

MATHEMATICS Higher 2

9758/01

Paper 1

27 Sept 2024 3 hours

Additional materials:

Printed Answer Booklet List of Formulae and Results (MF27)

READ THESE INSTRUCTIONS FIRST

Answer all questions.

Write your answers on the Printed Answer Booklet. Follow the instructions on the front cover of the answer

booklet.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question. You are expected to use an approved graphing calculator.

Unsupported answers from a graphing calculator are allowed unless a question specifically states otherwise. Where unsupported answers from a graphing calculator are **not** allowed in a guestion, you must present the mathematical steps using mathematical notations and not calculator commands. You must show all necessary working clearly.

The number of marks is given by [] at the end of each question or part question.

This document consists of 6 printed pages and 2 blank pages.

(a)
$$\cos^{-1}(3x^2)$$
, [2]

$$\ln\left(\frac{\sqrt{2x+1}}{x^3}\right).$$
[3]

2 Water is poured at a rate of 0.1 m³ per minute into a container in the form of an open cone. The semi-vertical angle of the cone is 30°. At time *t* minutes after the start, the radius of the water surface is *r* m (see diagram). Find the rate of increase of the depth of water when the volume of the water is 3 m³. [5]

[The volume of a cone of base radius r and height h is given by $V = \frac{1}{3}\pi r^2 h$]

- 3 A curve *C* has equation $f(x) = \frac{a}{x^2} + bx + c$, where *a*, *b* and *c* are constants. It is given that *C* passes through the points (-1, 4) and (2, -11) and the curve of $y = \frac{1}{f(x)}$ has a vertical asymptote with equation x = 1. Find the equation of *C*. [4]
- 4 By writing x = A(8x-8) + B, where A and B are constants, find $\int_0^1 \frac{x}{4x^2 8x + 5} dx$, giving your answer in the form $p \ln q + r \tan^{-1} s$, where p, q, r and s are values to be determined. [5]

5 The curve *C* has equation $y = \frac{x^2 + ax + b}{x+1}$, where *a* and *b* are constants. It is given that *C* has a minimum point at (2,0).

- (i) Show that a = -4 and b = 4. [3]
- (ii) Sketch the graph of *C*, indicating clearly the equations of any asymptotes and the coordinates of any turning points and axial intercepts. [3]
- (iii) By adding an appropriate graph to your sketch in (ii), deduce the number of real roots of the equation

$$x^{3} + ax^{2} + (b+1)x + 1 = 0.$$
 [2]

6 The diagram shows an ellipse, centred at the origin with semi-minor axis *a* and semi-major axis 2a, where a > 0. The rectangle *PQRS* is inscribed in the ellipse such that its four vertices *P*, *Q*, *R* and *S* lie on the ellipse. The coordinates of *P* is (x, y), where *x* and *y* are positive.

- (i) Write down the cartesian equation of the ellipse in terms of *a*. [1]
- (ii) By considering the coordinates of *P*, show that *A*, the area of rectangle *PQRS*, is $8x\sqrt{a^2 x^2}$ [2]
- (iii) Using differentiation, find, in terms of *a*, the value of *x* when *A* is a maximum. You do not need to prove that *A* is a maximum.[3]
- (iv) Find the value of a if the maximum value of A is 100. [2]

(i) Without using a calculator, solve the inequality $\frac{5-3x}{x^2+x-2} \ge -2$. [4]

(ii) Deduce the range of values of x for which
$$\frac{-5-3x}{x^2-x-2} \ge 2$$
. [3]

8 (a) The diagram below shows the graph of y = f(x). The curve passes through the points A(-a,0) and B(0,-a) and has a minimum point at C(2a,-2a), where a > 0. The lines x = -2a and y = -a are asymptotes of the curve.

On separate diagrams, sketch the graphs of

(i)
$$y = f(x-a) + a$$
, [3]

(ii)
$$y = \frac{1}{f(x)}$$
, [3]

indicating clearly in each case, where appropriate, the equations of any asymptote(s), axial intercepts and coordinates of the points corresponding to *A*, *B* and *C*.

- (b) The curve whose equation is $y = \sin x$, undergoes in succession, the following transformations:
 - A: A translation by π units in the negative *x*-direction.
 - **B**: A scaling parallel to the *x*-axis by a factor of 3.
 - **C**: A translation by 2 units in the positive *y*-direction.

Find the equation of the resulting curve.

7

9 (a) Use the substitution
$$x = \sin \theta$$
 to find $\int \frac{2x^2}{\sqrt{1-x^2}} dx$. [4]

(b) (i) Find
$$\frac{d}{dx} \sin(\ln x)$$
. [1]

- (ii) Hence, using integration by parts, find $\int \sin(\ln x) dx$. [3]
- **10** A curve *C* has parametric equations

$$x=t^2+t$$
, $y=t^2-t$, $t\in \square$.

- (i) Sketch the graph of *C*, indicating the coordinates of the points where the curve crosses either axis. [2]
- (ii) Find the coordinates of the point on *C* where the tangent to *C* is parallel to the line 5y = 4x 20. [3]
- (iii) Find the equation of the tangent to C at the point (0,2) and show algebraically that this tangent does not cut C again. [5]
- 11 Referred to the origin *O*, points *A* and *B* have position vectors **a** and **b** respectively, where **a** and **b** are non-zero and non-parallel vectors. Point *C* is the midpoint of *OA* and point *D* lies on *BC* such that *BD*: DC = 2: 3.
 - (i) Find the position vectors \overrightarrow{OC} and \overrightarrow{OD} , giving your answers in terms of **a** and **b**. [2]
 - (ii) Find the area of triangle *OCD* in the form of $k |\mathbf{a} \times \mathbf{b}|$, where k is a constant to be found. [3]
 - (iii) Given that $|\mathbf{a}| = 2$, $|\mathbf{b}| = \sqrt{2}$ and angle *AOB* is $\frac{\pi}{4}$ radian, using scalar product, show that *CD* is perpendicular to *OA*. [3]
 - (iv) Given instead that **a** is a unit vector, give a geometrical interpretation of $|\mathbf{a} \mathbf{b}|$. [1]

- 12 The line *l* contains the point *P* with coordinates (1, -5, -5) and is parallel to $3\mathbf{i} + \mathbf{j} 6\mathbf{k}$. The plane π_1 has cartesian equation 2x 5y 3z = 4.
 - (i) Find the acute angle between l and π_1 , giving your answer to the nearest degree. [3]
 - (ii) Find the coordinates of Q, the point of intersection between l and π_1 . [3]

The plane π_2 contains *l* and is perpendicular to π_1 .

- (iii) Find a cartesian equation of π_2 . [3]
- (iv) Find a vector equation of the line where π_1 meets π_2 . [2]

13 The function f is defined by

$$f: x \mapsto 1 - \frac{4}{x^2}$$
, for $x \in \Box$, $x < -1$.

- (i) Sketch the graph of y = f(x), stating the equation of the asymptote and the coordinates of the point where the curve crosses the axes. [2]
- (ii) Show that f has an inverse. Hence, find $f^{-1}(x)$ and state its domain. [4]
- (iii) By considering the domains of $y = ff^{-1}(x)$ and $y = f^{-1}f(x)$, find the range of values of x such that $ff^{-1}(x) = f^{-1}f(x)$. [2]

Another function g is defined by

$$g: x \mapsto -e^{2x} - 2$$
, for $x \in \Box$.

(iv) Explain why fg exists. Find fg and its range. [3]

Blank Page

Blank Page