m	arks]						
3	A sa	mple	of sodium nitrite, NaNO₂, was analysed by titrating with yellow aqueous ceriu	m(IV)						
	ions, Ce ⁴⁺ . The experimental procedures for this analysis were as follows.									
	•	0.1	140 g of impure NaNO ₂ was dissolved in deionised water to form a color	urless						
	solution. It was then transferred to a 100 cm ³ volumetric flask and top up to the mark									
	with more deionised water.									
	• 25.0 cm³ of this solution required 22.05 cm³ of 0.0400 mol dm⁻³ Ce⁴+(aq) to reach t									
	end-point. During the titration, Ce ⁴⁺ was reduced to colourless Ce ³⁺ while nitrite									
	was oxidised to form colourless nitrate ion, NO ₃ ⁻ .									
	(a)	(i)	Draw a dot-and-cross diagram of NaNO ₂ .	[2]						
			— ¬+							
			[Na] ********							
			L XX							
		(ii)	Construct the ionic equation for the reaction between sodium nitrite and							
		(,	cerium(IV) ions.	[1]						
			$Ce^{4+} + e^{-} \rightarrow Ce^{3+} (1)$	1.3						
			$H_2O + NO_2^- \rightarrow NO_3^- + 2H^+ + 2e^ (2)$							
			(1) \times 2 + (2): $2Ce^{4+}(aq) + H_2O(l) + NO_2^{-}(aq) \rightarrow NO_3^{-}(aq) + 2H^{+}(aq) +$							
			2Ce ³⁺ (aq) (state symbols not required)							
			(ctate symbole not requirely							
		(iii)	Calculate the percentage purity of this sample of NaNO ₂ .	[3]						
			Amount of Ce ⁴⁺ = 0.02205 x 0.04 = 0.000882 mol							
			Amount of NO_2^- in 25 cm ³ = 0.000882 / 2 = 0.000441 mol							
			Amount of NO_2^- in 100 cm ³ = 0.000441 x 4 = 0.001764 mol							
			Mass of NaNO ₂ = $0.001764 \times [(23.0 + 14.0 + 2(16.0))] = 0.121716 g$							
			% purity = $0.121716 / 0.14 \times 100\% = 86.94\% \approx 86.9\%$ (to 3 sf)							

		(iv)	Predict the colour change at the end-point of this titration.	[1]
			Colourless to (pale) <u>yellow</u> .	
	(b)	Sugg	gest and explain the difference in the ionic radii of Ce ⁴⁺ and Ce ³⁺ .	[2]
		and	Ce ⁴⁺ and Ce ³⁺ have <u>same nuclear charge</u> $\sqrt{.}$ Ce ⁴⁺ have <u>one less electron</u> $\sqrt{.}$ hence the <u>valence electrons are more strongly attracted</u> $\sqrt{.}$ to the nucleus thus Ce ⁴⁺ has a <u>smaller ionic radius</u> $\sqrt{.}$ than Ce ³⁺ .	arks]
4	Diol	is an	organic compound with 2 –OH groups. The following are some examples of	
	(a)	(i)	OH Compound A Compound B Compound C Compound D Compounds A to D are constitutional isomers.	
			Define the term <i>constitutional isomers</i> . Constitutional isomers are compound with the <u>same molecular formula</u> but <u>different structural formula</u> .	[1]
		(ii)	Give the systematic name of compound A. Butane-1,3,-diol OR 1,3-butanediol OR Butan-1,3-diol	[1]
		(iii)	Both compound A and butane are made up of four carbon atoms. Despite this, butane is less reactive than A . Explain briefly why this is so. Butane is non-polar while A is polar.	[1]
			Dutano is non-polar willio A is polar.	

			Tab	ole 4.1		
			Compound	Boiling point / °C		
			A	210		
			В	192		
			C	230		
		L	D	176		
		With reference to	structure and bor	nding, explain why com	pound C has a	
		<u> </u>	nt than compound			
		Both B and C are polar <u>simple covalent molecules</u> with <u>intermolecular</u>				
		hydrogen bond	<u>s</u> . Within molecu	les of B , there are <u>i</u>	<u>ntramolecular</u>	
		hydrogen bonds	<u>s,</u> which <u>reduce th</u>	e extent of intermolec	<u>ular hydrogen</u>	
		bonds . This is u	nlike C which only	has intermolecular hy	drogen bonds.	
		Hence, more e	nergy is needed	to overcome the m	nore extensive	
		intermolecular hy	drogen bonds of C	•		
	(v)	With reference to	(a)(iv), explain wh	ny compound D has the	e lowest boiling	
		point.				
		Compounds A	to D are <u>polar</u>	simple covalent m	olecules with	
		intermolecular I	nydrogen bonds.	Unlike A to C, D is	branched and	
		therefore, it has	the smallest sur	face area, resulting in	the smallest	
				ermolecular instantaı		
				ce, less energy is neede		
		it.				
	(i)	In the snaces pro	ovided below drav	w the structure of the o	organic product	
(b)	(')	•		acted with the following	•	
(b)		obtained when c	ompound b is rea	_		
(b)		aanditiana Ctata	the type of reaction	a ioreach readení and	condition.	
(b)			the type of reaction	Tior odon rodgoni and		
(b)		I) $K_2Cr_2O_7$,	H ₂ SO ₄ , heat	·		
(b)		I) $K_2Cr_2O_7$,	• •	·		

	Reagent and ondition	I	II	III	
o	Structure of rganic roduct	НООС	OH		
	ype of Reaction	Oxidation	Elimination	Condensation	
(i	III.	rence to (b)(i) , state		ited H ₂ SO ₄ in reaction	[1]
(ii	Draw the		sed from a bromoalka of this bromoalkane. S	ne. State the reagents and	[2]
	H-C-0 Br I	H H H I I I C-C-C-H I I I Br H H			

(c)	Whe	n 2 -OH groups are bonded to the same carbon atom, the compound is	
	knov	vn as geminal diol. Geminal diol is unstable and will spontaneously lose	
	wate	er to form a carbonyl compound. An equation to represent this is as shown.	
		$R_2C(OH)_2 \longrightarrow R_2C=O + H_2O$	
		1.20(0.1.)2	
	(i)	Explain what is meant by a reversible reaction.	[1]
		A reversible reaction is one that does not go to completion and can	
		proceed in both the forward and backward reaction.	
	(ii)	For the conversion between geminal diol and carbonyl compound, suggest	
	(,		
		whether the ratio of $\frac{\text{[products]}}{\text{[reactants]}}$ at equilibrium will be less than, equal to or	
		greater than 1.	[4]
			[1]
		Greater than 1	
	(iii)	For the following compound, draw the structure of the carbonyl compound	
		that it will form.	
		HO	
		ОН	[1]
		0	
(1)	D: 1		
(d)		can react with diisocyanate to form polyurethane, which is a polymer. The	
	equa	ation representing this reaction is as shown.	

$$O=C=N-R^{1}-N=C=O + HO-R^{2}-OH \longrightarrow \begin{bmatrix} O & O \\ -C-N-R^{1}-N-C-O-R^{2}-O \\ H & H \end{bmatrix}$$

$$polyurethane$$

Spandex is a fabric that contains polyurethane formed from compound **E** and HOCH₂CH₂OH.

$$O=C=N-CH_2-CH_2-C=C$$

Compound E

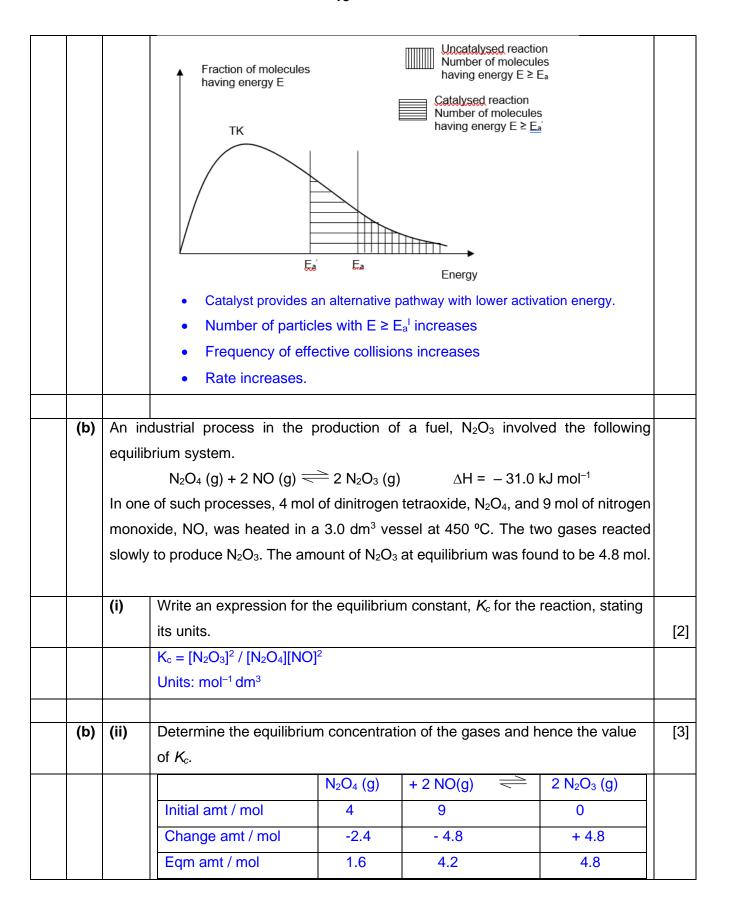
Unlike nylon which is derived from coal and petroleum, all the constituent parts of polyurethane in spandex are synthesised in the laboratory. Spandex is non-biodegradable. When polyurethane in spandex is heated, a variety of harmful products can be produced, such as carbon monoxide, CO, and hydrogen cyanide, HCN.

The properties of spandex and nylon are shown in **Table 4.2**.

Table 4.2

Property	Spandex	Nylon
Stretchability	High	Moderate
Durability	High	High
Retention	High	Low to moderate
Breathability	High	High

	(i)	State the molecular formula of E .	[1]
		C ₁₅ H ₁₀ N ₂ O ₂	
	(ii)	Spandex fibres are strong due to the intermolecular forces between the	
		polymer chains.	


[3] ueous [1]
ueous
[1]
noset.
[2]
oducts
radoto
ntage
[1]
ts are
ortant
ar.
ıble to
ice by
[3]
s the

	Spandex has <u>higher retention</u> than nylon and this allows the sportswear	
	to be worn repeatedly.	
	[30 m	arks]

Section B

Answer one question from this section in the spaces provided.

5	(a)	New	car exhaust systems are fitted with a catalytic converter where it converts	
		harmf	ful gases like carbon monoxide and nitrogen dioxide to harmless gases like	
		carbo	n dioxide and nitrogen before the exhaust gases are being released into the	
		atmos	sphere.	
		(i)	Write an equation to represent the chemical reaction taking place in the	
			catalytic converter as described in (a).	[1]
			$4 \text{ CO} + 2 \text{ NO}_2 \rightarrow \text{N}_2 + 4 \text{ CO}_2$	
		(ii)	State the type of catalyst involved and explain the mode of action of this type	
			of catalyst.	[4]
			Heterogenous Catalyst	
			Adsorption of reactant molecules on catalyst surface weaken the	
			bonds within the reactants.	
			Activation energy is reduced, reactant surface concentration	
			<u>increased</u> and the reactants <u>break down and react</u> to form products.	
			Products desorb from the catalyst surface.	
	(a)	(iii)	Explain, with the aid of a Boltzmann distribution diagram, on how this	
			catalyst affects the rate of reaction.	[3]

	Eqm Conc / mol dm ⁻³	0.533	1.4	1.6	
	V (4.6)2 / ((0.522)/4.4)2	en.			
	$K_c = (1.6)^2 / \{(0.533)(1.4)^2 $ = 2.45 mol ⁻¹ dm ³	·}			
	= 2.45 11101 * 01115				
(iii) Define the term <i>dynamic equilibrium</i> .					[1]
(,	Dynamic equilibrium is w	•	orward reaction eq	uals rate of	[,]
	backward reaction and t				
	of reactants and produc	•	oranie onangon	T CONTROLL CALLOTTO	
(iv)	Suggest and explain the	emperature	and pressure conditi	ons which could	
	help to increase the yield	of N_2O_3 .			[4]
	By Le Chatelier's Princip	le (LCP), a	low temperature of	condition will shift	
	position of equilibrium	to the right	and increase yield a	as the system will	
	want to increase temper	ature through	gh releasing heat		
	by favouring the exothern	nic reaction.			
By LCP, a <u>high pressure</u> condition will shift <u>position of equilibrium</u>					
	the right and increase y	ield as the sy	stem will want to <u>rec</u>	duce pressure	
	by forming lesser gased	ous particle	<u>s</u>		
					
(v)	The actual industrial temp	perature and	pressure conditions	were as followed:	
	Temperature: 500 °C				
	Pressure: 150 atm				[0]
	Explain why these condition in (b)(iv).	ons were ap	plied instead of what	was suggested	[2]
	Too low a temperature wi	Il recult in th	o reaction rate to be	o vorv slow	
	Hence, a moderately high				
	optimum rate and yield	•	e of 500°C is applied	a to <u>acmeve</u>	
	Too high a pressure will r		cost to maintain th	o oguinment	
	needed to withstand the				
	150 atm was applied.	pressure.	nerice, a moderately	riigii pressure or	
	100 aun was applieu.				
				[Total: 20 m	arks]
				[10tal. 20 III	a. Noj

6	In th	is curre	ent environmental landscape, it is important to search for alternative energy	
	sour	ces. Me	ethanol and methane have been investigated to serve as alternative sources	
	of fu	els for r	motor cars.	
	(a)	(i)	Write an equation to represent the standard enthalpy change of combustion	
			of methanol.	[1]
			$CH_3OH(l) + 3/2 O_2(g) \rightarrow CO_2(g) + 2 H_2O(l)$	
		(ii)	Using relevant data from the Data Booklet, calculate another value for the	
			standard enthalpy change of combustion of methanol.	[2]
			$\Delta H_c = \{3(410) + 360 + 460 + 3/2(496)\} - \{2(805) + 4(460)\}$	
			= -656 kJ mol ⁻¹	
		(iii)	Use of Data Booklet is relevant to this question.	
			The standard enthalpy change of combustion of methanol can be determined	
			in the laboratory using the apparatus shown in the diagram below.	
			Thermometer	
			500 cm ³ of water	
			10 cm ³ of methanol	
			The temperature of water rose from 25 °C to 90 °C when all the methanol	
			was completely burnt. The density of methanol is 0.792 g cm ⁻³ and the	
			standard enthalpy change of combustion of methanol is -715 kJ mol ⁻¹ .	
			Calculate the percentage efficiency of this heating process.	[4]
			Amt of methanol burnt = (10 X 0.792) / [12.0 + 4(1.0) + 16.0]	
			= 0.2475 mol	
			q _{100%} = 0.2475 X 715 000 = 176962.5 J	
			actual q = 4.18 X 500 X (90 – 25) = 135850 J	
	1			

		% efficiency = (135850 / 176962.5) X 100 = 76.8 %	
	(iv)	Suggest why there was a discrepancy between your answer in (a) (ii) and	
		that quoted in (a) (ii).	[1
		Bond energy values are <u>average values</u> / The <u>conversion of methanol to</u>	
		gaseous state was not considered in the calculation in (iii).	
(b)	Metha	noic acid, commonly known as formic acid, is used as a food preservative. It	
		e formed from oxidising methanol.	
	(i)	Write a balanced equation for the formation of methanoic acid from	[′
		methanol. You can use [O] to represent the oxidising agent.	
		$CH_3OH + 2 [O] \rightarrow HCOOH + H_2O$	
	(**)		
	(ii)	Using methanoic acid as an example, explain what is meant by a	ſ.
		acid – conjugate base pair.	[′
		An acid – conjugate base pair <u>differ from each other by a H+</u> . <u>HCOO-</u> is	
		the strong conjugate base of HCOOH, a weak acid.	
(c)	25.0 c	m³ of 0.100 mol dm⁻³ methanoic acid, HCOOH, was titrated with 0.100	
		m ⁻³ NaOH. The titration curve is shown below.	
		nH	
		pH ▲	
	>	7	
		′	
		<i>)</i>	
	1.5	50	
		➤ Vol of NaOH / cm³	
		X	

(i)	Justify, with relevant calculations, that methanoic acid is a weak acid.	[2]
	$[H^+] = 10^{-1.50} = 0.0316 \text{ mol dm}^{-3}$	
	Since [H+] < [HCOOH], methanoic acid is a weak acid.	
	OR	
	Assuming methanoic acid is a strong acid,	
	Expected pH = $-\lg (0.100) = 1$	
	Since actual pH > expected pH, actual [H+] lesser than expected, thus	
	methanoic acid is a weak acid.	
(ii)	Write a balanced chemical equation for the reaction between methanoic	
	acid and sodium hydroxide.	[1]
	HCOOH + NaOH → HCOO ⁻ Na ⁺ + H ₂ O	
(iii)	Determine the value of X.	[1]
	Amt of HCOOH = (25/1000) X 0.100 = 0.0025 mol = Amt of NaOH	
	X = Vol of NaOH = (0.0025 / 0.100) X 1000 = 25.0 cm ³	
(iv)	Explain, with the aid of a chemical equation to explain why pH is greater	[2]
	than 7 when X cm³ of NaOH was added.	
	HCOO⁻ + H ₂ O ── HCOOH + OH⁻	
	HCOO ^{-,} a strong conjugate base , will hydrolyse in water to release OH -,	
	causing the resultant solution at equivalence point to be basic, hence pH>7.	
(v)	Suggest a suitable indicator for this titration and explain your choice.	[2]
	Phenolphthalein / Thymolphthalein. The <u>region of rapid pH change</u> of the	
	titration/ vertical region of the titration curve coincides with working range	
	of the indicator.	
(vi)	It was found that a buffer mixture was obtained when $\frac{X}{2}$ cm ³ of NaOH was	
	added. Write equations to show how the mixture resisted changes in pH	
	when small amounts of H ⁺ and OH ⁻ was added to a separate solution of this	_
	buffer mixture.	[2]
	Add H ⁺ , H ⁺ + HCOO ⁻ → HCOOH	

	Add OH^- , $OH^- + HCOOH \rightarrow HCOO^- + H_2O$	
	[Total: 20 mar	rks]

END OF PAPER